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CONDITIONAL TESTS ON BASINS OF ATTRACTION WITH FINITE FIELDS

IAN H DINWOODIE
PORTLAND STATE UNIVERSITY

ABSTRACT. An iterative method is given for computing the polynomialst tvenish on
the basin of attraction of a steady state in discrete polyabdyinamics with finite field
coefficients. The algorithm is applied to dynamics of a T cetivival network where it is
used to compare transition maps conditional on a basin otttina

1. INTRODUCTION

Complex biological networks have been modeled as discsetardical systems for the
purposes of understanding interactions and determingeggtstate solutions. Logical or
Boolean models, the most intuitive, have been succesdiiskyl in biology for decades
([2], [20], [13], [18], [20], [21], [22], [23]). Also, extemions to discrete states with more
than two levels have been of interest, as exemplified in [8][42], so that on-off states
may be refined to low-medium-high for example, as was useddmiscretization of con-
tinuous data in [17]. Such states may be thought of as “catadbor “ordinal” variables,
but also as elements of a finite field for purposes of comprtati

Many studies (see [1], [12], [16]) emphasize the importasfaketermining steady states
and their basins of attraction — the configurations that ealy lead to the steady state.
One reason is that some network configurations may exist imthematical model but
be biologically impossible or be characteristic of rare minteresting mutations. Further-
more, interesting basins of attraction may be a very smadtion of the entire state space,
as shown for example in [1] in a logical model Bfosophilagenes. Such thin sets in a
large state space can be hard to access and study.

This paper is about a method to do computations within thénbafsattraction for a
steady state. The method is based on representing the bagugh its ideal, a set of
multivariate polynomials that vanish on the basin. Thisrespntation can be very effi-
cient, a point which we discuss in the beginning of SectidouBjn some examples it may
be computationally hard and not be feasible. The resultpesented for polynomials
with coefficients in any finite field that serves to code theelgwof each network node.
The reason for using finite fields is that in certain cases yimawhics will be presented in
finite field operations (see [8]), and discrete dynamics @awtitten this way very gener-
ally to take advantage of computational efficiencies usinigefifields. The mathematical
foundations are more interesting with finite fields, becaheee are issues of existence of
roots of polynomials with coefficients in a field that is nogedraically closed that must
be addressed to get a valid algorithm. However, the methodals® work over fields of
characteristic O if desired where levels can be purely categ).
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2 IAN H DINWOODIE PORTLAND STATE UNIVERSITY

We illustrate on examples of six and eleven nodes in Sectidm8re we will compute
the conditional probability that two transition maps areritical, conditional on the basin
of attraction of a steady state.

2. ALGORITHM

Consider a state spa€®:= {s= (s1,...,%),Sj € K} = K9, ad-fold product of any
finite field K. The fieldK could be %, = {0,1} with operations addition modulo Xdr
in logical notation) and multiplication like real numbeemnd in logical notation). Other
standard examples afg = {0,1,..., p— 1} with operations modulo the prime number
Letk = |K|, the number of elements K.

LetF = (F,...,Fy) be a transition map or transition function or update funtba Q,
whereF; : Q — K andF : Q — Q. This map is deterministic, it is the simplified algebraic
or logical model of interactions from one time step to thetnéx practice, the transition
function will depend on what period of time (in seconds sayyesponds to one update
or application offF, as longer time intervals allow for lengthier feedback aegutatory
effects. The “early events= 1" choice as in [19] precludes longer feedback mechanisms
and gives greater determinism than the longer “late eveat2" option.

A steady stat@ = (p1,..., pd) € Q has the defining property thetp) = p. Define the
set of points that eventually lead to a steady spate

Bp 1= Uiy {s: FX(s) = p}

whereFK is thek-fold composition of the map.

It will be convenient to use twice as many indeterminateshasnumber of coordi-
natesd. Define the ring of polynomialR = K[xy,...,X4,Y1,...,Yd]. A way to studyB, is
through the set of polynomials that vanish on all pointBinthat is its ideal, and the algo-
rithm below essentially does the construction without nioadly solving for preimages
successively.

Define the univariate polynomial

(1) fk(x) = |—||<(X—S)~

The polynomialfkx will be important for getting a O-dimensional radical idead extend-
ing solutions after variable elimination. The followingezgrise shows thafk is separable
in common terminology.

Lemma2.1. With f; the formal derivative ofd, gcd fx, fi) =1

Proof. Suppose the gedis not 1. Then one of the linear terms- 9 in fx must divideg,
and also dividefy . Hencex —so must divide[]s ., (X—S) = fx — Tszg, Mizs(X—1). But
this is a contradiction, since— g is prime. O

Define ideals

(fk (), -+, Tk (Xa), fk (Y1), -- -, fk (Ya))
(FLly) = x1,...,Fa(y) — Xa)
(Fa(¥) = y1,...,Fa(X) = ya)
(
(R

Fyx

Y1—P1,..,Yd — pd>

Fry
yp
l1 = (Fy+lyp+1k) NK[x,...,Xd].
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Now define recursively a sequence of iddalss, 14,... by
(2) J:(Fyx+|i+|K)mK[yl7...,yd]
(©) |i+l:(ny+\]+|K)ﬂK[Xl,...,Xd], i=1,23,...

Next we state a counting lemma. The dim notation refers talimension of the quotient
ideal as a vector space ouer

Lemma 2.2. Consider the ideallf C R generated by k-1x, i =1,2,3,... Then [ is a
radical ideal, and .
dimR/IX =k9.|{se K9 : FZ~L(s) = p}|.

Proof. The ideallX is zero-dimensional, because it has at kst roots in the algebraic
closure ofK. Then by Seidenberg’s Lemma ([11], p.250), it is radicai¢sifor each index
j both fi (x;) and fk (y;) belong to the ideal, and Lemma 2.1 gives the required camditi
on fx. Now Theorem 3.7.9 of [11] shows that the number of solutimngolynomials in
IK is exactly dinR/IK. It remains to show that the solutions {6 correspond exactly to
points in{se K9 : FZ-1(s) = p} x K9. This we will prove by induction on

Fori = 1 we consider the ided}. Let (s,p’) € K24, for any pointp’ € K9, but with
F(s) = p. ThenFj(s) —y; =0,y; — p; =0, fk(sj) =0, f (p}) =0,j =1,...d, so all poly-
nomials inl; vanish at the paifs,p’) € K2 . For the converse, we apply the extension
theorem to the algebraic closukeof K. Supposdt,p’) € K% is a solution to all poly-
nomials inlX. Thent € K9 solves all equations ify. The extension theorem applied to
the algebraic closure d€ of K ([4], p. 25) says that can be matched with the rest of a
solutionp* € K9 such that the concatenatién p*) solves all equations iRy + lyp+ k.
The equations itk make the coordinates pf lie in K, thus the paift, p*) € K2, Finally,
the polynomialdy, forcep* = p, so in factFj(t) = p;,j = 1,...,d. Thus any paift,p’)
that solves all polynomials irf gives the point € K9 with F(t) = p.

To continue the induction, note that the univariate polyi@snthat generaté make
extended solutions iKY continue inK9. Thus the variable elimination does not add any
unwanted partial solutions, and points{ia: FZ~1(s) = p} each correspond " pairs
(s,p’) that solve the equations Iff.

O

Theorem 2.1 says to stop the iteration when Biftl; + I ) repeats in order to get the
polynomials that vanish on the basin of attractign

Theorem 2.1. LetIf =1lj+1x CRi=1,23,... There exists'i< o such thadim R/Ii'§ =
dimR/I&  ;, and for such an integer

Bp| = k9dimR/1¥.

+1

Proof. By Lemma 2.2, the sequende:= dimR/IX is nondecreasing and counts states
that hit the steady stafeat or before iterationi2- 1. Since the se;, is finite, the sequence
di cannot increase when> k2, soi* < k2.

Now supposel . 1 = d;. This implies thafs: F2~1(s) = p} = {s: FZ*+1(s) = p}, since
the first is always contained in the secondBjf# {s: F2~1(s) = p}, there would exist
a points* € B, with F2~1(s*) # p. Letk > 0 be the first integer such th&(s") €
{s:Fa-1(s) = p}. If k=1, thens" € {s: FZ+1(s) = p}\ {s: FZ~1(s) = p}, since
FZ-1(F(s")) = p, which contradictsl, 1 = di; if k> 1, thenFk2(s") € {s: F2*1(s) =
p}\ {s: F2~1(s) = p} also contradicting} 1 = di. ThusB, must be{s: FZ~1(s) = p}.

(I
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3. VOLUME COMPARISONS ONBASINS OFATTRACTION

Here we present an application of the method of Section 2datimparison of two
update functions. The goal is to compare two hypotheticplamations of the dynamics
of a network.

Recall that the use of ideals for studying O-dimensionaleti@s in statistics was de-
veloped by Riccomagno, Pistone, and Wynn [14]. Their mtitvawas to understand
statistical models defined on an experimental design (afspbiats), and the “design
ideal" was useful because different term orders gave diffemodels with identifiable pa-
rameters. For us the goal is nearly the reverse. We are gptiari‘design” points — the
variety that is the basin of attraction — first by computirgyideal. Then counting can
be done with dimensions of quotient spaces. Note that paink’ can be represented
as roots of a set of polynomials sometimes very efficientiyr éxample, the binary full
factorial design ird dimensionsD := {0,1}9 has ideallg; = (X3 — X1,...,X5 — X4) with
coefficient field= = {0, 1} (in which field "-" is the same as "+"). That is, ontypolyno-
mials are required to definé 2lesign points. With simple transition maps @n= D like
Fi(s) = s1,Fj(s) =sj—1,] = 2,...,d, there are two steady stateand1l, and their basins
of attraction can be described with one polynomial edxf), for the basin of attraction for
0 and(x; — 1) for 1, in addition to the abovd polynomials inlg;. If d, which represents
the number of nodes in the network, is on the order of 20, theretare 2 = 1048576
states but the basins of attraction are easily computed amdbe described with just 21
polynomials. Examples like this are why the algebraic repn¢ation can be efficient.
Other examples may be hard with algebra, as the worst casplexity of the Groebner
basis calculations necessary for the algebraic methodatel that some examples may
be impossible. Bayer and Mumford [2] discuss computatidsgles, with reference to
work on 0-dimensional ideals that bounds the worst possiée complexity in terms of
the degrees of the given polynomi&sand the number of coordinatds- the complexity
may grow as a polynomial iB9, and the degreB correspond roughly to the number of
“input" nodes that figure in the coordinate map so more higoblypled systems will give
harder calculations.

Let F andG be two possible transition functions for the same netwoteylmay come
from two different studies of the literature of interactiar from two machine learning
algorithms applied to the same or different data. Our maiestian is how to compare
them. In particular, if the data is observational data onaobical network, its states
will not be arbitrary but rather related to a natural or wijghe steady state. Thus a good
comparison should be conditional on the basin of attradBipwof a steady statp for an
accepted or null hypothesis model

4) q:=P({s:F(s) = G(s)} | Bp) = E(lr=c | Bp)

where the probability distributio® on statess in Q is uniform. This can be seen as an
expected utility for a conditional distribution. Other dlibutions may also be of interest.
This computation is related to the notion of volume test began in [9] and has modern
variations including the development in [6]. However, thigioal work of Hotelling was
based on a rigorous development of a likelihood ratio test irgression problem. The
work of Diaconis and Efron is not founded in the same way okelitiood ratio test, it is
rather a concert of methods related to overdispersion andittonal inference that leads
to a uniform distribution on constrained tables. Our indeére g comes from the focus of
biologists on steady states and their biological signifiean
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The definition of conditional probability gives

_ H{F =G}NBy|
Byl

Then by Theorem 2.1 this can be computed as

_ dimR/[lr-c + 1K]

®) dim R/IK

wherei* is an index after stopping the iteration, did s is the ideal given by
lr_G:= (F1(X) — G1(X), F2(X) — G2(X), ..., Fg(X) — Gg(X)) C R.

For comparing the maps on coordinate 1 alone, one can userjedlifferencdr, _g, =
(F1(X) — G1(x)) in place oflz_g. Many other exact conditional comparisons are possible
in the same framework, the key is the set of polynomiils

Example 1. Here we consider an example from [16]. The model is logiaalwe use
the field 7>. An updatex; or x, is written as a polynomial in the form + X2 + X - X2, and
x; and X is writtenx; - ;. The polynomial defined at (1) ik (X) = X2 +x. In the table
below is described a mdpond = 6 dimensions taken from Table 1 of [16].

node update indeterminate
S1P S1P* = NOT (Ceramide OR Apoptosis) X1
FLIP FLIP* = NOT (DISC OR Apoptosis) Xo
Fas Fas* = NOT (S1P OR Apoptosis) X3
Ceramide Ceramide* = Fas AND NOT (S1P OR Apoptosis) X4
DISC DISC* = (Ceramide OR (Fas AND NOT FLIP)) AND NOT Apoptos|s X5
Apoptosis Apoptosis* = DISC OR Apoptosis Xg

This dynamic model has two steady states, a disease steddpstl 1 000 0, and a
normal steady stajgy=00 0 0 0 1. Define a second m&uo be the same ds except on

the last coordinate, whef@s(x) = 1 consistent with the normal steady state. The algebraic
computations are easily done in Singular [5], using the iekion libraryel i m i b for

the intersection in steps (2) and (3) arti mfor computing the dimensions of the quotient
ideals. The results are

P(F =G | By,) = 24/59=41%
P(F =G |By,) =0/5=0%

with i* equal to 2 and 3 for the two basins.
Example 2. Consider an 11-node T cell signalling model relevant to teevork of
[17]. The signalling logical model described below has feig@ady states

0000000000O0
11110111111
11011111111
11111111111,

The calculations are terminated withat 4, 2, 3, and 2 iterations for the corresponding
basins of attraction, and each basin counts 512 states.
The dynamics for this model are defined precisely by
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node logical update polynomial

raf=x; PKA or PKC Xg + Xg + XgXog
mek= | raf or PKA or PKC| 1—(1—x1)(1—xg)(1—Xo)
plcg=xs plcg X3

PIP2=x4 plcg or PIP3 X3+ X5 + X3X5
PIP3=s PIP3 X5

erk=xg mek or PKA X2 + Xg + XoXg
aktsx; | PIP3 or erk or PKA| 1— (1—xg)(1—Xg)(1—Xs)
PKA=xg PKC X9

PKC=xg plcg or PIP2 X3+ X4 + X3Xa
P38=¢10 PKA or PKC Xg + Xg + XgXg
INK=x11 PKA or PKC Xg + Xg + XgXg

These maps are derived from the interaction diagram Figw£[24], where incoming
directed nodes are combined by logical disjunction, thitésr operation. Other dynam-
ics are also compatible with known interactions in this retnand the algebraic method
presented here applies to all.

The experimental paper [17] remarks on the influence of PKEKW, reporting an un-
expected influence based on Bayesian analysis of theiriexgetal data of flow cytometry
from 9 perturbations. We used tree classification [15] oir th&ta, concatenating the nine
experimental data files and discretizing to two states uaikgneans clustering method
on the logarithm of responses, then using one time lag fdofagression’ or more pre-
cisely autoclassification. The result in logical form for Rvas PKAV (plcg A IPKA),
in polynomial from writtenxs + X3 - (1 — xg). Substituting this map for coordinate 8 in the
above dynamical model, a conditional comparison on the $teady states shows a value
g =5242881048576= .5 on each basin of attraction, showing significant disagezgm
Also, random forests ([3]) were used to study variable ingooee for the tree classification
method, and the variable PKC was not important in the modgbfedicting PKA, in fact
appearing last in order of importance. Therefore we cane@ttise influence of PKC on
PKA in the data. However, the discretization step can be donsgny ways (see [7] for a
discussion of methods for biochemical networks). Othetm@s may be more appropri-
ate than kmeans clustering for this application, and colgld lead to somewhat different
conclusions.
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