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ABSTRACT 

Malaria is a major health problem, mainly in developing countries, and causes an 

estimated 1 million deaths per year. Plasmodium falciparum is the major type of 

human malaria parasite, and causes the most infections and deaths. Malaria drugs, like 

any other drugs, suffer from possible side effects and the potential for emergence of 

resistance. Chloroquine, which was a very effective drug, has been used since about 

1945, but its use is severely limited by resistance, even though it has mild side effects, 

and is otherwise very efficacious. Research has shown that there are chloroquine 

reversal agents, molecules that can reinstate antimalarial activity of chloroquine and 

chloroquine-like drugs; many such reversal agents are composed of two aromatic 

groups linked to a hydrogen bond acceptor several bonds away. By linking a 

chloroquine-like molecule to a reversal agent-like molecule, it was hoped that a hybrid 

molecule could be made with both antimalarial and reversal agent properties. In the 

Peyton Lab, such hybrid “Reversed Chloroquine” molecules have been synthesized 

and shown to have better antimalarial activity than chloroquine against the P. 

falciparum chloroquine-sensitive strain D6, as well as the P. falciparum chloroquine-

resistant strains Dd2 and 7G8. The work reported in this manuscript involves 

simplifying the reversal agent head group of the Reversed Chloroquine molecules, to a 

single aromatic ring instead of the two rings groups described by others; this 

modification retained, or even enhanced, the antimalarial activity of the parent 

Reversed Chloroquine molecules. Of note was compound PL154, which had IC50 

values of 0.3 nM and 0.5 nM against chloroquine-sensitive D6 and chloroquine-
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resistant Dd2. Compound PL106 was made to increase water solubility (a requirement 

for bioavailability) of the simplified Reversed Chloroquine molecules. Molecular 

modifications inherent to PL106 were not very detrimental to the antimalarial activity, 

and PL106 was found to be orally available in mice infected with P. yoelli, with an 

ED50 value of about 5.5 mg/kg/d.  

 

Varying the linker length between the quinoline ring and the protonatable nitrogen, or 

between the head group and the protonatable nitrogen, did not have adverse effects on 

the antimalarial activities of the simplified Reversed Chloroquine molecules, in accord 

with the trends observed for the original design of Reversed Chloroquine molecules as 

found from previous studies in the Peyton Lab. The simplified Reversed Chloroquine 

molecules even tolerated aliphatic head groups (rather than the original design which 

specified aromatic rings), showing that major modifications could be made on the 

Reversed Chloroquine molecules without major loss in activity. 

 

 A bisquinoline compound, PL192, was made that contained
 
secondary nitrogens at 

position 4 of the quinoline ring (PL192 is a modification of piperaquine, a known 

antimalarial drug that contains tertiary nitrogens at position 4 of the quinoline ring); 

this compound was more potent than piperaquine which had an IC50 value of 0.7 nM 

against CQS D6 and an IC50 of 1.5 nM against CQR Dd2, PL192 had IC50 values of 

0.63 nM against chloroquine sensitive D6 and 0.02 nM against chloroquine resistant 

Dd2.  
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Finally, the mechanism of action of these simplified “Reversed Chloroquines” was 

evaluated; it was found that the simplified “Reversed Chloroquines” behaved like 

chloroquine in inhibiting β-hematin formation and in heme binding.  However, the 

simplified “Reversed Chloroquines” were found to inhibit chloroquine transport for 

chloroquine resistant P. falciparum chloroquine resistance transporter expressed in 

Xenopus oocytes to a lesser extant than the classical reversal agent verapamil. From 

these studies it was noted that the simplified “Reversed Chloroquines” may not behave 

as well as classical reversal agents would in restoring chloroquine efficacy, but they 

are very potent, and so could be a major step in developing drug candidates against 

malaria. 
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CHAPTER 1 

Introduction 

Malaria Problem 

Malaria is a major health problem, mainly in Sub-Saharan Africa, some parts of Asia, 

and South America as shown in Figure 1.1.
5;10

 Malaria is caused by protozoan 

parasites belonging to the genus Plasmodium.
11;12

 There are four major species of the 

parasite that cause malaria in humans, namely P. falciparum, P. vivax, P. ovale, and P. 

malaria, but a fifth parasite, P. knowlesi,
13;14

 is now being recognized. P. falciparum is 

the most virulent kind of human malaria parsite.
15

 Plasmodia cause an estimated 300 

million clinical infections each year, and perhaps 1 million deaths annually, primarily 

in sub-Saharan Africa.
16-18

  

 

 
Figure 1.1: World map showing malaria risk areas shaded dark. 
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About 90% of the deaths occur in sub-Saharan Africa in children under the age of 5.
18

 

In fact, in every 30 seconds a child dies of malaria in Africa.
18

 More than 40% of the 

world’s population is in malaria risk areas.
18

 Malaria symptoms include development 

of a fever, sore joints, vomiting, and headache.
19

 Malaria can develop into 

convulsions, coma, and death if left untreated.
19

 Children who suffer from severe cases 

of malaria can have learning impairments resulting from brain damage even if they 

survive.
20

 Children who have repeated cases of malaria can develop anemia, lethargy, 

and generally poor development.
20

 Pregnant women infected with malaria can develop 

placental complications, which could lead to children with low birth weights, or even 

death of the fetus, in addition to the rest of the malaria-related problems.
20

  

 

The Malaria Life Cycle 

The Anopheles mosquito is the vector that carries the parasite. During a human blood 

meal, an infected Anopheles mosquito passes the sporozoites to the human host 

(Figure 1.2). The sporozoites infect liver cells, where they mature into schizonts. The 

infected liver cells then can rupture and release merozoites, which then can infect red 

blood cells, where they become ring stage trophozoites. CQ is active on the ring stage 

of the malaria life cycle,
21

 and since the simplified RCQs reported in this document 

are CQ-like, they are expected to act on the ring stage as well. The trophozoites 

mature into schizonts, which rupture the red blood cells, releasing merozoites. These 

merozoites infect other red blood cells; the blood stage of the life cycle is responsible 

for the clinical symptoms of the disease as well as death.
22

  



 3 

Some parasites of P. falciparum may mature from the ring stage to become male and 

female gametocytes, which may be ingested by an Anopheles mosquito during a blood 

RBC 

ruptures 
releasing 

merozoitesi

♂
♀

The Human Blood Stage

The Human Liver Stage
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Figure 1.2: The malaria life cycle adapted from the CDC website.

1
 During a blood meal, a malaria-

infected mosquito injects sporozoites into the human host
a
. Sporozoites infect liver cells and mature 

into schizonts, which rupture the liver cells and release merozoites
b-d

. After this liver stage, the 

parasites undergo asexual multiplication in the erythrocytes. The merozoites infect red blood cells 

(where they degrade hemoglobin as a food source)
 e
. Trophozoites in infected erythrocytes, mature 

into schizonts, the red blood cell ruptures releasing more merozoites into the blood stream
g-i

. Some 

parasites differentiate into gametocytes. CQ and other quinoline ring system drugs are believed to 

act on the blood stages of the malaria life cycle.
6
 The gametocytes, male (micro gametocytes) and 

female (macro gametocytes) are ingested by mosquito during a blood meal
k
. In the mosquito's 

stomach, the micro gametes enter the macro gametes creating zygotes. The zygotes in turn become 

ookinetes which develop into oocysts
l-m

. The oocysts grow, rupture, and release sporozoites which 

travel to the mosquito’s salivary glands. Injection (during a blood meal) of the sporozoites
a
 into a 

new human host repeats the malaria life cycle
a
. 
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meal. In the stomach of the mosquito, the male gametocytes penetrate the female 

gametocytes forming zygotes. The zygotes become elongated and motile ookinetes. 

The ookinetes invade the midgut wall of the mosquito where they develop into 

oocysts. The oocysts grow, rupture, and release sporozoites which travel to the 

mosquito’s salivary glands. The sporozoites can be passed on to a human host, thus 

perpetuating the cycle. In the liver stage, P. vivax and P. ovale may also develop 

hypnozoites, which remain dormant and can persist in the liver. Relapses can occur 

when invasion of the red blood cells occurs, and this can take weeks, months, or even 

years.
1
 

 

The History of Antimalarial Drugs 

Quinine was introduced in 1632 when the bark of Cinchona trees from South America 

was used to treat fevers.
23

 Resistance to quinine was noted in 1910.
24

 Quinine is still in 

use today, although it is not a primary drug. Primary drugs are used as a first line of 

defense against malaria; usually they are given in combination with another drug to 

reduce the effects of resistance. During the second world war, the Japanese invaded 

Java, which was the main source of Cinchona tree plant extract that had supplied 

quinine for the American soldiers.
25

 This resulted in massive shortages in the 

antimalarial drug quinine, which in turn resulted in increased death rates for soldiers 

infected with malaria. It became clear that alternative drugs were required, and so 

increased research on new antimalarial drugs began.
25
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A Malaria Drug Development Program was set up, which lead to the development of 

antimalarial drugs like chloroquine (CQ), amodiaquine, primaquine, proguanil, and 

pyrimethamine.
25

 

 

 CQ was introduced in about 1945, it was discovered earlier on by the Germans, 

although they abandoned its development,
23

 but resistance to it was reported in 1957.
24

 

Amodiaquine was first used in 1951, but resistance was first reported in 1971.
24

 Both 

CQ and amodiaquine still are in use today, although sparingly due to resistance. 

Artemisinin and its derivatives were introduced in the 1970s, but reports of resistance 

to artemisinin began to surface in 1998.
26

 Mefloquine was first used in 1977, but 

resistance was reported in 1982.
24

 However, mefloquine is still in use today. 

Halofantrine was used from 1988 to 1990, but discontinued due to the sometimes-fatal 

cardio toxicity associated with its use.
24;27

  

 

Combination drugs were introduced to limit resistance. Combination therapy relies on 

the premise that the probability of development of resistance to two drugs with 

independent mechanisms of action is extremely low, of the order of once every 10
12

 

treatments.
28

 Sulfadoxine/pyrimethamine (Fansidar) was a combination drug 

introduced in 1967, but resistance was noted in the same year it was introduced.
24

 This 

was rather disappointing because Fansidar is cheap, practicable (only one dose is 

needed because it eliminates from the body slowly), and widely used in Africa.
29

 

Fansidar is still in use today although resistance severely limits its usefulness. 
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Atovaquone/proguanil (Malarone) was first used in 1996, but resistance to it was 

reported in 2002.
30

 Malarone is still in use today. It can be seen that malaria has 

developed resistance to most, if not all, of the drugs that have been introduced, and so 

there is a need to reverse this resistance. 

 

From this history it can be seen that several drugs are used against malaria,
31-34

 

including those derived from the 4-substituted quinoline ring system. Examples of 

drugs that fall in this class are chloroquine, amodiaquine, piperaquine, mefloquine, 

and quinine, shown in Figure 1.3.  

 

Drugs of the 4-substituted quinoline class are generally thought to act on the blood 

stages of the malaria life cycle.
35

 7-chloro-4-aminoquinoline derivatives, including CQ 

and amodiaquine, are among the most potent antimalarial drugs reported to date.
36-38

 

CQ has been postulated to prevent the conversion of ferriprotoporphyrin IX (FP) into 

an insoluble material called hemozoin, as shown in Figure 1.4.
6
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The release of soluble FP upon hemoglobin digestion by the parasite reaches a level 

which would become toxic to the parasite if it were not sequestered into hemozoin.
6
 It 

is also noted that CQ accumulates in the digestive vacuole (DV) of  malaria 

parasites;
39

 this accumulation is reduced in chloroquine-resistant (CQR) strains.
40

 Out 

of these quinoline ring system drugs, CQ emerged as the most important. CQ was safe, 

effective, widely used, and inexpensive. CQ could be used to treat pregnant women 

and children who account for most of the deaths associated with malaria, but P. 

falciparum developed resistance to it by 1957, as mentioned above, in Southeast Asia 

 
 
Figure 1.3: Examples of the 4-substituted quinoline ring system drugs. A: quinine, having a 7-

methoxy functional group off the quinoline ring; B: mefloquine, which has triflouromethyl 

functional groups at the 2 and 8 positions; C: amodiaquine, which has a 7-chloro functional 

group; D: chloroquine, which has the 7-chloro functional group; E: piperaquine, which has two 

quinoline rings; A, B, C, D, and E have aliphatic chains at the 4 position of the quinoline ring. 
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(Thai-Cambodia border) and in South America.
41;42

 In 1978 CQ resistance had spread 

into East Africa.
43

 Between 1978 and 1988, reports of resistance to CQ began to 

surface in all the countries of tropical Africa.
43

 This is important because CQR malaria 

accounts for the majority of malaria associated-deaths.
44

 

 

CQ resistance is linked to a mutation in codon 76 of the P. falciparum CQR 

transporter (PfCRT), resulting in a change of  lysine to threonine (K76T).
45

 PfCRT is 

located on the membrane of the DV of P. falciparum during the blood stage of the 

parasite’s life cycle.
46

 Mutations at other positions, when in the presence of K76T, can 

give rise to different strains, having different degrees of resistance. P. falciparum 

 
 

CQ-Heme Complex 

CQ 

Heme Heme dimer Hemozoin 

 
 
Figure 1.4: Presumed CQ mode of action. Free heme in the parasite forms heme dimers which 

mineralize into hemozoin. In the presence of CQ hemozoin formation is inhibited. CQ caps the 

ends of heme dimers to form a sanguage like complex.
6;7
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strains with the K76T point mutation accumulate less CQ in the DV, presumably 

because CQ efflux from the DV is enhanced, as shown in Figure 1.5.
8
 It has been 

noted that all clinical isolates that did not respond to CQ treatment have this point 

mutation.
45

 

 

Mutations in codon 86, resulting in the change of  asparagine to tyrosine (N86Y) in 

the P. falciparum multi-drug resistance gene (pfmdr1), have also been associated with 

CQ resistance.
47
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X
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+ 

X
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Figure 1.5: CQ resistance and presumed mechanism. CQ enters the parasites DV by passive 

diffusion through the red blood cell and P. falciparum membranes. The pH in the DV is low 

(~5), hence CQ becomes protonated and trapped in the DV. The malaria parasite digests 

Hemoglobin into amino acids (used for the parasites metabolism) and free heme which is toxic 

to the parasite. Heme is mineralized by the parasite to hemozoin which is not toxic to the 

parasite. CQ prevents heme from mineralizing; this is lethal to the parasite. CQR strains 

accumulate less CQ in the DV and this has been associated with PfCRT.
8;9

 RA are compounds 

that reverse the CQ resistance. 
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Primaquine (and other 8-aminoquinolines under development) primarily acts on the 

hepatic stage of the life cycle.
34;35

 Examples of 8-aminoquinolines include primaquine, 

tafenoquine, pamaquine, and pentaquine, and are shown in Figure 1.6. Out of these 8-

aminoquinolines, primaquine has been mainly used to treat patients infected with P. 

vivax and P. ovale and to prevent relapses from malaria.
48;49

 Primaquine cannot be 

prescribed to patients with glucose-6-phosphate dehydrogense (G6PD) deficiency or 

pregnant women (because G6PD deficiency cannot be detected in the fetus), because it 

results in hemolysis.
49

 The mechanism of action of primaquine is not clearly 

understood; two of the modes of action that have been proposed are given below. 

Primaquine is presumed to be metabolically activated in the liver to generate 

metabolites which can act on parasite nucleophiles. Also, infected hepatocytes and 

erythrocytes contain ferrous iron that can facilitate the generation of oxidative radical 

species which act on the parasite.
50

 These 8-aminoquinolines have been demonstrated 

by Whichard, et al. to bind to DNA, which could then inhibit DNA function, and 

therefore result in their antimalalarial action.
51

 Howells, et al. suggested that the 

resistant parasites overcome the damaging effects of 8-aminoquinolines on their 

mitochondria by synthesizing more mitochondria to compensate for the functional 

loss.
52
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Antifolates are another class of compounds that act against malaria. They have been 

shown to inhibit the synthesis of folate cofactors selectively which are needed for 

amino acid and nucleotide synthesis.
53

 The enzyme inhibited by these drugs is 

dihydrofolate reductase.
54

 Sulfadoxine and pyrimethamine in combination (Fansidar) 

show synergism, increasing their effectiveness against P. falciparum.
22

 Examples of 

antifolates are shown in Figure 1.7. 

 

 

 

 

N

HN
NH2

O

N O

HN
NH2

O

O

CF3

N

HN
N

O

N

HN
H
N

O

Primaquine Tafenoquine Pamaquine

Pentaquine

 
 
Figure 1.6: Examples of 8-aminoquinolines. Primaquine, tafenoquine, pamaquine, and 

pentaquine. 
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Point mutations at the dihydrofolate reductase (dhfr) codon 108, which result in a 

change of serine to asparagine (S108N), are linked to pyrimethamine resistance, while 

a change of serine to threonine (S108T) along with a change in alanine to valine 

(A16V), is associated with resistance to cycloproguanil and chloroproguanil.
47

 

Mutations have also been found which are associated with sulfadoxine resistance in 

dihydropteroate synthase (dhps) genes on codons 436, 437, 540, and 581.
55;56

 

Mutations in both dhfr and dhps both affect their catalytic functions in folate 

biosynthesis.  

 

 

Artemisinin and two of its most important derivatives are shown in Figure 1.8. 

Artemisinin is water insoluble, thus not very bioavailable; hence the derivatives 

artesunate and artemether were synthesized to increase water solubility and 

bioavailability.
57

 These compounds have a wide spectrum of activity, including being 

effective against the ring stage of the parasite.
58

 Artemisinins may also suppress 

 
 

Figure 1.7: Examples of antifolates. Sulfadoxine, pyrimethamine, and proguanil. 
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gametocyte transmission.
58;59

 Artemisinins accumulate in the P. falciparum-infected 

red blood cells, and are thought to kill the parasite via the action of free radicals 

generated by the action of ferrous iron or exogenous free iron.
60

  

 

 

Although artemisinin has been quite effective in the fight against malaria, there are 

reports on artemisinin resistance due to a change in serine to asparagine (S769N) on 

the sarco/endoplasmic reticulum calcium-dependant ATPase (SERCA; PfATPase6 ) 

gene.
61

 However, others have shown doubts on artemisinin even inhibiting SERCA; 

PfATPase6.
62

 

 

These are the main groups of drugs in use today, although other drugs like 

doxycycline are still used in different parts of developing countries.
63;64

 

 

 

 

 
 
Figure 1.8: Examples of the artemisinin group of compounds. Artemisinin, artesunate, which 

has a carboxylic acid side chain, and artemether, having a methoxy side chain. 
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Other Motivations for Continued Development of New Antimalarial Drugs 

A number of different side effects have been linked to antimalarial drugs. For 

example, Malarone is associated with abdominal pain, nausea, vomiting, and 

headaches. Malarone is not safe for pregnant women, nor children weighing less than 

25 pounds.
19

 Mefloquine-induced side effects include headaches, nausea, dizziness, 

CNS-associated vivid dreams, and anxiety.
19

 The side effects associated with 

artemisinin combination therapies include mild gastralgia, vomiting, dizziness, and 

asthenia.
65

 These side effects have, in turn, resulted in the erratic use of antimalarial 

drugs, which then fuels the progression of antimalarial drug resistance.
66

  

 

The high cost of many of the more effective drugs, relative to the ability of the 

endemic market’s ability to pay, is another factor that leads to erratic antimalarial drug 

use. Detailed research on malaria drugs has often been limited, and as a result 

prescribers are not in a position to give a detailed explanation of drug usage as well as 

side effects.
66

 There is a continued need for the development of newer drugs as a result 

of resistance, side effects, and the cost of many of the current drugs on the market. 

CQ, with its few side-effects, safety, and low cost is a regrettable loss. In fact, CQ is 

still being used, although it often fails due to CQ resistance. It would be good if there 

were a way to re-introduce CQ or something very much like it, as an effective drug. 
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Reversal Agents 

Reversal agents (RAs) are compounds that are known to reverse CQ resistance. RAs 

in the presence of CQ, can reinstate the antimalarial activity of CQ in CQR strains of 

P. falciparum. RAs help prevent the export of CQ from the DV as shown in Figure 

1.5, so that CQ can exert its antimalarial action in the DV.  

Verapamil (Figure 1.9) was discovered to reverse CQ resistance,
67

 and in due course 

certain tricyclic antidepressants
68

 and antihistamines
69

 were also been shown to 

 
Figure 1.9: Examples of reversal agents. They all have 2 phenyl head groups linked via an 

aliphatic chain to a hydrogen bond acceptor (generally nitrogen, shown in bold in the 

drawings).                                                         
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reverse CQ resistance; these compounds are termed chemosensitizers, or RAs. 

Examples of RAs shown to overcome antimalarial resistance are shown in Figure 1.9.  

 

 A three-dimensional QSAR pharmacophore model for CQR reversal was developed 

from imipramine, desipramine, and 15 of their analogues.
2
 The pharmacophore was 

constructed from two aromatic hydrophobic interaction sites linked by an aliphatic 

chain to a hydrogen bond acceptor site (generally nitrogen)
2
 as shown in Figure 1.10. 

  

Initial Work on Reversed Chloroquines (RCQs) 

In the Peyton Laboratory (Portland, Oregon), it was postulated that by linking a RA-

like moiety to a CQ-like moiety, it would be possible to create a class of hybrid 

molecules that have antimalarial properties and can overcome resistance as well.
4
 

 Hydrophobic portion 

Hydrogen bond acceptor 

Figure 1.10: The RA pharmacophore as proposed by Bhattacharjee and his group is two 

aromatic rings linked via an aliphatic chain to a hydrogen bond acceptor (generally nitrogen). 

Note that the RA shown in this diagram in imipramine 
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Others, have modified CQ and created new compounds with improved activity to 

CQR strains of P. falciparum.
70-74

 One advantage of these hybrid molecules is that, in 

principle, it might be administered at a lower dose than the RA component of a 

cocktail. Proteins involved in drug efflux in the DV of the malaria P. falciparum 

parasite may also fail even to recognize this hybrid molecule and thus fail to export the 

drug, rendering the drug active in the DV. Reducing the dose could make the hybrid 

drug cheaper and reduce the side effects, including toxicity that may be associated 

with administering two separate drugs. Figure 1.11 shows PL01, the first such 

molecule, which was synthesized by Steven Burgess in the Peyton Laboratory.
4
  

 

 

 

 

CQ like portion 
Reversal agent like portion 

 

Figure 1.11: The hybrid molecule PL01. The first molecule synthesized in the Peyton lab that 

is composed of a link between a CQ like portion and a RA like portion (i.e. an imipramine like 

portion). 
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The postulated hybrid molecule approach was demonstrated to be viable, as shown by 

the results in Table 1.1. The hybrid compound PL01 was potent against both CQS and 

CQR strains of P. falciparum. In fact, PL01 had better activity than CQ for both CQS 

and CQR strains of P. falciparum.
4
 PL06 (Figure 1.12) was subsequently made by 

Steven Burgess in the Peyton Lab. PL06 is a modification of PL01 that deleted the 

center ring of the tricyclic group of the “tricyclic antidepressant” imipramine RA; 

however it retains the antimalarial activity of PL01.
75

 

It was thus decided to alter the RA head group and so deviate further from the RA 

pharmacophore proposed by Bhattacharjee, et al.,
2
 which stated that there was need 

for two aromatic rings and a hydrogen bond acceptor several bonds away. 

Table 1.1: IC50 values of the previous compounds made in the Peyton 

Lab.
4
 The values of CQ have been included for comparison. There is a 

30% uncertainty in the IC50 values that may result from differences in 

weighing and/or variations in determining IC50. 

IC50 value in nM 
Compound Structure 

D6  Dd2 

    

CQ 

 

6.9 102 

PL01 

 

2.9 5.3 

PL06 

 

2.4 3.7 
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The next Chapter introduces work that was done to further simplify the RCQs. 

 Hydrophobic portion 

Hydrogen bond acceptor       PL06      
 

Figure 1.12: PL06 a modification of PL01, this diagram shows how PL06 fits the 

pharmacophore proposed by Bhattarcharjee, et al.
2
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CHAPTER 2 

 

The Approach 

In the first Chapter, the idea of RCQs was introduced. In the work presented here, the 

RA is more drastically changed from the RA pharmacophore described by 

Bhattacharjee, et al.,
2
 in order to obtain an expanded structure activity relationship 

(SAR) of the RCQs. Initially, PL112 was made which contained a biphenyl ring 

system shown in Figure 2.1 instead of the branched pair of aromatic rings proposed by 

Bhatacharjee, et al..
2
 From PL112 we can see that the hydrogen bond acceptor of the 

pharmacophore has been maintained but the hydrophobic portions have been 

significantly altered; instead a biphenyl group is presented in place of the branched 

aromatic rings that are described in the pharmacophore by Bhattacharjee, et al..
2
 

 

 

Hydrophobic portion 

Hydrogen bond acceptor 

NCl

HN N

N

 

Figure 2.1: PL112 the first compound synthesized with a variation in the RA head group to a 

biphenyl group. 
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PL112 and most of the compounds mentioned in this thesis were made via Scheme 

2.1. First, 4,7-dichloroquinoline was treated with excess 3-aminopropan-1-ol to make 

PL16. Next, PL16 was treated with methanesulphonylchloride to make PL29.
4
 PL29 

was then used as a starting material for addition of the piperazine analogues to make 

PL112 and most of the compounds mentioned in this thesis. 

        

Despite these alterations to the RA portion of the RCQs, it was noted that PL112 had 

good antimalarial activity (Table 2.1). This was a surprising improvement to the 

activity of PL06, and so further variations in the head group were made, specifically 

altering the arrangement of the RA phenyl groups from meta, to ortho, and then to the 

para position as shown in Figure 2.2. 
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This initial group of compounds was designed as an enquiry as to how far the RA head 

group could be perturbed with retention of antimalarial activity. These results are 

shown in Table 2.1, and demonstrate that having a biphenyl head group enhances the 

activity of the compounds slightly. PL110 which has a linear arrangement of the 

phenyl groups has increasingly lower IC50 values than the other compounds in the 

series, with IC50 values of 0.7 nM and 0.6 nM for CQS D6 and CQR Dd2, 

respectively. These results were surprising because the linear head groups appear to 

deviate from the branched phenyl groups pharmacophore described by Bhattacharjee, 

et al..
2
  

 

 

 

 

Figure 2.2: Initial compounds synthesized with a biphenyl head group with variations from 

the ortho, to meta, then to the para position. 
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Table 2.1: Biphenyl ring system compounds. The values of CQ, PL01, 

and PL06 have been included for comparison. There is a 30% uncertainty 

in the IC50 values that may result from differences in weighing and/or 

variations in determining IC50 (See Chapter 7). 

IC50 value in nM 
Compound Structure 

D6  Dd2 

    

CQ 

 

6.9 102 

PL01 

 

2.9 5.3 

PL06 

 

2.4 3.7 

PL112 

 

1.2 2.6 

PL111 

 

0.9 1.8 

PL110 

 

0.7 0.6 
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These results are a clue that a simple model of CQ linked to the RA pharmacophore is 

not the full explanation of how more potent IC50 values may be obtained for the 

RCQs. Figure 2.3 shows a graphical representation of the activities of the biphenyl 

ring system compounds. 

 

Single Phenyl Head Group 

From the results above, it was hypothesized that one of the phenyl groups could be 

removed without substantial loss of antimalarial activity, as illustrated in Figure 2.4. 
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Figure 2.3: Activity of biphenyl ring system compounds PL112, PL111, and PL110. CQ, PL01, and 

PL06 have been included for comparison. There is a 30% uncertainty in the activities of the 

compounds that results from weighing and obtaining IC50 values. The white bars are for CQS strain 

D6 and the grey bars are for CQR strain Dd2. 
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A set of compounds with a single phenyl head group (the aromatic portion of the RA) 

was synthesized as outlined in Scheme 2.1. PL91 had surprisingly low IC50 values of 

0.5 nM for both CQS D6 and CQR Dd2 of P. falciparum. This result was surprising 

because the head group is just a single aromatic group instead of the branched 

aromatic head groups defined by the pharmacophore. Due to this success, more 

compounds were made to further investigate an expanded SAR of the single head 

group. Initially, compounds with electron withdrawing groups on the phenyl group 

shown in Table 2.2 were synthesized. PL154 gave quite impressive IC50 values of 0.3 

nM for CQS D6 and 0.5 nM for CQR Dd2. PL154 and PL156 were made to test the 

effect of having halogens as electron withdrawing groups. From these two compounds, 

it can be seen that interchanging the halogens (fluorine and chlorine) does not strongly 

affect the activity of the compounds. PL155 was made to test the effect of having two 

electron withdrawing groups on the RA aromatic head group. This change also does 

not strongly affect the activity of these compounds. PL159 has an additional oxygen 

group that generally increases water solubility as well as has electron withdrawing 

 

Figure 2.4: Transition from biphenyl head group to single phenyl head group. 
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properties. PL159 has hydrogen bonding potential which may have had some 

detrimental effects on its antimalarial activity. 

 

The electron withdrawing groups did not result in large changes in the activities most 

of the simplified RCQs, although PL159 has a slight loss in antimalarial activity. 

Table 2.2: Single aromatic head group and electron withdrawing groups. 

The values of CQ have been included for comparison. There is a 30% 

uncertainty in the IC50 values that may result from differences in weighing 

and/or variations in determining IC50 (See Chapter 7). 

IC50 value in nM 
Compound Structure 

D6  Dd2 

    

CQ 

 

6.9 102 

PL91 

 

0.5 0.5 

PL154 

 

0.3 0.5 

PL155 

 

0.9 0.7 

PL156 

 

2.0 0.2 

PL158 

 

0.06 0.2 

PL159 

 

4.1 4.1 

PL257  

0.9 0.8 
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PL158 and PL257 had stronger electron withdrawing groups, which seemed not to 

reduce the activity of the compounds. It was thus noted that these changes in the 

electron withdrawing groups on the phenyl group were well tolerated. This is an 

important factor in these antimalarial compounds, because if mutations arise in the 

parasite, new substitutions can be made easily without loss of activity. Also, if the 

compounds are found to perturb certain biological functions in the body (i.e., cause 

toxicity and/or side-effects), alterations in the compounds can be made without major 

deleterious effects on the antimalarial activity of the compounds. Figure 2.5 shows a 

graphical representation of the activities of the single aromatic head group 

compounds. 
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Figure 2.5: Single aromatic head group and electron withdrawing groups. The values of CQ 

have been included for comparison. There is a 30% uncertainty in the IC50 values that may 

result from differences in weighing and/or variations in determining IC50. The white bars are 

for CQS strain D6 and the grey bars are for CQR strain Dd2. 
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Better Solubility 

Lipinski’s rules suggest that bioavailable small compounds generally have a ClogP 

value of <5.
76

 In this document, ClogP is a calculated value for an organic compound 

given by Chemdraw Ultra 12.0 that estimates the distribution of a compound between 

n-octanol and water. In essence it is a measure of how water soluble or hydrophilic a 

compound is. The compounds synthesized this far, had on average, very good 

activities, but the ClogP values were greater than 5, suggesting that they were rather 

hydrophobic, and hence may be less bioavailable than desired. The initial set of 

compounds was found to be insoluble in water; chloride salts of these compounds 

were made which were equally insoluble. The salts were prepared by dissolving the 

compound in methanol, and then adding excess methanolic acid at less than 0
o
C. 

Finally the solvent was evaporated off to get the salts. The next set of compounds that 

were synthesized had ClogP values of less than 5. The compounds were synthesized as 

outlined in Scheme 2.1. The lower ClogP values were achieved by substituting some 

of the carbon atoms in the compound with nitrogens. These new compounds (Table 

2.3 and Figure 2.6), as free bases, were insoluble in water as well; however their 

chloride salts were soluble in water. 
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Table 2.3: Compounds with Clog P values <5. The values of CQ and PL01 have 

been included for comparison. There is a 30% uncertainty in the IC50 values that 

may result from differences in weighing and/or variations in determining IC50 (See 

Chapter 7). 

IC50 value in nM 
Compound Structure 

D6 Dd2 
ClogP 

CQ 

 

6.5 102 
5.1 

PL01 

 

2.9 5.3 
8.9 

PL112 

 

1.2 2.6 
7.7 

PL91 

 

0.5 0.5 5.8 

PL154 

 

0.3 0.5 6.6 

PL106 

N NHN

NCl

N

 

2.7 1.8 4.3 

PL109 

 

0.5 1.6 4.3 

PL261 

 

1.4 2.3 4.1 
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Despite these atomic alterations, and resultant change in ClogP value, PL106 was 

potent to within an order of magnitude as PL91, the analogous compound, with IC50 

values of 2.7 nM and 1.8 nM for CQS D6 and CQR Dd2. PL109 (Table 2.3) shows 

that moving the nitrogen in the pyridine ring from the ortho to the para position does 

not adversely affect the activity of the PL106. PL261 was synthesized to increase 

solubility further. This compound tolerated the addition of another nitrogen group in 

that the activity of the compound did not change by a great margin. 

 

Toxicity is another hurdle that any drug development program needs to overcome. 

PL106 and PL261 have superior cytotoxicities of 13 300 and 28 000 respectively 

against human hepatic cancer cells. These compounds (PL106 and PL261) have high 

antimalarial potency and yet very low toxicity, for a “therapeutic index” 
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Figure 2.6: Compounds with Clog P values <5. The values of CQ and PL01 have been 

included for comparison. There is a 30% uncertainty in the IC50 values that may result from 

differences in weighing and/or variations in determining IC50 (See Chapter 7). The white bars 

are for CQS strain D6 and the grey bars are for CQR strain Dd2, the bars with the diagonal 

lines show the ClogP values of these compounds; please note that ClogP values lack units. 
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(cytotoxicity/efficacy) of 4 900 for PL106 D6 and 7 300 for PL106 Dd2; for PL261 

the “therapeutic index” is 20 000 for D6 and 12 100 for Dd2. These values are far 

better than our calculated “therapeutic index” values for CQ: 1 700 for D6 and only 

120 for Dd2 and thus show that these compounds could be potential drug candidates. 

In vivo Studies 

In vivo tests were done, to test for bioavailability of the compounds as well as possible 

signs of toxicity. PL106 was tested at the Swiss Tropical and Public Health Institute 

(Basel, Switzerland) by Sergio Wittlin and Reto Brun, in mice infected with P. 

berghei, and cured 1 out of 3 mice at a dose of 30 mg/kg/d in a 30-day trial, as shown 

in Table 2.4. Detection of parasitemia was done on day 4, and it was noted that the 

control mice had 63 580 parasitized red blood cells (RBCs), while the mice dosed with 

PL106 had no detectable parasitized RBCs on day 4. It is expected that at a higher 

dosage, all of the mice may be cured of malaria. Also, PL106 may be administered in 

combination with another drug that may clear the remaining parasites. These results 

were very encouraging, and lead us to do more in vivo studies as shown below. P. 

falciparum is very specific to the human host, hence mouse models of P. falciparum 

are not generally viable.
77

 However, work has been done to express the different 

stages of the P. falciparum life cycle in mice, so that in the future it is hoped that the 

complete life cycle of P. falciparum can be expressed in a single mouse.
77
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Tests on P. yoelii have been done by Marty Smilktein, at the Oregon Translational 

Research and Drug Development Institute (OTRADI, Portland, Oregon) to test further 

the mouse efficacy of some selected compounds. Results for these tests are shown in 

Table 2.5. For these experiments CF-1 out-bred mice were infected with P. yoelli. 

Forty mice were injected intravenously through the tail vein with 5 X 10
5
 infected 

RBCs. The mice were placed in groups of 4 with a water control, in order to evaluate 

PL154, PL157, PL106, and PL261. The mice were dosed at 1, 4, 16, 64 mg/kg/d with 

the simplified RCQ salts and weighed daily. Treatments were administered once daily 

X 3, then 24 hours after the final dose, blood smears were made and parasetemia 

determination by counting by light microscopy. Compounds PL106 and PL261 were 

found to be orally available, with ED50 values of 5.5 and 6.0 mg/Kg/d respectively. 

Table 2.4: In vivo mouse studies with P. berghei. PL106 was 

administered at 30 mg/kg/d for 4 days. Parasetemia was determined 

on the 4
th

 day. 0 represents undetectable levels of parasetemia.  

Test Parasitized RBC Mouse survival in days 

   

Control 1 635 80 4 

PL106, 

mouse 1 

0 14 

PL106, 

mouse 2 

0 16 

PL106, 

mouse 3 

0 30 
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Short toxicity studies were also carried out on the mice. One mouse received 500 mg/ 

kg/d X 2 days, and another mouse received 500 mg/kg/d X 1 of PL157. Both mice had 

previously been infected with P. yoelii 2-3 days before dosing. The maximum weight 

loss was ~10%, and this weight loss leveled off after dosing stopped, suggesting 

absence of ongoing toxicity. The only visible effect that was noted was minimal 

lethargy 1 hour after the highest dosing which may have reflected the large volume 

(0.5 mL) required for this high dose. From these results it was noted that 500 mg/kg of 

PL157 was well tolerated, hence the compounds were not toxic according to the 

experiment. 

 

Summary of the Approach 

From these results, it is possible to introduce the biphenyl head group to the RCQs and 

still maintain antimalarial activity. Modifications that result in a single phenyl group 

were also well tolerated by these compounds, and it was noted that electron 

withdrawing groups resulted in compounds with increased potency. However, these 

Table 2.5: In vivo mouse tests 

with P. yoelii. 

Compound ED50 (mg/Kg/d) 

PL154 <<15 

PL157 <<15 

PL106 5.5 

PL261 6.0 
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compounds were rather water insoluble and so pyrimidine and pyridine head groups 

were introduced to increase solubility. This change did not adversely affect the 

antimalarial activities of the simplified RCQ compounds. From the in vivo mouse 

studies, it can be seen that PL106 is a viable drug candidate because it was orally 

available. Figure 2.7 shows a graph of in vitro potencies of all the compounds 

presented in this chapter. From this graph we see that the compounds all have 

activities lower than CQ against either CQS or CQR P. falciparum strains D6 and Dd2 

respectively, showing that modifications on the head group can be made without loss 

of activity. 
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Figure 2.7: IC50 values for CQ and synthesized PL compounds. The white bars are for CQS 

D6 strain and the grey bars are for the CQR Dd2 strain, of P. falciparum malaria.  
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CHAPTER 3 

Assessing the Boundaries for the Simplified RCQs Pharmacophore 

Aliphatic Head Group 

In the previous chapter, simplified RCQs with good bioavalability and high activity 

were introduced. In the work presented here, compounds were synthesized to assess 

the boundaries of the RCQ pharmacophore. Initially, compounds were made to test 

whether having an aliphatic, rather than an aromatic, head group would be detrimental 

to the antimalarial activity of the compounds. Bhattacharjee, et al. proposed that RAs 

contain aromatic head groups, so having aliphatic head groups is a major deviation 

from the proposed pharmacophore, as shown in Figure 3.1 

 

In the Peyton Lab an RCQ having an adamantane head group has been synthesized by 

Steven Burgess and shown to have antimalarial activity of < 2nM for both CQS D6 

and CQR Dd2 P. falciparum strains of malaria. Table 3.1 shows the antimalarial 

results for the aliphatic head group compounds that were synthesized for this study. 

 

Figure 3.1: PL229: A compound with an aliphatic head group instead of the aromatic head 

group proposed by Bhattacharjee, et al. 
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These compounds were synthesized as outlined in Scheme 2.1. PL228 was synthesized 

to test the addition of a methylene group between the piperazine ring and the now 

aliphatic head group. Surprisingly, PL228 and PL229 had IC50 values within the same 

order of magnitude with the other simplified RCQs. This further verified the fact that 

even major variations in the head group do not negatively affect the activity of these 

compounds.  

 

Linker Length 

Previous work in the Peyton Lab
78

 has shown that varying the linker length between 

the quinoline ring and the protonatable nitrogen, or between the protonatable nitrogen 

Table 3.1: Antimalarial activity of compounds with aliphatic head 

groups. The values of CQ and PL91 have been included for comparison. 

There is a 30% uncertainty in the IC50 values that may result from 

differences in weighing and/or variations in determining IC50 (See 

Chapter 7). 

IC50 value in nM 
Compound Structure 

D6  Dd2 

    

CQ 

 

6.9 102 

PL91 

 

0.5 0.5 

PL229 

 

1.0 2.0 

PL228 

 

0.2 0.4 
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and the head group, does not have adverse effects on the antimalarial activities of 

these compounds. This finding was tested with the simplified RCQs. PL274 was made 

as outlined in Scheme 2.1, although 3-aminopropan-1-ol was substituted by 2-

aminoethan-1-ol. PL227 was synthesized as outlined in Scheme 2.1, and DM1020 was 

obtained from Steven Burgess of DesignMedix (Portland, OR). Table 3.2 and Figure 

3.2 show the results for this antimalarial testing. It can be seen that varying the linker 

length does not strongly and adversely reduce the antimalarial activity of the 

compounds, in accord with previous results on other compounds in the Peyton Lab.
78

 

 

Table 3.2: Compounds with variable linker lengths. The values of CQ have 

been included for comparison. There is a 30% uncertainty in the IC50 values 

that may result from differences in weighing and/or variations in determining 

IC50 (See Chapter 7). 

IC50 value in nM 
Compound Structure 

D6  Dd2 

    

CQ 

 

6.9 102 

PL274 

 

0.5 0.5 

PL91 

 

0.3 0.5 

DM1020 

 

2.4 7.0 

PL227 

 

0.5 1.0 
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PL163 and PL157 (shown in Figure 3.3) were synthesized as outlined in Scheme 2.1, 

and PL163 has a methyl head group, which has mild electron donating properties, 

while PL157 has electron donating properties provided by the methoxy functional 

group. These modifications did not seem to have a major impact on the activity of the 

compounds. PL163 had IC50 values of 0.1 and 1.3 nM for CQS D6 and CQR Dd2 

respectively. While PL157 had IC50 values of 1.3 and 0.3 nM, for CQS D6 and CQR 

Dd2 respectively. 
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Figure 3.2: Compounds with variable linker lengths. The values of CQ have been included for 

comparison. There is a 30% uncertainty in the IC50 values that may result from differences in 

weighing and/or variations in determining IC50 (See Chapter 7). 
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PL223, shown in Figure 3.4, was made with a naphthyl head group. This compound 

has a head group that somewhat mimics the quinoline ring. Despite this modification, 

there was no major change in activity from PL91. PL223 had IC50 values of 1.1 nM 

for both CQS D6 and CQR Dd2. Synthesis of this compound was as outlined in 

Scheme 2.1. 

 

Compound 5b and 5c made by Fattorusso, et al.,
5
 shown in Figure 3.5 are somewhat 

similar to PL106 and PL109, however, there are differences in the linkers between the 

pyridine rings and the quinoline rings. These differences seem to result in more potent 

compounds for PL106 and PL109 though the Plasmodia species tested were different. 

The higher activities of PL106 and PL109 maybe because these compounds resemble 

CQ, and also the head group and the quinoline ring of these compounds are behaving 

 

Figure 3.3: PL163 and PL157 with electron donating groups on the head group. 

PL223NCl

HN N

N

IC50: 1.1
D6, Dd2

 
 

Figure 3.4: PL223 a compound with a naphthyl head group. 
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like a RA. This is different in 5b and 5c which have a shorter chain towards the 

protonatable nitrogen which is shown in bold. Bhattacharjee, et al. proposed that the 

protonatable nitrogen is a few bonds away from the hydrophobic groups.
2
 

 

     

 
Figure 3.5: Compounds 5b and 5c made by Fattorusso, et al.,

5 in comparison with the 

simplified RCQs PL106 and PL109. D10 is a CQS strain of P. falciparum, while W2 is a CQR 

strain of P. falciparum. The bold nitrogen atoms are protonatable and resemble the 

pharmacophore proposed by Bhattacharjee, et al. 
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CHAPTER 4 

Inverse Piperaquine 

In this chapter, the focus is on the synthesis of compounds that contain two quinoline 

rings. Piperaquine (see Figure 4.1) replaced CQ as a first line drug in China from its 

introduction in 1970 until reports of emergence of resistance in 1990.
79

 The 

Vennerstrom group has investigated the antimalarial effects of a number 

bisquinolines; one example of such a compound is shown in Figure 4.1.
3
 These 

bisquinolines have been shown to be potent against malaria. For example, piperaquine 

had an IC50 value of 0.7 nM against CQS D6 and an IC50 of 1.5 nM against Dd2. 

 

Although most CQ-like drugs have a 2
o
 amine at the quinoline 4-position, piperaquine 

is an exception, having a 3
o
 amine at this position. Having a 3

o
 amine at the quinoline 

4-position of piperaquine has been pointed out as detrimental by others.
80

 In the 

Peyton Lab, PL02 and PL135 have been synthesized and these compounds are shown 

in Figure 4.2. From these two compounds it was observed that a 2
o
 nitrogen on the 4-

position of the quinoline ring results in a more potent compound, than if it were a 3
o
 

 

Figure 4.1: Piperaquine a known antimalarial drug. B is a bisquinoline synthesized by the 

Vennerstrom group.
3
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nitrogen. For PL02, which has the 2
o
 nitrogen at position 4 of the quinoline ring, the 

IC50 value for D6 was 1.0 nM for Dd2, and 3.6 nM against Dd2, as compared to 22 

nM for D6 and 114 nM for Dd2 for PL135, which has a 3
o
 nitrogen at position 4 of the 

quinoline ring. 

 

In the Peyton Lab, work has been done by Simeon Andrews to evaluate the 

implications of having a piperazine ring on the 4 position of the quinoline ring.
78

 Both 

compounds, PL38 and PL51 shown in Figure 4.3 have reduced antimalarial activities 

than their analogues PL50 and PL52 shown in Figure 4.3. The activity loss in PL38 

and PL51 was postulated to be due to the lack of a 2
o
 nitrogen at position 4 of the 

quinoline ring.
78

 

 

 

 
 

Figure 4.2: PL02 with a 2
o
 nitrogen on the 4 position of the quinoline ring. PL135 has a 3

o
 

nitrogen on the 4
 
position of the quinoline ring. Note that the IC50 values are in nM. 
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Due to these findings, bisquinoline ring system compounds PL192 and PL255 (Figure 

4.4) were synthesized. These bisquinoline compounds were expected to have better 

activity than piperaquine because of the 2
o
 nitrogens on the 4-position of the quinoline 

ring. Also, the compounds were expected to be more potent because one of the 

quinoline rings might be acting as a RA, while the other quinoline ring would exert its 

antimalarial activity. These compounds were synthesized as shown in Scheme 4.1.  
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Figure 4.3: PL51 and PL38: compounds with piperazine rings α to the quinoline ring; PL52 

and PL50: compounds lacking the piperazine rings. Note that the IC50 values are in nM. 
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PL255 was synthesized to show the importance of the 7-chloro group for the 

bisquinolines. Work done in the Peyton lab has shown that that removing the 7-chloro 

group for the RCQs is not very detrimental, in contrast to CQ losing the 7-chloro 

group, as shown in Figure 4.5.
75

 

 

 

 

 

 

 
 

Figure 4.4: Bisquinolines.  PL192 and PL255 have the piperazine group in the middle of the 

compound and hence they have 2
o
 nitrogens at position 4 of the quinoline ring. Piperaquine and 

PL174 have piperazine rings on the 4-position of the quinoline ring, hence they have 3
o
 nitrogens 

at position 4 of the quinoline ring. 
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The compounds in Figure 4.3 were made by treating 4,7-dichloroquinoline or 7-

chloroquinoline with 1,4-bis(3-aminopropyl)-piperazine, in phenol as reaction solvent 

as shown in Scheme 4.1. The suspension was heated at 190
o
C for 4 hrs. The mixture 

was allowed to cool and then the bisquinoline was extracted with aqueous sodium 

hydroxide followed by chloroform.  

PL192 had an IC50 value for D6 of 0.63 nM, for Dd2 it was 0.02 nM compared to 4.9 

 

Figure 4.5: Effect of losing the 7-chloro group on CQ and the P.L compounds. 
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nM for D6 and 9.8 nM for Dd2 for PL255. This result shows that the 7-chloro group is 

somewhat important for activity, although not to the same order of magnitude as 

reported in the Peyton Lab for CQ (Figure 4.4).
75

 PL192 was found to be more potent 

than piperaquine as predicted; this may have been due to the presence of 2
o
 nitrogens 

at position 4 of the quinoline rings. However, piperaquine and PL174 have activities 

within the same order of magnitude, showing that removing the chlorine on position 7 

of the quinoline ring was not very detrimental. In contrast PL192 and PL255 have a 

difference in activity that is about 1 order of magnitude, indicating that losing the 

chlorine on position 7 of the quinoline ring was detrimental to the activities of these 

compounds as shown in Figure 4.4. 



 47 

CHAPTER 5 

Mode of Action Studies 

Missing Quinoline Ring 

The previous chapters focused on the antimalarial activities of the simplified RCQs. 

However, it is important to understand the mechanism(s) by which these compounds 

work. In this chapter, a more focused investigation of the mechanism of action of 

these compounds is presented. Compounds PL272, PL260, and PL273 shown in 

Figure 5.1 were made that lacked the quinoline ring, to assess the possibility of any 

residual antimalarial activity of the rest of the molecules. The simplified RCQs 

presented in the earlier chapters were surprisingly potent, and it was hypothesized, that 

the RCQ head groups may have potential RA activity. PL272 lacks the quinoline ring, 

the amide is presumed to prevent the nitrogen from being protonatable just like in the 

parent RCQ compounds.  
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In the Peyton lab, PL74 (Figure 5.2) has been made, and it had an IC50 of 185 nM 

against D6 and 169 nM against Dd2. This result itself was rather surprisingly good; 

there was activity in this compound despite the missing quinoline ring. As a result, 

PL273 was made and had IC50 values of >2500 nM for both CQS D6 and CQR Dd2. 

PL273 was less potent than PL74, perhaps because it lacked the biphenyl head group 

which may be involved in pi bonding with free heme. This was an indication that the 

simplified RCQs may have a different mode instead of action instead of, or in addition 

to the unsimplified RCQs. 

 

Figure 5.1: Variations of the head group. These compounds will test the reversal agent activity 

of the head group. PL243 is just the piperazine head group. PL272 has the aliphatic chain 

linked to the piperazine ring. PL273 has pyridine ring attached to the head group. PL260 

contains a head group attached to a benzene ring.  
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PL272 had activities of >2500 nM for both CQS and CQR strains of P. falciparum. 

PL243 and PL260 were also tested and showed no detectable antimalarial activity up 

to 2500 nM. This result clearly shows that the simplified RCQ head group does not 

have significant intrinsic antimalarial activity. PL272 was made via Scheme 5.1. 

 

 
 

Figure 5.2: PL74, having a pyridine group in place of the quinoline ring. 
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First the piperazine analogue was treated with N-(3-bromopropyl) phthalimide in 

chloroform with triethylamine as base. The formed product was treated with hydrazine 

in ethanol to form the amine. The amine was then treated with acetyl chloride in 

acetonitrile with triethylamine as base to form PL272.  

 

 

PL273 was synthesized via Scheme 5.2 by treating the 4-chloropyridine with 3-

chloropropionyl chloride in DCM. The synthesized compound PL289 was then treated 

with the piperazine head group in DMF with potassium carbonate as base.  

 

Accumulation Experiment 

A search of the literature showed that CQ accumulates in the DV of P. falciparum.
39;81

 

82
 Previous work in the Peyton Lab has shown that the PL01 behaves like CQ is that it 
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accumulates in the DV.
75

 The experiment used to estimate the uptake of the RCQs by 

parasitized red blood cells (PRBCs) is similar to the one used by Kelly, et al..
83

 Thus, 

10 mM solution of PL106 was added to a flask containing 5 mL of PRBCs suspended 

in complete medium (10% parasitemia); the initial medium concentration of PL106 

was ~ 5 µM. Samples were removed from the flask at various intervals and 

centrifuged; the supernatant fluid was then removed and frozen, ready for analysis by 

HPLC. PL106 was added to flasks containing both CQS and CQR infected RBCs. The 

negative control for this experiment was a flask containing uninfected RBCs, and the 

positive control involved infected RBCs interacting with CQ.  The experiment was 

terminated by adding 10 mM ammonium chloride; this resulted in an increase in the 

pH of the DV,
83

 thus PL106 became unprotonated and released from the DV as shown 

in Figure 5.3. 
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From this experiment, the amount of drug accumulating in the DV was quantified. 

Also, the drug was assessed for possible modifications that may have occurred during 

its uptake (modified compounds would have different HPLC retention times). This 

experiment was conducted by Jane Xu Kelly (Riscoe Lab, OHSU). From this 

experiment it was noted that PL106 accumulated more in CQR and CQS PRBCs than 

in normal RBCs. The retention times of the compounds also showed that PL106 was 

not modified as a result of its uptake into the RBCs. 

 

Radioisotope Uptake Measurements 

The aim of this study was to develop simplified compounds that could overcome CQ 

resistance as well as have antimalarial activity. CQ resistance has been linked to 

PfCRT, it has been noted that CQR strains of P. falciparum accumulate less CQ in the 
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Figure 5.3: Comparison of CQ and PL106 uptake with P. falciparum strain combination, 

showing the drug concentration in the medium after 1 hr with normal RBCs, parasitized RBCs, 

and with parasitized RBCs after addition of NH4Cl which liberates the drug from the RBCs. 

The grey bars indicate CQ and the dotted bars show PL106. The CQR Dd2 strain clearly has 

enhanced uptake of PL106 relative to CQ, while the CQS D6 strain shows the same effect to a 

smaller extent. 
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DV; this may be because CQ is transported out of the DV by PfCRT.
84

 RAs have been 

proposed to inhibit PfCRT, and thus reverse CQ resistance.
2
 The head group for the 

simplified RCQs deviates significantly from the pharmacophore proposed by 

Bhattarcharjee, et al., hence it may not have optimal RA properties. Despite this 

deviation, there is marked improvement in the activity of the synthesized compounds 

(See Table 2.3).  

 

An experiment was conducted by Martin, et al., to probe whether the head group of 

the simplified RCQs was behaving like a RA.
84

 In this experiment, the accumulation 

of CQ in oocytes encoded with PfCRT both sensitive and resistant types were 

conducted. For the positive control, verapamil was used. The difference in uptake of 

CQ by the PfCRT CQR oocytes and PfCRT CQS oocytes is small, suggesting that 

verapamil is acting as a RA (by inhibiting PfCRT) and preventing CQ from being 

transported by PfCRT. For the negative control, it can be observed that the difference 

is larger for the uptake of CQ by the PfCRT CQR oocytes than PfCRT CQS oocytes, 

reflecting the transport activity of the PfCRT. RCQs PL106, PL154, PL158, and 

PL261 (shown in Figure 5.4) have greater inhibition of CQR PfCRT than the negative 

control, yet smaller inhibition than verapamil.  
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This result shows that these compounds do have the ability to behave like RAs, yet to 

a smaller extent than PL01 and PL06. This may be due to the fact that there is a 

deviation to the pharmacophore proposed by Bhattacharjee et, al., with these 

compounds. However, it is evident that PL272 does not behave as a RA since the 

difference in CQ uptake for between PfCRT CQR oocytes and PfCRT CQS oocytes is 

similar to that of the control (suggesting zero inhibition of CQ transport). Yet the 

simplified RCQs can mimic the RA, if they are envisioned as having the two aromatic 

head groups, one provided by the quinoline ring and the other provided by the single 

aromatic head group, as shown in Figure 5.5. PL272 lacks the two aromatic groups, 

and thus does not behave as a RA. This result suggests that the simplified RCQs act as 

“mild RAs”, in that they can prevent CQ from being transported by the PfCRT protein 

to a smaller extant than classical RAs such as verapamil. 
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Figure 5.4: Uptake of 

3
H CQ by PfCRT expressing Xenopus oocytes; pH 6.0. The CQ uptake 

is expressed as a percentage of PfCRT
CQR

. The white bars are for PfCRT CQR oocytes and the 

grey bars are for PfCRT CQS oocytes. 
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However, PL154 was very potent against P. falciparum CQS D6, with an IC50 value of 

0.3 nM against D6, 0.5 nM against P. falciparum CQR Dd2, and 0.1 nM against P. 

falciparum CQR 7G8. Further tests were carried out to evaluate for activity against P. 

falciparum strains C2B and A6 to probe the possibility of respiratory inhibition in the 

parasite. As can be seen in Table 5.1, PL154 was more potent than both quinacrine (a 

known respiratory inhibitor)
85

 and CQ against all four strains tested. C2B is a well 

established atovaquone resistant strain.
86

 A6 is a mutant of D6 derived by Smilkstein, 

Risoe, and coworkers, and is resistant to all respiratory inhibitors as far tested.
86

 So, it 

is highly likely that PL154 does not target the mitochondria. Compound PL154 could 

still have a very different mode of action than these respiratory inhibitors. If PL154 

turned out to be truly a DV drug, then it would be a highly potent DV drug (at least in 

vitro).  

 

Aromatic head groups 

Protonatable nitrogen 

 
 
Figure 5.5: PL106 and PL272, PL106 somewhat mimics the RA pharmacophore because it 

has two aromatic groups PL272 only has one aromatic head group and thus deviates from the 

pharmacophore proposed by Bhattacharjee, et al.. 
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PL154 seems to inhibit both the ring stage (0.02 nM for CQS D6 strain and 0.05 nM 

for CQR Dd2 strain) and the trophozoite stage (0.05 nM for CQS D6 strain, and 0.03 

nM for CQR Dd2 strain) of parasite growth by the same order of magnitude. CQ and 

clotrimazole have been reported in literature,  to be more specific to the ring stage by 1 

order of magnitude compared to the trophozoite stage.
21;87;88

 During the ring stage and 

the trophozoite stage, there is the highest metabolic activity. At the ring stage the first 

signs of the malaria pigment are observed. Since PL154 is a CQ-like compound it is 

expected to have potency by at least partly the same mechanism of action as CQ. CQ 

is proposed to either cap the ends of growing heme chains or to bind via pi pi bonds to 

heme dimers. This action is proposed to be most highest during the ring stage and the 

trophozoite stage.
89

 

 

Table 5.1: In vitro respiratory inhibition studies (Values in nM). 

There is a 30% uncertainty in the IC50 values that may result from 

differences in weighing and/or variations in determining IC50 (See 

Chapter 7). 

Compound IC50 values in nM P. falciparum 

strain 

PL154 quinacrine chloroquine 

D6 0.1 4.3 7.3 

Dd2 0.6 11.2 112.0 

C2B 0.4 13.2 109.7 

A6 1.7 8.0 11.8 
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Heme Binding and β-Hematin Inhibition 

CQ is presumed to exert its antimalarial action through binding with heme which is 

toxic to the parasite.
7
 Heme is a by product of hemoglobin digestion in the parasite 

and is sequestered into hemozoin by the parasite; hemozoin is not toxic to the 

parasite.
6
 The simplified RCQs were thus evaluated for heme binding by Shawheen 

Shomloo (Peyton Lab, Portland, Oregon),
90

 to check whether they behave like CQ. 

For heme-drug binding studies, CQ or PL compound was dissolved in distilled water, 

methanol, or dimethyl sulfoxide (DMSO), depending on solubility of the respective 

compounds; they were also sonicated to ensure complete solubility. A stock solution 

of heme was prepared by dissolving heme chloride in NaOH. At the beginning of each 

experiment, the stock heme solution was diluted in phosphate buffer and allowed to 

equilibrate for four hours. Optical titrations with each compound were performed by 

successive addition of aliquots of its stock solution to the heme solution. The pH was 

monitored throughout the procedure with only negligible changes. Equilibrium 

binding constants were determined by nonlinear least-squares analysis.
91

 The results 

for the heme binding studies are shown in Figure 5.6. 
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The results show that the PL compounds generally have a LogKa of about 5 which is 

an indication that there is strong binding with heme. These results also show that these 

compounds bind to heme within 72 hrs, a similar affinity as does CQ.  

 

β-Hematin, which is synthetic, has an identical crystal structure to hemozoin found in 

malaria parasites.
92

 CQ and CQ-like compounds can prevent the formation of β-

hematin in vitro.
90

 An experiment was thus conducted by Shawheen Shomloo, to 

evaluate the inhibition constants for β-hematin formation by the simplified RCQ 

molecules. In this experiment the optimal heme and Tween20 concentrations for 

promoting heme crystallization were calculated by the procedure described by Huy, 

2002.
93

 The RCQ compounds were screened for their inhibitory capacity, and IC50 

values were determined. A series of solutions was made, consisting of varying 

concentrations of the compound under study in distilled, acetate buffer, heme solution 
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Figure 5.6: Heme binding and β-hematin inhibition studies for the simplified RCQs. The scale 

for the line graph is on the right and the scale for the bar graph is on the left. 
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freshly buffered by sodium acetate, and Tween20 solution. The mixtures were 

incubated for 24 hours at 37°C,
94

 then mixed and transferred to a cuvette for 

absorbance reading. IC50 values were calculated by (Dmax – Dinitial ) / 2 where Dmax 

represents the lowest concentration of compound under study to provide maximal 

absorbance readings indicating maximal free heme, and Dinitial represents the lowest 

concentration of drug to provide any increase in absorbance over a solution with no 

drug. The results for the heme inhibition studies are shown in Figure 5.6. From these 

results we see that most of the compounds are more potent than CQ in inhibiting β-

hematin formation. However PL228 and PL229 (Table 3.1) are less potent than CQ in 

inhibiting β-hematin formation. This is an anomaly because these compounds have the 

quinoline ring which is required for inhibition of β-hematin formation. One 

explanation is that the RA-moiety aromatic head group influences β-hematin 

formation; this group is absent in PL228 and PL229. This result does not, however, 

correlate well with the antimalarial IC50 values of these compounds, and this may be 

because these compounds prevent malaria via a different mechanism compared to the 

single aromatic head group compounds. PL192 has two quinoline rings, which 

cumulatively result in increased inhibition of β-hematin formation. It is also 

interesting to note that there is no correlation between heme binding and β-hematin 

inhibition for the simplified RCQs. 
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CHAPTER 6 

Summary and Conclusions 

 

Malaria is a major health problem, due to the increase in the malaria parasite’s 

resistance to current drugs, there is a need to discover compounds with novel scaffolds 

that may not have been exposed to the parasites, and so would not exhibit resistance. 

In addition, there is a need keep remedies for malaria inexpensive, since this disease 

mainly affects developing countries. CQ was an effective antimalarial drug but lost its 

effectiveness due to the development of CQR strains of malaria. RAs have been 

shown to reverse CQ resistance and so the focus of this research has been to develop 

compounds composed of a RA head group attached to a CQ like portion. In this 

research, the RA head group has been simplified from the branched aromatic groups 

described by Bhattacharjee, et al., to a single aromatic group. This approach has been 

shown to be quite viable as a potential drug candidate PL106 was synthesized. This 

compound was orally available in mice and was shown to have no visible toxicity to 

human cells as well as mice. Further studies may need to be carried out on PL106 

before human trials can be done on it.  

From the studies reported in this document, it was noted that the simplified RCQ 

could accommodate several changes without major losses in activity. It was noted that 

the linker length between the protonatable nitrogen and the head group could be 

varied. Also it was noted that the linker length between the quinoline ring and the 
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protonatable nitrogen could be varied as well. These results were in agreement with 

previous studies carried out in the Peyton Lab.
78

 It was also noted that the head group 

could tolerate a change from aromatic to aliphatic. Mechanistic studies on the head 

group showed that the head group on its own does not have RA activity, however 

when linked to the quinoline ring RA activity was observed. This finding may be due 

to the fact that the quinoline ring and the single aromatic head group satisfy the 

condition of two branched aromatic groups proposed by Bhattacharjee, et al.. The 

single aromatic head group on its own does not satisfy the pharmacophore proposed 

by Bhattacharjee, et al.. 

Further work on this project which is beyond the scope of this dissertation will involve 

more in vivo tests to determine the safety of these compounds. 
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CHAPTER 7 

Materials and Methods 

 

This section gives an outline of the synthesis that was used to make the different 

antimalarial compounds as well as their intermediates. Names of compounds were 

generated using ChemBioDraw 11.0.1. The purity of the compounds was detected by a 

Varian Polaris Binary HPLC system, measuring by UV detection at 254 nm and 325 

nm, using a Varian ProStar 325 UV/Vis dual wavelength detector. HPLC method A 

was done with a Microsorb-MV 100-5 C18 250 mm X 4.6 mm column, eluting with 

95 % methanol and 5 % water for 30 minutes. HPLC method B was done with an 

Ascentis
TM

 5µm C18 150 mm X 4.6 mm column, eluting with 95 % water and 5 % 

acetonitrile for 30 minutes. All reagents and solvents were purchased from Aldrich 

and used as supplied. 
1
H NMR and 

13
C NMR and 2D NMR spectra were detected on a 

Bruker 400 MHz spectrometer. Splitting patterns were described as singlet (s), doublet 

(d), triplet (t), quartet (q), pintet (p), doublet of doublets (dd), doublet of triplets (dt), 

doublet of doublet of doublets (ddd), multiplet (m), and broad (br). Mass spectrometry 

was performed on a Bruker microOTOF-Q instrument. The method use was 

electrospray ionization (ESI) in the positive mode, at a flow rate of 0.4 mL/min with 

1:1 methanol water. Each of the compounds made had a CQ like portion linked RA 

like portion. Outlined is the method for the synthesis of PL91, the same method was 

used to make other compounds with varying piperazine head groups. 
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Synthesis of PL16 3-(7-chloroquinolin-4-ylamino)propan-1-ol  

25.48 g (129 mmol) of 4,7-dichloroquinoline was added to 122 mL (157 mmol) of 3-

amino-1-propanol and heated at ~135
o
C for 48 hrs. The reaction was verified by Thin 

layer Chromatography (TLC) in 100% ethyl acetate (EA). The solution was allowed to 

cool to room temperature and then poured into 500 mL water with stirring. The 

precipitate that formed was chilled in an ice bath. The solid was filtered off and 

washed with water. The solid was allowed to air dry in the fume hood and then 

recrystallized twice in EA. 22.50 g (95 mmol, 74% yield) of PL 16 was obtained.  

 

Synthesis of PL28 2-(7-chloroquinolin-4-ylamino)ethanol 

A mixture of 4,7-dichloroquinoline 4.95 g (25 mmol) and ethanolamine 15.27 g (250 

mmol) was heated with stirring at ~135
o
C for 24 hrs. After cooling, the reaction was 

poured into 150 mL water and filtered. After air drying the solid was boiled in 100 mL 

methanol, allowed to cool to room temperature then cooled in ice. The solid was 

filtered, and then washed with a small amount of ice cold methanol to give PL28 3 g 

(13 mmol, 54% yield) as an off-white solid. 

 

Synthesis of PL29 3-(7-chloroquinolin-4-ylamino)propyl methanesulfonate 

0.5 g (2.1 mmol) of PL16 was treated as a suspension in dry 15 ml dichloromethane 

with 0.43 g (4.2 mmol) of triethylamine as base. The mixture was chilled over an 
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ice/salt (<0
o
C) bath then 0.25g (2.2 mmol) of methane sulfonyl chloride was added to 

the mixture for ~3 minutes with stirring. The reaction was allowed to proceed for 30 

minutes, and then extracted with 30 ml aqueous sodium bicarbonate, then three times 

with 10 ml dichloromethane. The mixture was dried over magnesium sulfate. Finally, 

the dichloromethane was evaporated off. The product was weighed and used as 

starting material for a lot of the compounds made in this article. 

 

Synthesis of PL30 2-(7-chloroquinolin-4-ylamino)ethyl methanesulfonate 

To a suspension of PL28 1.5 g (6.7 mmol) in anhydrous 25 mL dichloromethane under 

a nitrogen atmosphere was added 2 mL (14.3 mmol) triethylamine. The mixture was 

cooled to bellow 0
o
C. 0.57 mL (7.4 mmol) of methanesulfonylchloride was added 

slowly, keeping the temperature below 5
o
C, and the reaction was stirred in an ice bath 

for 1 hr. The reaction was added to a 100 mL solution of saturated sodium 

bicarbonate. The aqueous layer was extracted with 2 X 20 mL dichloromethane. The 

combined organic extracts were evaporated to leave an off-white product PL30 1.19 g 

(4 mmol, 59%). 
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Synthesis of PL91 7-chloro-N-(3-(4-phenylpiperazin-1-yl)propyl)quinolin-4-

amine 

0.3 g (1.0 mmol) of the PL29 was added to the 0.32 g (1.2 mmol) of the 1-

phenylpiperazine in 15 ml dry tetrahydrofuran and 0.27 g (2 mmol) of triethyl amine 

as base. This mixture was refluxed for one day. The mixture was then extracted with 

30 ml of sodium bicarbonate, then three 10 ml volumes ethyl acetate. The organic 

layer was rinsed with 10 mL brine. Then resultant mixture was dried over magnesium 

sulfate. Finally, the ethyl acetate was removed by rotoevaporation. The solid product 

was precipitated from an ethanol solvent. The cream compound was filtered, weighed 

0.16 g (0.4 mmol, 44% yield) and characterized by 
1
H-NMR, HPLC & MS. HPLC 

(method B) tR = 8.28 (99% Pure).  
1
H-NMR (CDCl3) δ 1.88(2H, q, J=5.4 Hz), 

2.59(2H, t, J=5.5 Hz), 2.64(4H, t, J=4.7 Hz), 3.23(4H, t, J=4.7 Hz), 3.31(2H, dt, J=5.6 

Hz), 6.85(1H, t, J=7.3 Hz), 6.9(2H, d, J=8.1 Hz), 7.10(1H, dd, J=2.0, 8.9 Hz), 

7.25(2H, t, J=8.4 Hz), 7.32(1H, s), 7.71(1H, d, 9.0 Hz), 7.84(1H, d, J=2.0 Hz), 

8.42(1H, d, J=5.4 Hz); ESIMS [M + H]
+
 calcd for C22H25ClN4 381.1841, found 

381.1831. 
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Synthesis of PL106 7-chloro-N-(3-(4-(pyridin-2-yl)piperazin-1-

yl)propyl)quinolin-4-amine  

0.49 g (1.56 mmol) of PL29 was added to 0.3 g (1.86 mmol) of 1-(2-

Pyridyl)piperazine and 0.43 g (3.11 mmol) triethylamine in 30 mL of chloroform. The 

mixture was refluxed for one day and then extracted with 30 mL sodium bicarbonate 

and 3 X 10 mL of chloroform. The chloroform was evaporated off and the crude 

product was columned twice on silica with a 50:50 methanol:ethylacetate solvent 

mixture. 0.26 g (0.68 mmol, 44 % yield) of tan crystals was obtained as product. 

HPLC (method B) tR = 5.68 (99% Pure). ¹H NMR δ (ppm)(CH3OH-d4): 8.39 (1 H, d, 

J = 5.64 Hz), 8.11-8.10 (2 H, m), 7.80 (1 H, d, J = 2.18 Hz), 7.59 (1 H, ddd, J = 8.64, 

7.13, 2.00 Hz), 7.40 (1 H, dd, J = 9.01, 2.20 Hz), 6.85 (1 H, d, J = 8.64 Hz), 6.71 (1 H, 

dd, J = 7.11, 5.03 Hz), 6.59 (1 H, d, J = 5.69 Hz), 3.57 (4 H, t, J = 4.99 Hz), 3.49 (2 H, 

t, J = 6.80 Hz), 2.64-2.62 (6 H, m), 2.02 (2 H, t, J = 7.01 Hz). ¹³C NMR δ 

(ppm)(CH3OH-d4): 152.5, 149.7, 148.5, 139.3, 136.4, 127.7, 126.0, 124.3, 118.8, 

114.8, 109.2, 99.7, 57.5, 54.2, 46.5, 42.6, 26.1. ESIMS [M + H]
+ 

calcd for C21H24ClN5 

382.1793, found 382.1784. 

 

 

Synthesis of PL109 7-chloro-N-(3-(4-(pyridin-4-yl)piperazin-1-

yl)propyl)quinolin-4-amine 
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0.44 g (1.4 mmol) of PL29 was added to 0.25 g (1.5 mmol) of 1-(2-Pyridyl)piperazine 

and 0.28 g (2.8 mmol) in 30 mL of acetonitrile. The mixture was refluxed for 1 day 

and then extracted with 30 mL sodium bicarbonate and 3 X 10 mL of chloroform. The 

chloroform was evaporated off and the crude product was columned twice on silica 

with a 50:50 methanol:ethylacetate solvent mixture. 0.23 g (0.6 mmol, 43 % yield) of 

tan crystals was obtained as product.¹H NMR δ (ppm)(CH3OH-d4): 8.26 (1 H, d, J = 

5.63 Hz), 8.05-7.99 (2 H, m), 7.98 (1 H, d, J = 9.03 Hz), 7.68 (1 H, d, J = 2.19 Hz), 

7.28 (1 H, dd, J = 9.00, 2.19 Hz), 6.74 (2 H, d, J = 6.08 Hz), 6.52-6.45 (1 H, m), 3.40-

3.31 (6 H, m), 2.56-2.46 (6 H, m), 1.89 (2 H, p, J = 6.99 Hz). ESIMS [M + H]
+ 

calcd 

for C21H24ClN5 382.1786, found 382.1793 

 

Synthesis of PL110 N-(3-(4-(biphenyl-4-yl)piperazin-1-yl)propyl)-7-

chloroquinolin-4-amine  

0.5 g (1.59 mmol) of PL29 was added to 0.45 g (1.91 mmol) of 1-(biphenyl-4-

yl)piperazine and 0.32 g (3.17 mmol) of triethylamine in 15 mL of tetrahydrofuran. 

The mixture was allowed to reflux for one day and then extracted with 30 mL sodium 

bicarbonate and 3 X 10 mL chloroform. The chloroform was evaporated off and the 

crude product columned on silica with a 25:75 methanol: ethyl acetate solvent 

mixture. The product was in the form of white crystals and a yield of 0.16 g (0.35 

mmol, 21.9 % yield). ¹H NMR δ (ppm)(CHCl3-d): 8.48 (1 H, d, J = 5.77 Hz), 8.09 (1 

H, s), 7.91 (1 H, d, J = 8.97 Hz), 7.62-7.57 (4 H, m), 7.44 (2 H, t, J = 7.58 Hz), 7.36-
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7.31 (1 H, m), 7.09-7.02 (2 H, m), 6.41 (1 H, d, J = 5.82 Hz), 3.54-3.48 (2 H, m), 3.42 

(4 H, t, J = 4.74 Hz), 2.82 (4 H, t, J = 4.69 Hz), 2.80-2.74 (2 H, m), 2.10-2.03 (2 H, 

m). 

 

Synthesis of PL111 N-(3-(4-(biphenyl-3-yl)piperazin-1-yl)propyl)-7-

chloroquinolin-4-amine 

0.6 g (1.9 mmol) of PL29 was added to 0.55 g (2.29 mmol) of 1-(biphenyl-3-

yl)piperazine and 0.39 g (3.81 mmol) of triethylamine in 15 mL of tetrahydrofuran. 

The mixture was allowed to reflux for one day and then extracted with 30 mL sodium 

bicarbonate and 3 X 10 mL chloroform. The chloroform was evaporated off and the 

crude product columned on silica with a 25:75 methanol: ethyl acetate solvent 

mixture. The product was in the form of a white powder and a yield of 0.16 g (0.35 

mmol, 18.4 % yield). HPLC (method b) tR = 11.51 (98% Pure). ¹H NMR δ 

(ppm)(CHCl3-d): 8.52 (1 H, d, J = 5.35 Hz), 7.93 (1 H, d, J = 2.15 Hz), 7.82 (1 H, d, J 

= 8.94 Hz), 7.63-7.58 (2 H, m), 7.47-7.32 (5 H, m), 7.24 (1 H, dd, J = 8.00, 2.28 Hz), 

7.20-7.13 (2 H, m), 6.98 (1 H, dd, J = 8.30, 2.49 Hz), 6.36 (1 H, d, J = 5.41 Hz), 3.43 

(2 H, d, J = 5.08 Hz), 3.42-3.37 (5 H, m), 2.77 (4 H, t, J = 4.75 Hz), 2.74-2.68 (2 H, 

m), 2.05-1.97 (2 H, m).¹³C NMR δ (ppm)(CHCl3-d): 160.9, 152.4, 151.6, 147.9, 

145.3, 141.4, 134.6, 129.8, 129.2, 127.5, 125.3, 121.9, 122.3, 119.6, 115.4, 113.7, 

112.5, 98.4, 96.4, 58.8, 53.7, 49.5, 44.1, 24. ESIMS [M + H]
+ 

calcd for C28H29ClN4 

457.2154, found 457.2171. 
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Synthesis of PL112 N-(3-(4-(biphenyl-2-yl)piperazin-1-yl)propyl)-7-

chloroquinolin-4-amine  

0.6 g (1.9 mmol) of PL29 was added to 0.55 g (2.29 mmol) of 1-(biphenyl-2-

yl)piperazine and 0.39 g (3.81 mmol) of triethylamine in 15 mL of tetrahydrofuran. 

The mixture was allowed to reflux for one day and then extracted with 30 mL sodium 

bicarbonate and 3 X 10 mL chloroform. The chloroform was evaporated off and the 

crude product was recrystallized with 25:75 methanol: ethyl acetate solvent mixture. 

The product was in the form of a brown powder and a yield of 0.12 g (0.26 mmol, 

13.8 % yield). HPLC (method B) tR = 11.38 (95% Pure). ¹H NMR δ (ppm)(CHCl3-d): 

8.49 (1 H, d, J = 5.44 Hz), 7.96 (1 H, d, J = 2.13 Hz), 7.88 (1 H, d, J = 8.94 Hz), 7.68-

7.63 (2 H, m), 7.60 (1 H, s), 7.45-7.35 (3 H, m), 7.35-7.26 (3 H, m), 7.20-7.11 (2 H, 

m), 6.32 (1 H, d, J = 5.48 Hz), 3.38 (2 H, q, J = 5.17 Hz), 3.01 (4 H, t, J = 4.72 Hz), 

2.65-2.59 (2 H, m), 2.50 (4 H, s), 1.93 (2 H, p, J = 5.46 Hz).¹³C NMR δ (ppm)(CHCl3-

d): 151.7, 150.7, 149.9, 141.0, 135.2, 134.9, 131.7, 128.9, 128.6, 128.4, 128.2, 126.8, 

124.9, 123.1, 122.3, 118.0, 117.4, 98.4, 58.7, 53.7, 51.1, 44.4, 23.4. ESIMS [M + H]
+ 

calcd for C28H29ClN4 457.2145, found 457.215 

Synthesis of PL154 7-chloro-N-(3-(4-(4-chlorophenyl)piperazin-1-

yl)propyl)quinolin-4-amine  



 70 

0.63 g (2 mmol) of PL29 was added to 0.47 g (2.4 mmol) of 1-(4-

chlorophenyl)piperazine and 0.39 g (4 mmol) of triethylamine in 15 mL of 

tetrahydrofuran. The mixture was allowed to reflux for one day and then extracted 

with 30 mL sodium bicarbonate and 3 X 10 mL chloroform. The chloroform was 

evaporated off and the crude product was recrystallized with 25:75 methanol: ethyl 

acetate solvent mixture. The product was in the form of an off white powder and a 

yield of 0.02 g (0.05 mmol, 2.4 % yield). HPLC (method A) tR = 5.91 (98% Pure). ¹H 

NMR δ (ppm)(CHCl3-d): 8.52 (1 H, d, J = 5.36 Hz), 7.93 (1 H, d, J = 2.15 Hz), 7.78 (1 

H, d, J = 8.94 Hz), 7.29-7.27 (2 H, m), 7.24 (1 H, s), 7.20 (1 H, dd, J = 8.91, 2.16 Hz), 

6.92-6.87 (2 H, m), 6.36 (1 H, d, J = 5.40 Hz), 3.42 (2 H, q, J = 5.32 Hz), 3.32-3.26 (4 

H, m), 2.74 (4 H, t, J = 4.82 Hz), 2.73-2.67 (2 H, m), 2.00 (2 H, p, J = 5.58 Hz). 

ESIMS [M + H]
+
 calcd for C22H24Cl2N4 415.1451, found 415.1460. 

 

 

 

Synthesis of PL155 7-chloro-N-(3-(4-(3,4-dichlorophenyl)piperazin-1-

yl)propyl)quinolin-4-amine 

0.53 g (1.68 mmol) of PL29 was added to 0.47 g (2.0 mmol) of 1-(3,4-

dichlorophenyl)piperazine and 0.34 g (3.4 mmol) of triethylamine in 15 mL of 

tetrahydrofuran. The mixture was allowed to reflux for one day and then extracted 
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with 30 mL sodium bicarbonate and 3 X 10 mL chloroform. The chloroform was 

evaporated off and the crude product was recrystallized in methanol. The product was 

in the form of gold crystals and weighed 0.15 g (0.3 mmol, 19.8 %). ¹H NMR δ 

(ppm)( CHCl3-d): 8.52 (1 H, d, J = 5.36 Hz), 7.93 (1 H, d, J = 2.15 Hz), 7.74 (1 H, d, J 

= 8.94 Hz), 7.33 (1 H, d, J = 8.89 Hz), 7.26 (1 H, s), 7.21 (1 H, dd, J = 8.90, 2.17 Hz), 

7.07 (1 H, s), 7.01 (1 H, d, J = 2.87 Hz), 6.78 (1 H, dd, J = 8.91, 2.88 Hz), 6.36 (1 H, 

d, J = 5.40 Hz), 3.44-3.37 (2 H, m), 3.29 (4 H, t, J = 4.84 Hz), 2.73-2.64 (6 H, m), 

2.05-1.95 (2 H, m). ESIMS [M + H]
+
 calcd for C22H23Cl3N4 449.1068, found 

449.1061. 

 

Synthesis of PL156 7-chloro-N-(3-(4-(4-fluorophenyl)piperazin-1-

yl)propyl)quinolin-4-amine 

0.58 g (1.84 mmol) of PL29 was added to 0.40 g (2.2 mmol) of 1-(4-

fluorophenyl)piperazine and 0.37 g (3.7 mmol) of triethylamine in 15 mL of 

tetrahydrofuran. The mixture was allowed to reflux for one day and then extracted 

with 30 mL saturated sodium bicarbonate solution and 3 X 10 mL chloroform. The 

chloroform was evaporated off and the crude product was recrystallized in a 25:75 

methanol:ethylacetate solution. The product was in the form of a white powder and 

weighed 0.26 g (0.7 mmol, 35.4 %). HPLC (method A) tR = 5.91 (99% Pure). ¹H 

NMR δ (ppm)( CHCl3-d): 8.52 (1 H, d, J = 5.36 Hz), 7.93 (1 H, d, J = 2.16 Hz), 7.80 

(1 H, d, J = 8.94 Hz), 7.31 (1 H, s), 7.20 (1 H, dd, J = 8.91, 2.17 Hz), 7.06-6.98 (2 H, 
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m), 6.97-6.91 (2 H, m), 6.35 (1 H, d, J = 5.40 Hz), 3.41 (2 H, q, J = 5.29 Hz), 3.27-

3.22 (4 H, m), 2.77-2.72 (4 H, m), 2.73-2.67 (2 H, m), 2.06-1.96 (2 H, m). ESIMS [M 

+ H]
+ 

calcd for C22H24ClFN4 399.1746, found 399.1753. 

 

Synthesis of PL157 7-chloro-N-(3-(4-(4-methoxyphenyl)piperazin-1-

yl)propyl)quinolin-4-amine 

0.69 g (2.2 mmol) of PL29 was added to 0.51 g (2.6 mmol) of 1-(4-

methoxyphenyl)piperazine and 0.44 g (4.4 mmol) of triethylamine in 15 mL of 

tetrahydrofuran. The mixture was allowed to reflux for one day and then extracted 

with 30 mL saturated sodium bicarbonate solution and 3 X 10 mL chloroform. The 

chloroform was evaporated off and the crude product was recrystallized in a 25:75 

methanol:ethylacetate solution. The product was in the form of gold crystals and 

weighed 0.09 g (0.2 mmol, 10 %). HPLC (method A) tR = 6.88 (98% Pure). ¹H NMR 

δ (ppm)( CHCl3-d): 8.51 (1 H, d, J = 5.36 Hz), 7.92 (1 H, d, J = 2.16 Hz), 7.83 (1 H, d, 

J = 8.94 Hz), 7.43 (1 H, s), 7.21 (1 H, dd, J = 8.91, 2.17 Hz), 6.98-6.93 (2 H, m), 6.93-

6.87 (2 H, m), 6.33 (1 H, d, J = 5.40 Hz), 3.86-3.71 (3 H, m), 3.40 (2 H, q, J = 5.23 

Hz), 3.22 (4 H, t, J = 4.73 Hz), 2.78-2.72 (4 H, m), 2.71-2.66 (2 H, m), 2.03-1.95 (2H, 

m). ESIMS [M + H]
+ 

calcd for C23H27ClN4O 411.1946, found 411.1949. 
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Synthesis of PL158 7-chloro-N-(3-(4-(4-(trifluoromethyl)phenyl)piperazin-1-

yl)propyl)quinolin-4-amine 

0.69 g (2.2 mmol) of PL29 was added to 0.61 g (2.6 mmol) of 1-(4-

methoxyphenyl)piperazine and 0.44 g (4.4 mmol) of triethylamine in 15 mL of 

tetrahydrofuran. The mixture was allowed to reflux for one day and then extracted 

with 30 mL saturated sodium bicarbonate solution and 3 X 10 mL chloroform. The 

chloroform was evaporated off and the crude product was recrystallized in a 25:75 

methanol:ethylacetate solution. The product was in the form of white crystals and 

weighed 0.03 g (0.07 mmol, 3.1 %). HPLC (method A) tR = 5.88 (99% Pure). ¹H 

NMR δ (ppm)( CHCl3-d): 8.52 (1 H, d, J = 5.35 Hz), 7.93 (1 H, d, J = 2.16 Hz), 7.75 

(1 H, d, J = 8.94 Hz), 7.54 (2 H, d, J = 8.60 Hz), 7.20 (1 H, dd, J = 8.90, 2.17 Hz), 7.11 

(1 H, s), 6.98 (2 H, d, J = 8.59 Hz), 6.36 (1 H, d, J = 5.39 Hz), 3.46-3.38 (6 H, m), 2.74 

(4 H, t, J = 4.91 Hz), 2.72-2.66 (2 H, m), 2.01 (2 H, p, J = 5.65 Hz). ESIMS [M + H]
+
 

calcd for C23H24ClF3N4 449.1714, found 449.1729. 

 

Synthesis of PL159 4-(4-(3-(7-chloroquinolin-4-ylamino)propyl)piperazin-1-

yl)phenol 

0.51 g (1.6 mmol) of PL29 was added to 0.31 g (1.7 mmol) of 1-(4-

hydroxyphenyl)piperazine and 0.23 g (1.62 mmol) of potassium carbonate in 20 mL of 

acetonitrile. The mixture was allowed to reflux for 24 hrs and then the acetonitrile was 

evaporated off. The remaining residue was dissolved in 20 mL of chloroform and then 
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extracted with 30 mL saturated sodium bicarbonate solution and 3 X 10 mL 

chloroform. The chloroform was evaporated off and the crude product was 

recrystallized in a 25:75 methanol:ethylacetate solution. The product was in the form 

of a grey powder and weighed 0.05 g (0.1 mmol, 8 %). ¹H NMR δ (ppm)(CH3OH-d4): 

8.38 (1 H, d, J = 5.64 Hz), 8.11 (1 H, d, J = 9.01 Hz), 7.80 (1 H, d, J = 2.17 Hz), 7.39 

(1 H, dd, J = 9.01, 2.19 Hz), 6.94-6.88 (2 H, m), 6.77-6.72 (2 H, m), 6.58 (1 H, d, J = 

5.68 Hz), 3.52-3.45 (2 H, m), 3.16-3.08 (4 H, m), 2.72-2.65 (4 H, m), 2.62 (2 H, t, J = 

7.16 Hz), 2.05-1.96 (2 H, m). ESIMS [M + H]
+
 calcd for C22H26ClON4 397.1790, 

found 397.1783. 

 

Synthesis of PL163 7-chloro-N-(3-(4-p-tolylpiperazin-1-yl)propyl)quinolin-4-

amine 

0.70 g (2.2 mmol) of PL29 was added to 0.47 g (2.7 mmol) of 1-(4-

methoxyphenyl)piperazine and 0.45 g (4.4 mmol) of triethylamine in 15 mL of 

tetrahydrofuran. The mixture was allowed to reflux for one day and then extracted 

with 30 mL saturated sodium bicarbonate solution and 3 X 10 mL chloroform. The 

chloroform was evaporated off and the crude product was recrystallized in a 25:75 

methanol:ethylacetate solution. The product was in the form off gold crystals and 

weighed 0.110 g (0.3 mmol, 12.5 % yield). HPLC (method B) tR = 9.11 (96% Pure). 

¹H NMR δ (ppm)( CHCl3-d): 8.51 (1 H, d, J = 5.36 Hz), 7.92 (1 H, d, J = 2.16 Hz), 

7.82 (1 H, d, J = 8.94 Hz), 7.41 (1 H, s), 7.21 (1 H, dd, J = 8.91, 2.18 Hz), 7.14 (2 H, 
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d, J = 8.21 Hz), 6.91 (2 H, d, J = 8.35 Hz), 6.34 (1 H, d, J = 5.40 Hz), 3.41 (2 H, q, J = 

5.25 Hz), 3.29 (4 H, t, J = 4.77 Hz), 2.75 (4 H, t, J = 4.75 Hz), 2.73-2.67 (2 H, m), 

2.32 (3 H, s), 2.06-1.96 (2 H, m). ¹³C NMR δ (ppm)(CHCl3-d): 152.2, 150.5, 149.2, 

149.0, 134.7, 129.8, 128.7, 124.8, 122.1, 117.4, 116.6, 98.5, 58.7, 53.7, 50.0, 44.4, 

23.6, 20.5. ESIMS [M + H]
+
 calcd for C23H27ClN4 395.1997, found 395.1984. 

 

Synthesis of PL192 N,N'-(3,3'-(piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(7-

chloroquinolin-4-amine) 

1.64 g (8.3 mmol) of 4,7-dichloroquinoline was added to 0.79 g of (3.9 mmol)3,3'-

(piperazine-1,4-diyl)dipropan-1-amine and 6 g (63.8 mmol) of then heated at ~125
o
C 

for 4 hrs( temperature and time control were critical as dark tarry by products formed 

with large variations in time and temperature). The solution was allowed to cool to 

room temperature and then diluted with 40 mL dichloromethane. The solution was 

then washed with 6 X 20 mL 2 M sodium hydroxide and then 30 mL brine. The 

resulting solution was dried over magnesium sulphate. After the solvent was 

evaporated the solid product was recrystallized in 25:75 methanol:ethylacetate 

solution. 0.020 g (0.04 mmol, 1% yield) of an off white crystal powder was obtained. 

HPLC (method B) tR = 6.38 (96% Pure). ¹H NMR δ (ppm)( CHCl3-d): 8.53 (2 H, d, J 

= 5.35 Hz), 7.95 (2 H, dd, J = 6.47, 2.15 Hz), 7.91-7.83 (2 H, m), 7.37 (2 H, s), 7.37-

7.28 (2 H, m), 6.40-6.32 (2 H, m), 3.47-3.36 (4 H, m), 2.78-2.72 (8 H, m), 2.06-1.96 

(4 H, m), 1.71 (4 H, s).¹³C NMR δ (ppm)( CHCl3-d): 152.3, 150.5, 149.2, 134.6, 
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128.8, 124.7, 122.2, 117.5, 98.7, 59.0, 53.7, 44.3, 23.6. ESIMS [M + H]
+
 calcd for 

C28H32Cl2N6 523.2138, found 523.2147. 

 

Synthesis of PL223 7-chloro-N-(3-(4-(naphthalen-1-ylmethyl)piperazin-1-

yl)propyl)quinolin-4-amine 

0.70 g (2.2 mmol) of PL29 was added to 0.6 g (2.7 mmol) of 1-(naphthalen-1-

ylmethyl)piperazine and 0.45 g (4.4 mmol) of triethylamine in 15 mL of 

tetrahydrofuran. The mixture was allowed to reflux for one day and then extracted 

with 30 mL saturated sodium bicarbonate solution. The aqueous layer was further 

extracted with 3 X 10 mL chloroform. The chloroform was evaporated off and the 

crude product was recrystallized in a 25:75 methanol:ethylacetate solution. The 

product was in the form of pale yellow crystals and weighed 0.120 g (0.3 mmol, 12.1 

% yield). HPLC (method B) tR = 9.69 (98% Pure). ¹H NMR δ (ppm)(CHCl3-d): 1.93 

(2 H, p, J = 5.40 Hz), 2.54-2.74 (10 H, m), 3.37 (2 H, q, J = 5.14 Hz), 4.03 (2 H, s), 

6.32 (1 H, d, J = 5.39 Hz), 7.35 (1 H, dd, J = 8.91, 2.18 Hz), 7.42-7.60 (4 H, m), 7.64 

(1 H, s), 7.79-7.91 (2 H, m), 7.90-7.98 (2 H, m), 8.33 (1 H, d, J = 8.22 Hz), 8.51 (1 H, 

d, J = 5.34 Hz).¹³C NMR δ (ppm)(CHCl3-d): 23.4, 44.6, 53.3, 53.7, 58.8, 61.4, 98.5, 

117.5, 122.6, 124.6, 124.7, 125.2, 125.7, 125.8, 127.6, 128.2, 128.5, 128.7, 132.6, 

133.6, 133.9, 134.6, 149.2, 150.6, 152.3. ESIMS [M + H]
+
 calcd for C27H29ClN4 

445.2154, found 445.2154. 
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Synthesis of PL227 7-chloro-N-(3-(4-phenethylpiperazin-1-yl)propyl)quinolin-4-

amine 

0.60 g (1.9 mmol) of PL29 was added to 0.44 g (2.3 mmol) of 1-phenethylpiperazine 

and 0.38 g (3.8 mmol) of triethylamine in 15 mL of tetrahydrofuran. The mixture was 

allowed to reflux for one day and then extracted with 30 mL saturated sodium 

bicarbonate solution. The aqueous layer was further extracted with 3 X 10 mL 

chloroform. The chloroform was evaporated off and the crude product was 

recrystallized in ethyl acetate solution. The product was in the form of pale tan crystals 

and weighed 0.29 g (0.7 mmol, 37.2 % yield). HPLC (method B) tR = 7.6 (99% Pure).  

¹H NMR δ (ppm)(CHCl3-d): 1.91-2.00 (2 H, m), 2.52-2.86 (12 H, m), 2.83-2.90 (2 H, 

m), 3.39 (2 H, q, J = 5.17 Hz), 6.33 (1 H, d, J = 5.41 Hz), 7.20-7.25 (3 H, m), 7.29-

7.35 (3 H, m), 7.56 (1 H, s), 7.89 (1 H, d, J = 8.94 Hz), 7.94 (1 H, d, J = 2.15 Hz), 8.51 

(1 H, d, J = 5.36 Hz).¹³C NMR δ (ppm)(CHCl3-d): 152.2, 150.6, 149.2, 140.1, 134.7, 

128.7, 128.7, 128.5, 126.2, 124.7, 122.4, 117.5, 98.5, 60.7, 58.8, 53.6, 53.4, 44.5, 33.7, 

23.4. ESIMS [M + H]
 +

 calcd for C23H29ClN4 409.2154, found 409.2156. 

Synthesis of PL228 7-chloro-N-(3-(4-(cyclohexylmethyl)piperazin-1-

yl)propyl)quinolin-4-amine 

0.40 g (1.3 mmol) of PL29 was added to 0.28 g (1.5 mmol) of 1-

(cyclohexylmethyl)piperazine and 0.26 g (2.6 mmol) of triethylamine in 15 mL of 

tetrahydrofuran. The mixture was allowed to reflux for one day and then extracted 

with 30 mL saturated sodium bicarbonate solution. The aqueous layer was further 
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extracted with 3 X 10 mL chloroform. The chloroform was evaporated off and the 

crude product was recrystallized in ethyl acetate solution. The product was in the form 

of pale orange crystals and weighed 0.050 g (0.1 mmol, 9.8 % yield). HPLC (method 

B) tR = 7.68 (96% Pure).  ¹H NMR δ (ppm)(CHCl3-d): 0.83-0.98 (2 H, m), 1.14-1.32 

(3 H, m), 1.73 (7 H, d, J = 14.81 Hz), 1.82 (2 H, d, J = 13.12 Hz), 1.90-1.99 (2 H, m), 

2.23 (2 H, d, J = 7.18 Hz), 2.51-2.70 (8H, m), 3.38 (2 H, q, J = 5.12 Hz), 6.31 (1 H, d, 

J = 5.43 Hz), 7.33 (1 H, dd, J = 8.90, 2.19 Hz), 7.75 (1 H, s), 7.90-7.96 (2 H, m), 8.50 

(1 H, d, J = 5.38 Hz). ¹³C NMR δ (ppm)(CHCl3-d): 23.2, 26.2, 27.0, 31.9, 35.3, 44.6, 

53.7, 53.8, 58.6, 66.0, 98.4, 117.7, 122.6, 124.2, 128.6, 134.9, 149.0, 150.5, 152.2. 

ESIMS [M + H]
+ 

calcd for C23H33ClN4 401.2467, found 401.2468. 

 

 

 

Synthesis of PL229 7-chloro-N-(3-(4-cyclohexylpiperazin-1-yl)propyl)quinolin-4-

amine 

0.45 g (1.4 mmol) of PL29 was added to 0.28 g (1.7 mmol) of 1-cyclohexylpiperazine 

and 0.29 g (2.9 mmol) of triethylamine in 15 mL of tetrahydrofuran. The mixture was 

allowed to reflux for one day and then extracted with 30 mL saturated sodium 

bicarbonate solution. The aqueous layer was further extracted with 3 X 10 mL 

chloroform. The chloroform was evaporated off and the crude product was 
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recrystallized in ethyl acetate solution. The product was in the form of pale gold 

crystals and weighed 0.090 g (0.2 mmol, 15.8 % yield). HPLC (method B) tR = 6.77 

(96% Pure). ¹H NMR δ (ppm)(CHCl3-d): 1.30 (4 H, d, J = 10.45 Hz), 1.68 (5 H, s), 

1.87 (2 H, s), 1.95 (4 H, dt, J = 10.86, 5.61 Hz), 2.34 (1 H, s), 2.61-2.67 (3 H, m), 2.76 

(4 H, s), 3.38 (2 H, q, J = 5.14 Hz), 6.32 (1 H, d, J = 5.42 Hz), 7.30 (1 H, dd, J = 8.90, 

2.19 Hz), 7.72 (1 H, s), 7.90 (1 H, d, J = 8.93 Hz), 7.94 (1 H, d, J = 2.16 Hz), 8.51 (1 

H, d, J = 5.37 Hz). ¹³C NMR δ (ppm)(CHCl3-d): 23.3, 25.9, 26.3, 28.9, 44.5, 48.9, 

54.1, 59.0, 63.6, 98.5, 117.7, 122.3, 124.6, 128.5, 134.7, 149.1, 150.8, 152.2. ESIMS 

[M + H]
+
 calcd for C22H31ClN4 387.2310, found 387.2303. 

 

Synthesis of PL255 N,N'-(3,3'-(piperazine-1,4-diyl)bis(propane-3,1-

diyl))diquinolin-4-amine 

1.5 g (9.2 mmol) of 4-chloroquinoline was added to 0.87 g of (4.4 mmol)3,3'-

(piperazine-1,4-diyl)dipropan-1-amine and 6 g (63.8 mmol) of then heated at ~125
o
C 

for 4 hrs( temperature and time control were critical as dark tarry by products formed 

with large variations in time and temperature). The solution was allowed to cool to 

room temperature and then diluted with 40 mL dichloromethane. The solution was 

then washed with 6 X 20 mL 2 M sodium hydroxide and then 30 mL brine. The 

resulting solution was dried over magnesium sulphate. After the solvent was 

evaporated the solid product was recrystallized in ethyl acetate solution. 0.13 g (0.3 

mmol, 6.6 % yield) of a white crystal powder was obtained. HPLC (method B) tR = 
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4.73 (95% Pure). ¹H NMR δ (ppm)( CHCl3-d): 8.55 (2 H, d, J = 5.31 Hz), 7.98 (2 H, 

dd, J = 8.47, 1.18 Hz), 7.94 (2 H, d, J = 8.38 Hz), 7.63 (2 H, ddd, J = 8.45, 6.83, 1.33 

Hz), 7.41 (2 H, ddd, J = 8.38, 6.82, 1.28 Hz), 7.25 (2 H, s), 6.38 (2 H, d, J = 5.36 Hz), 

3.44 (4 H, q, J = 5.29 Hz), 2.77-2.71 (12H, m), 2.07-1.99 (4 H, m). ESIMS [M + H]
+
 

calcd for C28H34N6 382.1793, found 382.1784. 

 

Synthesis of PL257 7-chloro-N-(3-(4-(4-nitrophenyl)piperazin-1-

yl)propyl)quinolin-4-amine  

 0.67 g (2.1 mmol) of PL29 was added to 0.53 g (2.6 mmol) of 1-(4-

nitrophenyl)piperazine and 0.43 g (4.3 mmol) of triethylamine in 15 mL of 

tetrahydrofuran. The mixture was allowed to reflux for one day and then extracted 

with 30 mL saturated sodium bicarbonate solution. The aqueous layer was further 

extracted with 3 X 10 mL chloroform. The chloroform was evaporated off and the 

crude product was recrystallized in ethyl acetate solution. The product was in the form 

of bright yellow crystals and weighed 0.06 g (0.1 mmol, 6.6 % yield). HPLC (method 

B) tR = 8.93 (95% Pure). ¹H NMR δ (ppm)(DMSO-d6): 211.41 (1 H, d, J = 5.40 Hz), 

211.26 (1 H, d, J = 9.03 Hz), 211.11-211.03 (2 H, m), 210.79 (1 H, d, J = 2.25 Hz), 

210.45 (1 H, dd, J = 8.97, 2.25 Hz), 210.39 (1 H, t, J = 5.29 Hz), 210.04 (2 H, d, J = 

9.14 Hz), 209.52 (1 H, d, J = 5.48 Hz), 206.48 (4 H, t, J = 4.66 Hz), 205.50-205.43 (3 

H, m), 204.92-204.81 (2 H, m), 203.01 (4 H, s).¹³C NMR δ (ppm)(CHCl3-d): 159.7, 
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154.9, 141.4, 139.4, 132.7, 130.9, 129.3, 122.7, 108.4, 103.8, 96.7, 60.8, 58.6, 57.8, 

51.6 , 46.7, 4.8. ESIMS [M + H]
+
 calcd for C22H24Cl1N5O2 426.1691, found 426.1682. 

 

Synthesis of PL258 2-(3-(4-phenylpiperazin-1-yl)propyl)isoindoline-1,3-dione 

6.00 g (37 mmol) of 1-phenylpiperazine was added to 9.44 g (35 mmol) of 2-(3-

bromopropyl)isoindoline-1,3-dione and 12.17 g (88 mmol) of potassium carbonate in 

150 mL of acetonitrile. The mixture was allowed to reflux for 3 hrs. On cooling the 

acetonitrile was evaporated off and the residue extracted with 200 mL water and 200 

mL ethylacetate. The aqueous layer was extracted with 2 X 100 mL ethyl acetate and 

combined to the organic layer. The solvent was evaporated off to give a pale yellow 

liquid that solidified after being left in the fume hood. The product was recrystallized 

in hexane to give a white powder 6.00 g (15 mmol, 43 % yield). ¹H NMR δ 

(ppm)(CHCl3-d): 7.87-7.80 (2 H, m), 7.74-7.66 (2 H, m), 7.44 (2 H, d, J = 8.63 Hz), 

6.84 (2 H, d, J = 8.61 Hz), 3.80 (2 H, t, J = 6.90 Hz), 3.13-3.08 (4 H, m), 2.55-2.44 (6 

H, m), 1.90 (2 H, p, J = 6.85 Hz). 

 

Synthesis of PL259 3-(4-phenylpiperazin-1-yl)propan-1-amine  

6.00 g (15 mmol) of PL258 was dissolved in 75 mL of ethanol and 2.25 g (45 mmol) 

of hydrazine monohydrate was added. The mixture was allowed to reflux for 4 hrs and 

then the residue was evaporated off. The remaining solid was partitioned in 
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chloroform and filtered off to get the amine a pale yellow solid 1.34 g (6.1 mmol, 41% 

yield). 

 

Synthesis of PL260 1-(3-phenylpropyl)-4-(4-(triflouromethyl)phenyl)piperazine 

0.5 g (2.8 mmol) of 1-(4-(trifluoromethyl)phenyl)piperazine was added to 0.54 g (2.70 

mmol) of (3-bromopropyl)benzene and 0.93 g (6.8 mmol) of potassium carbonate in 

20 mL of acetonitrile. The mixture was allowed to reflux for 3 hrs. On cooling the 

acetonitrile was evaporated off and the residue extracted with 20 mL water and 20 mL 

ethyl acetate. The aqueous layer was extracted with 2 X 10 mL ethyl acetate and 

combined to the organic layer. The solvent was evaporated off to give an off white 

liquid that solidified after being left in the fume hood. The product was recrystallized 

in hexane to give a white powder 0.51 g (1.7 mmol, 63.8 % yield). HPLC (method B) 

tR = 15.88 (95% Pure). ¹H NMR δ (ppm)(400MHz, CHCl3-d): 7.47 (2 H, d, J = 8.63 

Hz), 6.91 (2 H, d, J = 8.62 Hz), 3.30-3.25 (4 H, m), 2.67 (2 H, t, J = 7.71 Hz), 2.60-

2.55 (4 H, m), 2.47-2.39 (2 H, m), 1.92-1.80 (2 H, m). ¹³C NMR δ (ppm)(CHCl3-d): 

153.2, 141.9, 128, 128.1, 125.8, 125.2, 114.2, 57.6, 52.6, 48.2, 47.8, 33.7, 28.7. 

ESIMS [M + H]
+ 

calcd for C20H24F3N2 383.1741, found 383.1745 
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Synthesis of PL261 7-chloro-N-(3-(4-(pyrimidin-2-yl)piperazin-1-

yl)propyl)quinolin-4-amine 

 

0.3 g (1.0 mmol) of PL29 was added to 0.17 g (1.1 mmol) of 2-(piperazin-1-

yl)pyrimidine and 0.19 g (1.9 mmol) of triethylamine in 15 ml THF. The mixture was 

allowed to reflux for one day and then extracted with 30 mL saturated sodium 

bicarbonate solution. The aqueous layer was further extracted with 3 X 10 mL 

chloroform. The chloroform was evaporated off and the crude product was columned 

in 1:1 methanol:ethylacetate solution. The product was in the form of beige crystals 

and weighed 0.16 g (0.4 mmol, 44 % yield). HPLC (method B) tR = 6.95 (99% Pure). 

¹H NMR δ (ppm)(CH3OH-d4): 8.38 (1 H, d, J = 5.65 Hz), 8.34 (2 H, d, J = 4.78 Hz), 

8.11 (1 H, d, J = 9.01 Hz), 7.80 (1 H, d, J = 2.17 Hz), 7.42 (1 H, dd, J = 9.01, 2.19 Hz), 

6.64-6.56 (2 H, m), 3.85 (4 H, t, J = 4.99 Hz), 3.48 (2 H, t, J = 6.82 Hz), 2.62-2.56 (6 

H, m), 2.01 (2 H, p, J = 7.01 Hz).¹³C NMR δ (ppm)(CHCl3-d): 26.2, 42.6, 44.7, 54.2, 

57.5, 99.7, 111.3, 118.8, 124.3, 126.0, 127.6, 136.4, 149.7, 152.5, 152.8, 159.1, 162.9. 

ESIMS [M + H]
+ 

calcd for C20H24ClN6 383.1741, found 383.1745 

 

Synthesis of PL272 N-(3-(4-phenylpiperazin-1-yl)propyl)acetamide 

1.3 g (6.0 mmol) of the amine was treated with 0.9 g (12 mmol) of acetyl chloride in 

30 mL acetonitrile. After 24 hrs the solvent was evaporated off and the solid dissolved 

in 60 mL sodium bicarbonate solution. 3 X 20 mL of chloroform was used to extract 

the product which was a beige powder 1.1 g (4.2 mmol, 28 %).  
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HPLC (method B) tR = 7.71 (97% Pure).¹H NMR δ (ppm)(CH3OH-d4): 7.13 (2 H, dd, 

J = 8.68, 7.20 Hz), 6.87 (2 H, d, J = 8.21 Hz), 6.74 (1 H, t, J = 7.31 Hz), 3.15 (6 H, m), 

2.55 (4 H, t, J = 4.92 Hz), 2.36 (2 H, t, J = 7.65 Hz), 1.83 (3 H, s), 1.65 (2 H, t, J = 

7.49 Hz). ¹³C NMR δ (ppm)(CH3OH-d4): 173.6, 153.5, 130.4, 121.5, 117.7, 57.7, 

54.6, 50.6, 38.9, 27.2, 22.4. ESIMS [M + H]
+ 

calcd for C15H24ON3 262.1914, found 

262.1915. 

 

Synthesis of PL289 3-chloro-N-(pyridin-4-yl)propanamide 

12.43 mL (130 mmol) of chloropropionyl chloride was added dropwise to 10.34 g 

(110 mmol) of 4-aminopyridine. 17.97 g (130 mmol) of potassium carbonate was used 

as base in 130 mL dichloromethane. The reaction mixture was stirred at room 

temperature for five days. The residue was evaporated off and the resulting white solid 

was recrystallized in water. The product was a white powder 2.00 g (11 mmol, 10%). 

 

Synthesis of PL273 3-(4-phenylpiperazin-1-yl)-N-(pyridin-4-yl)propanamide 

1.33 g (7.2 mmol) of 3-chloro-N-(pyridin-4-yl)propanamide was added to 1.29 g (8.0 

mmol) of 1-phenylpiperazine and 1.49 g (11 mmol) in 45 mL DMF. The mixture was 

refluxed for 5 days. The residue was evaporated off and the solid was partitioned in 30 

mL sodium bicarbonate solution. 3 X 15 mL of chloroform was used to extract the 
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solution. The solid was obtained by recrystallization in ethanol as off white crystals 

0.20 g (0.7 mmol, 9.4%). HPLC (method B) tR = 5.58 (95% Pure). ¹H NMR δ 

(ppm)(CH3OH-d4): 8.40 (2 H, dd, J = 4.98, 1.64 Hz), 7.66 (2 H, dd, J = 4.97, 1.63 

Hz), 7.25-7.24 (2 H, m), 7.00-6.97 (2 H, m), 6.86 (1 H, t, J = 7.31 Hz), 3.23 (4 H, t, J 

= 4.88 Hz), 2.86 (2 H, t, J = 6.96 Hz), 2.74 (4 H, t, J = 4.90 Hz), 2.68 (2 H, t, J = 6.96 

Hz). ¹³C NMR δ (ppm)(CH3OH-d4): 173.6, 152.6, 150.8, 148.0, 130.1, 121.2, 117.5, 

115.1, 54.7, 54.0, 50.4, 35.0. ESIMS [M + H]
+ 

calcd for C18H23ON4 311.1866, found 

311.1868 

 

Synthesis of PL274 7-chloro-N-(2-(4-phenylpiperazin-1-yl)ethyl)quinolin-4-amine 

6 g (20 mmol) of sulphonyl adduct were treated with 3.56 g (22 mmol) of 1-

phenylpiperazine and 4.04 g (40 mmol) triethylamine in 50 mL acetonitrile. The 

mixture was allowed to reflux for 48 hrs. The solvent was evaporated off and the 

remaining solid was partitioned with 150 mL sodium bicarbonate solution. It was then 

extracted with 50 X 3 mL of chloroform. The solid was columned on silica with a 

50:50 methanol:ethylacetate mixture. The solid product was light brown 2 g (5.5 

mmol, 27%). HPLC (method B) tR = 8.14 (98% Pure). PL274 

 (CH3OH-d4): 8.41 (1 H, d, J = 5.62 Hz), 8.11 (1 H, d, J = 9.01 Hz), 7.82 (1 H, d, J = 

2.18 Hz), 7.45 (1 H, dd, J = 9.02, 2.19 Hz), 7.26-7.25 (2 H, m), 7.01-7.01 (2 H, m), 

6.86 (1 H, t, J = 7.30 Hz), 6.62 (1 H, d, J = 5.66 Hz), 3.59 (2 H, t, J = 6.67 Hz), 3.25 (4 

H, t, J = 4.86 Hz), 2.84 (2 H, t, J = 6.67 Hz), 2.78 (4 H, t, J = 4.88 Hz). ¹³C NMR δ 
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(ppm)(CH3OH-d4): 40.8, 50.6, 54.2, 57.1, 99.8, 117.4, 121.3, 124.2, 126.2, 127.7, 

128.4, 130.0, 131.6, 136.5, 149.8, 152.5, 161.4. ESIMS [M + H]
+ 

calcd for 

C21H24ClN4 367.1684, found 367.1679. 

 

In vitro Inhibition of Growth Studies. The antimalarial activities of the synthesized 

compounds were measured versus the CQ sensitive strain D6 and the CQ resistant 

strains Dd2 and 7G8 using the standardized, malaria SYBR Green assay.
95-97

 

Continuously maintained cultures of D6, Dd2, and 7G8 were used. The cultures were 

diluted with complete medium (RPMI-1640 with 0.5 % Albumax II) to achieve 0.2 % 

parasitemia and 2 % hematocrit. In 96-well micro plates, CQ (positive control) or the 

respective compound was diluted in complete medium from a 10 mM stock in DMSO 

which was added to the cell mixture to yield triplicate wells with drug concentrations 

ranging from 0 to 10
-4

 M in a final well volume of 100 µL. After 72 h of incubation 

under standard culture conditions, plates were harvested and read by the SYBR Green 

I fluorescence-based method using a 96-well fluorescence plate reader (Gemini-EM, 

Molecular Devices), with excitation and emission wavelengths at 497 and 520 nm, 

respectively. The fluorescence readings were plotted against log [drug], and the IC50 

values were obtained from curve fitting performed by nonlinear regression using 

Prism (Graph Pad) software.  
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Mouse Efficacy Against P. berghei.  

Compounds were formulated in a solution consisting of 70% Tween-80 (d = 1.08 

g/mL) and 30% ethanol (d = 0.81 g/mL), followed by a 10-fold dilution in water. On 

day 0, heparinized blood (containing 100 µL of 200 u/mL Heparin) was taken from a 

donor NMRI mouse with approximately 30% parasitemia. The blood was diluted in 

physiological saline to 10
8
 parasitized erythrocytes per mL. From this suspension 0.2 

mL was injected intravenously (i.v.) into experimental groups of 3 female NMRI 

mice, and a control group of 5 mice. Compounds were administered in a volume of 

10ml/kg either as single dose 24 hours after infection (day 1) either by oral gavage 

(p.o.) or subcutaneous injection, or as 4 consecutive daily p.o. doses 4, 24, 48 and 72 

hours after infection (days 0-3). On day 3 (with the single-dose regimen) or on day 4 

(with the quadruple-dose regimen), 1 µL tail blood was taken and dissolved in 1 mL 

PBS buffer. Parasitemia was determined with a FACScan (Becton Dickinson) by 

counting 100,000 RBCs. The difference between the mean value of the control group 

and those of the experimental groups was calculated and expressed as a percent 

relative to the control group (= activity). Animals receiving no compound would die 

typically 5-6 days post-infection and were therefore euthanized right after 

determination of parasitemia. The survival of the animals was monitored up to 30 

days. Mice surviving for 30 days were checked for parasitemia and subsequently 

euthanized. A compound was considered curative if the animal survived to 30 days 

post-infection with no detectable parasites by microscopy, with a detection limit of 1 

parasite in 10’000 erythrocytes (that is, 0.01%).  
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APPENDIX A 

 

Compound List 

 

There is a 30% uncertainty in the IC50 values that may result from differences in 

weighing and/or variations in determining IC50 as detailed in Chapter 7. 

 
a
ClogP values were calculated using Chemdraw Ultra 12.0. 

 
b
IC50 values were normalized to CQ values: D6: 6.9 nM, Dd2: 102 nM, 7G8: 106 nM. 

 
Compound Structure 

a
ClogP b

IC50(nM) 

CQ 

NCl

HN
N

 

5.1 
6.9 D6 

102 Dd2 
106 7G8 

 

PL154 

 

6.6 
0.3 D6 
0.5 Dd2 
0.1 7G8 

PL156 

 

6.0 
2.0 D6 
0.2 Dd2 
0.2 7G8 

PL157 

 

5.7 
1.3 D6 
0.3 Dd2 
0.3 7G8 

PL158 

 

6.9 
0.06 D6 
0.2 Dd2 
0.3 7G8 

PL159 

 

5.0 
4.1 D6 
4.1 Dd2 
2.8 7G8 

PL257 

 

5.8 
0.9 D6 
0.8 Dd2 
0.3 7G8 

   
 



 99 

Compound Structure 
a
ClogP b

IC50(nM) 

PL163 

 

6.2 
0.1 D6 
1.3 Dd2 
0.5 7G8 

PL112 

 

7.0 1.2 D6 
2.6 Dd2 

PL111 

 

7.0 0.9 D6 
1.8 Dd2 

PL110 

 

7.0 
0.7 D6 
0.6 Dd2 
0.2 7G8 

PL274 

 

 0.5 D6 
0.5 Dd2 

PL91 

 

5.2 
0.5 D6 
0.5 Dd2 
0.5 7G8 

 

 

4.1 
2.4 D6 
7.0 Dd2 
9.0 7G8 

PL227 

N NHN

NCl  

5.0 
0.5 D6 
1.0 Dd2 
1.2 7G8 

PL223 

 

7.3 
1.1 D6 
1.1 Dd2 
0.8 7G8 
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Compound Structure 
a
ClogP b

IC50(nM) 

PL106 

 

4.3 
0.7 D6 
1.1 Dd2 
0.9 7G8 

PL109 

 

4.3 
0.5 D6 
1.6 Dd2 
1.1 7G8 

PL261 

 

4.1 
1.4 D6 
2.3 Dd2 
2.3 7G8 

PL229 

 

4.8 
1.0 D6 
2.0 Dd2 
2.8 7G8 

PL228 

 

5.5 
0.2 D6 
0.4 Dd2 
0.5 7G8 

PL192 

 

 
0.6 D6 

0.02 Dd2 
0.2 7G8 

PL255 

 

 
4.9 D6 
9.8 Dd2 
25 7G8 

PL272 
 

 
>2500 D6 
>2500 Dd2 
>2500 7G8 

PL273 

 

 
>2500 D6 
>2500 Dd2 
>2500 7G8 

PL260 
 

 
>2500 D6 
>2500 Dd2 
>2500 7G8 
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APPENDIX B 

 

 

Example of Spectra of PL91 

 

 

All the proton and carbon spectra were run on a Bruker NMR at 400 MHz.  

 

 

The sample was dissolved in MeOD, and TMS was used as the spectral reference. 

 

 

Figure A.1 - Proton spectrum with integrals 

 

 

Figure A.2 - 
13

C spectrum  

 

 

Figure A.3 - COSY spectrum 

 

 

Figure A.4 - NOESY spectrum 

 

 

Figure A.5 - HMBC spectrum 
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Figure A.1 Proton Spectra of PL91 with integrals. The aliphatic portion of the 

spectrum is shown at the top and the aromatic portion is shown at the bottom. 

 

 

 



 103 

 

 
 

 

 
 

Figure A.2 
13

C spectrum. 
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Figure A.3 COSY spectrum showing direct proton-proton interactions. 
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Figure A.4 NOESY spectrum indicating though-space proton-proton 

interactions. 
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Figure A.5 HSQC spectrum indicating direct proton-carbon interactions. 
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