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Abstract: A reversible gate maps each output vector into a unique input vector and vice versa. The importance of 
reversible logic lies in the technological necessity that most "near-future" and all long-term future technologies will have to 
use reversible gates in order to reduce power. In this paper, a new generalized k*k reversible gate family is proposed. A 
synthesis method for multi-output (factorized) ESOP using cascades of the new gate family is presented. For utilizing the 
benefit of product sharing among the ESOPs, two graph-based data structures - connectivity tree and implementation 
graph are used. Experimental results with some MCNC benchmark functions show that the number of gates in the multi­
output ESOP cascades is almost equal to the number of products in the multi-output ESOP. However, this cascaded 
realization of multi-output ESOP generates a large number of garbage outputs and requires a large number of input 
constants, which need to be reduced in the future research. This synthesis method is technology-independent and can be 
used in association with any known or future reversible technology. 

1. Introduction 

In general ESOP solution yields better result than SOP solution [I] and many useful methods have been developed for 
minimizing multi-output Boolean functions into ESOP form [2-4]. However, as the Moore's Law is approaching towards 
its bottom limit, synthesis of ESOPs using the future technologies become inevitable. 

Landauer [5] showed that a computational system built using traditional irreversible logic gates such as AND or 
multiplexer leads inevitably to energy dissipation, regardless of the technology used to realize the gates. Bennett [6] 
showed that for power not to be dissipated in an arbitrary circuit, it is necessary that the circuit be built from reversible 
gates. In principle, reversible logic gates dissipate arbitrary little heat and the use of reversible operations is likely to 
become more attractive in future technologies. It was shown that reversible gates can be built using (i) CMOS technology 
[7,8], (ii) optical technologies [9,10], (iii) quantum logic technologies [11,12], (iv) DNA technology [10], and (v) 
mechanical technology (nanotechnology) [13]. Therefore, a worthy approach might be to develop methods for synthesizing 
multi-output ESOPs using reversible gates. 

A reversible gate is a circuit that has the same number 0/inputs and outputs and has one-to-one mappings between input 
vectors and output vectors,' thus the input vector states can be always uniquely reconstructed/rom the output vector states. 
A reversible gate with k inputs and k outputs is called a k*k gate. For example, the well known 2*2 Feynman gate is 
described by the equations {P = A, Q = A E9 B} . It is a reversible gate as for each combination of outputs {P, Q} there is 

exactly one combination of inputs {A, B} . 

Reversible logic synthesis is different and difficult than the classical logic synthesis for the following reasons: 
(i) 	 All gates in a reversible circuit must be reversible. 
Oi) 	 In reversible circuits, fan-out of every signal, including primary inputs, is one. If two copies of a signal are 

required, a copying circuit is used. 
(iii) 	 All outputs of a reversible gate are not used in the circuit. The unused outputs are called garbage outputs. A good 

reversible logic synthesis method should minimize the number of garbage outputs. 
(iv) 	 In reversible logic synthesis, constants are applied to some of the inputs of a reversible gate. The total number of 

input constants are kept as minimum as possible. 
(v) 	 The graph of the reversible circuit must be a DAG (directed acyclic graph), which means that there must be no 

loops of gates or internal loops in a gate. 

There are some useful binary reversible gates. The only 1 *1 reversible gate is the inverter described by the equation 
{P A'}. The well-known Fey'nman gate is a 2*2 gate as mentioned earlier. There are some useful 3*3 reversible gates, 

they are Tolloli gate [14] described by the equations {P = A, Q= B, R AB E9 C}, Fredkin gate [15] described by the 

equations {P =A, Q=if A then C else B, R if A then B else C} , and Kerntopt gate [16-18] described by the equations 

{P = I E9 A EEl B E9 C E9 AB, Q= I E9 AB E9 B E9 C E9 BC, R = 1E9 A E9 B E9 AC}. k*k generalization of these gates are also 

reported in [19. 20]. 
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Systematic logic synthesis algorithms for reversible logic are still very immature, and some methods have been reported in 
the literature [18·25]. In [24], compositional synthesis methods for reversible logic have been presented. The simplest 
structure for composition is cascades. Reversible logic synthesis using cascades of gates is presented in [19, 20, 25]. The 
cascades have the same number of intermediate signals at every level. The reversible cascades are recently extensively 
studied, as many well-known standard logic synthesis methods can be adapted to reversible cascades. ESOP realization 
with reversible cascades is reported in [19, 20, 25]. In [19], a method for multi-output ESOP cascade is presented, but no 
systematic design method and experimental results were provided. In [20] and [25], a method for single·output ESOP 
cascade and a method for multi-output ESOP cascades are presented, respectively, where generalized Maitra terms are 
used to represent sets of ESOP products. Although the methods from [20,25] can be easily extended to multi-output 
functions, this extension reduces the search efficiency and only small functions could be synthesized. Therefore it is 
important to look for efficient methods to synthesize multi-output ESOP functions in reversible cascades. 

In this paper, a new k*k family of reversible gate is proposed and a synthesis method for multi-output (factorized) ESOP is 
presented using cascades of the proposed gate. In this method. two graph-based data structures connectivity tree and 
implementation graph are used. Experimental results with some MCNC benchmark functions show that the number of 
gates in most of the multi-output ESOP cascades is almost equal to the number of products in the multi-output ESOP. 
However, this cascaded realization of multi-output ESOP generates a large number of garbage outputs and requires a large 
number of input constants, which need to be reduced in the future research. This synthesis method is technology­
independent and can be used in association with any known or future reversible technology. 

2. New FamHy of k*k Reversible Gates 

A new generalized k*k reversible gate family is proposed in Figure 1 described by the equations 

{~ = AI' ... , PI;-2 =AI;_2' PI;_I =11;-2 At_I EB AI;' PI; = IL2 A;.1 EB A;} , where 11;-2 is an arbitrary function of AI' Az,"', AI;-2 

and ILz is the complement of the earlier function. From the truth table it can be shown that the gate is a reversible gate. 

The gate is a (k - 2)-through gate, which means that (k - 2) inputs are given at the output unaltered. Depending on 1,,-2 , 

many possible gates can be constructed. Input lines At_I and AI; are used as control inputs. Depending on the values of 

these input signals. the gate can be used in many different modes of operations in cascades as shown in Figure 2. 

3. Synthesis of Multi-Output (Factorized) ESOP 

3.1 Synthesis of MulU-Output ESOP 

For ESOP realization using cascades of new k*k gates, we assume that It-2 = Il At , that is. It-2 is a product of some 
3tEII,2 ..... t-2/ 

of the input variables AI' A2 ,···, At _2 • For realizing an ESOP, we will use the operating modes of Figure 2(a) and 2(e). 

In multi-output ESOP, some products may be common among more than one ESOP. Getting advantage of such a common 
product can not be handled in a method similar to that used in circuits with classical gates. The main constraint is that the 
fan-out of all signals in a reversible gate is one. Therefore, this problem has to be handled in a different way to achieve 
maximum benefit. 

In the synthesis method for multi-output ESOP using the cascades of new gate family, it is assumed that the multi-output 
ESOP is already minimized and available as ESOP. The method is illustrated below using the arbitrary multi-output ESOP: 
FI = AB' EB AB'C ,F2 AC EB A'B'C, Fl = AB' EB AB'C EB BC' I F4 =AC , and Fs = AB' EB AC EB BC' . 

Step 1: Prepare Product Sharing Information. The product sharing information among the different ESOPs is 
summarized in Table 1. The table shows the occurrence of all product terms in different ESOPs and the total number of 
occurrences of each product term. 

Step 2: Prepare Connectivity Tree. Depending on the information of the product sharing table, the connectivity tree (or 
forest of trees) for the product terms is constructed as shown in Figure 3(a). In the connectivity tree each node represents a 
product term. The product term(s) with the highest number of occurrences is placed at the top level. Then the product terms 
with the decreasing order occurrence numbers are placed below. The nodes are connected by directed edges so that 
EXORing the products in a path forms a function. For example, AB' EB AB'C EB BC' forms the function F). A node must 

not have more than one inward edge and if needed a separate node is created for the product term. For example, two nodes 
are created for each of the product terms BC' and AC. Though the fan-out of a signal is limited to one. multiple outward 
edge from a node will be allowed and this will be handled in an efficient way. 



Step 3: Prepare Implementation Graph. From the connectivity tree, the implementation graph is created as shown in 
Figure 3(b). In this graph a node represents a new k*k gate. The left inward edge represents AI_I input line and the right 

inward edge represents AI input line. The left outward edge represents PI-I output line and the right outward edge 

represents PI output line. The product inside the node represents the function 11-2 . In all nodes of the implementation 

graph, the At_l 
input is set to 0 and the At input is used as the signal propagation path. At the top node A1 input is also set 

to 0 to realize the first product term. In the connectivity tree, some nodes have mUltiple outward edges requiring multiple 
fan-out. It is clear that the left outward edge of an implementation node copies the input value at A1 and thus provides the 

fan-out of that value. This phenomenon is used to manage multiple fan-out requirement of the connectivity tree. 

Step 4: Prepare Multi-Output ESOP Cascade. The implementation graph is realized by cascades of new k*k gates as 
shown in Figure 3( c). The Os at the PH output of the first and the sixth gates are connected to the AI_I inputs of the next 

gate to reduce the input constants as well as garbage outputs. 

In this particular example, only 2 garbage outputs are generated (passing through primary input signals along the cascade is 
not counted as garbage output) and 7 input constants are needed. In general. the number of input constants is exactly equal 
to the number of gates in the cascade. However, the number of gates and the number of garbage outputs depend on the 
product sharing among the ESOPs. For a single-output ESOP realization, the number of gates is equal to the number of 
product terms in minimized ESOP. The number of garbage outputs is one less than the number of product terms and the 
number of input constants is exactly equal to the number of gates in the cascade. 

3.2 Synthesis of Factorized ESOP 

For factorized ESOP realization using cascades of new k*k gates, we assume that 11-2 may be either 1t - 2 = IT AI or 
3/<'0.2.···.1-21 

11-2 L$AI , that is 11-2 may be a product or EXOR-sum of some of the input variables AI' A2,···. AH . For realizing 
3IEII.2 ... ·,.I:-21 

factorized ESOP, we will use the operating modes of Figures 2(a), 2(e), and 2(g). 

Synthesis of factorized ESOP is illustrated using the symmetric function 

E;;:: L$ XIX, function can ,be factorized as 
1:;ISJS4 

E; (XI $X2 )(Xl $X4 )$X1X2 $X)X4' The implementation graph is shown in Figure 4(a). The implementation graph is 

realized by cascades of new k*k gates as shown in Figure 4(b). In this implementation 4 gates are needed. It generates 3 
garbage outputs and needs 4 input constants. In this method, it is assumed that the ESOP is already factorized. 

Using the method ofSection 3.1, multi-output factorized ESOP can be realized. 

4. Experimental Results 

A program for synthesizing multi-output ESOP cascades has been developed ip C language. In this program, it is assumed 
that the multi-output ESOP is already minimized and available as ESOP. For this purpose we minimized 38 MCNC 
benchmark functions into ESOP form using EXORCISM4 program [4]. Multi-output ESOP cascades are then synthesized 
using the developed program. The experimental results are given in Table 2. In the table, column 5 gives the number of 
gates in the multi-output ESOP cascade. Column 6 gives the number of garbage outputs generated in the cascade and 
column 7 gives the input constants (Os) needed for the cascade. In the classical multi-output ESOP realization more than 
one fan-out of a gate is permissible, but in the reversible circuit fan-out of all signals are restricted to only one. For this 
reason7 in the connectivity tree, the inward edge of a node is restricted to one and if needed additional nodes are created for 
a product term (see Figure 3(a)). Each of these nodes represents a gate in the resultant cascade. Therefore, it is clear that 
the number of gates in the cascade will be at least equal to the number of product terms in the multi-output ESOP and in 
many cases this number will be grater than the number of product terms. In the table, column 8 gives the ratio of number of 
gates in the cascade to number of products in the multi-output ESOP. This value can be interpreted as the average number 
of nodes created for a product term. For example, in 5xp I function on average 1.667 nodes are created for a product term. 
In the multi-output ESOP cascade, some but not all gates produce garbage outputs. The last column of the table gives the 
ratio ,of number of garbage outputs to number of gates in the cascade. This value can be interpreted as the average number 
of garbage outputs created per gate. For example, in 5xp 1 function on average a gate produces 0.818 garbage output. 
Alternatively, it can be said that 81.8% gates produce garbage output. 



For four single-output ESOP functions (9sym, 9symml, t481, and xor5), the number of gates in the cascade is exactly equal 
to the number of products in the ESOP. For five multi-output ESOP functions (adr2, c8, conI. frgl, and unreg), the number 
of gates in the cascade is also exactly equal to the number of products in the SOP. For 20 multi-output ESOP functions, the 
number of gates in the cascade is almost equal to the number of products in the ESOP. These experimental results show 
that the product sharing technique of the developed algorithm is so efficient that the number of reversible gates (with 
single fan-out capability) in the resultant multi-output ESOP cascade is almost equal to the number of products 
(classical AND gates with multiple fan-out capability) in the multi-output ESOP. For the remaining nine functions. the 
number of gates in the cascade is more than double or higher times than the number of products in the ESOP. The nature of 
product sharing among the outputs of these functions is such that in the connectivity tree many nodes are needed to be 
created for a product term. 

For single-output ESOP, the number of garbage outputs (passing-through primary input signals along the cascade are not 
counted as garbage outputs) generated in the cascade is one less than the number of reversible gates in the cascade and this 
is reflected in the result of the single-output ESOP functions (9sym, 9symml, t481, and xor5). For multi-output ESOP, the 
number of garbage outputs generated in the cascades depends on the nature of product sharing among the outputs. The 
experimental results show that this value is relatively high. However, the number of garbage signals can be minimized by 
the use oflocal mirror and spy circuits [15,23]. This would be a topic for further research. 

In the new k*k gates, constant Os are applied to the control inputs for selecting the mode of operation of the gate in the 
cascade (see Figure 2). For both single-output and multi-output ESOPs, the number of input constants is exactly equal to 
the number of reversible gates in the cascade. This number is a bit large and need to be minimized in the future research. 

5. Conclusion 

In this paper, we proposed a new k*k reversible gate family and associated synthesis method for mUlti-output 
(factorized) ESOP cascades of new gates. For utilizing the benefit of product sharing among the outputs of the multi­
output ESOPs, two graph-based data structures - connectivity tree and implementation graph are used. 

We wrote a C program to synthesize multi-output ESOP cascades and experiment was done with 38 MCNC benchmark 
functions. The experimental results show that the product sharing technique of the developed algorithm is so efficient 
that the number ofreversible gates (with single fan-out capability) in the resultant multi-output ESOP cascade is almost 
equal to the number ofproducts (classical AND gates with multiple fan-out capability) in the multi-olltput ESOP. 

All the synthesis methods presented in this paper are technology independent and can be used in association with any 
known or future reversible technology. 

The future research includes: (i) investigating the possibility of reducing the number of garbage outputs in the multi-output 
ESOP cascades by the use of local mirror and spy circuits or other techniques, (ii) investigating the way of reducing the 
number of input constants in the multi-output ESOP cascades, (iii) writing C program to synthesize multi-output factorized 
ESOP cascades, and (iv) comparfng various ESOP-based cascades with respect not only to the gate number but also total 
number of inputs to gates and gate complexity in quantum realization. ' 
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Tables and Figures 

. fiTablIProduct s hanng In ormatIOn In mu tl-output ESOPe • 
Function F, F2 I F) F4 Fs Noof 

OccurrenceProduct 
AB' X X X 3 
AB'C X X 2 
AC X X X 3 
BC' ~ X 2 

A'BIC X 1 



Table 2. Experimental results of multi-output ESOP cascades of new reversible gates for some MCNC benchmark 
functions 

MCNC Benchmark Functions Multi-output ESOP Cascades 
f expressed as ESOP 

Function No. of No. of No. of No. of No. of No. of No. of Gates in No. of Garbage 
Name Inputs Outputs Products Gates Garbage Input Cascade: No. of Output: No. of 

Outputs • Constants Products in ESOP Gates 
5xp1 7 10 33 55 45 55 1.667 0.818 
9sym 9 1 ~ 52 51 52 1.000 0.981 

9symml 9 1 52 52 51 52 1.000 0.981 
adr2 4 3 7 7 4 7 1.000 0.571 
alu2 10 6 72 79 73 79 1.097 0.924M14 8 440 473 465 473 1.075 0.983 
b12 15 9 28 35 26 35 1.250 0.743 
bw 5 28 22 202 174 202 9.182 0.861 
c8 28 18 50 50 32 50 1.000 0.640 
cc 21 20 36 39 19 39 1.083 0.487 

c1if 9 5 66 101 96 101 1.530 0.950 

~onl 7 2 9 9 7 9 1.000 0.778 
cu -14 11 16 18 7 18 1.125 0.389 

duke2 22 29 79 280 251 280 3.544 0.896 
I ex5 63 72 571 508 571 7.931 0.890 
; f51m 8 8 31 46 46 1.484 0.826 

I frgl 28 3 115 115 112 115 1.000 0.974 
i1 25 16 21 24 8 24 1.143 0.333 

! Inc 7 9 28 70 61 70 2.500 0.871 

• 

misexl 8 7 12 35 28 35 2.917 0.800 

I misex2 25 18 27 36 18 36 1.333 0.500 
misex3c 14 14 231 315 301 315 1.364 0.956 

I pdc 16 40 252 467 427 467 1.853 0.914 
• rd53 5 3 15 18 15 18 1.200 0.833 

I rd73 7 3 39 46 43 46 1.179 0.935 
· rd84 8 4 62 68 64 68 1.097 0.94] 

I sao2 10 4 28 46 42 46 1.643 0.913 

· 

seq 41 35 249 1742 1707 1742 6.996 0.980 
spla 16 46 270 765 719 765 2.833 0.940 

squar5 5 8 20 27 19 27 1.350 0.704 
t481 16 1 13 13 12 13 1.000 0.923 

table3 14 14 167 768 754 768 4.599 0.982 
tab1e5 17 15 156 668 653 668 4.282 0.978 
temp 4 3 7 8 5 8 1.143 0.625 
unreg 36 16 48 48 32 48 1.000 0.667 
vg2 25 8 184 200 192 200 1.087 0.960 
xor5 5 1 5 5 4 5 1.000 0.800 

Z5xpl 7 10 33 55 45 55 1.667 0.818 
Passmg-through prImary mput Signals along the cascade are not counted as garbage output. 

AI--.------~ = AI 

A ~ = A] 

Figure 1. A new generalized k*k reversible gate family. 
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1 

o 1._20EB 0 = 0 o 1._20$ 1= 1 

o 1:_2 0'EB 0' = 1.-2 IL10'$I' =ILz 
(a) Input signals 00 (b) Input signals 01 

IH 1$1=IL2 

IL2 l'$l'=0o 
(C) Input signals 10 (d) Input signals 11 

o 11_20 $ G =G 1 II:_z1 $ G = h-z EB G 


G ILz 0' EB G' = IH $ G G 1:_21' EB G' ;= G' 


(e) Input signals OG (f) Input signals IG 

(g) Input signals GO (h) Input signals Gl 

Figure 2. Different modes of operation of the new k*k generalized reversible gate family in cascades. 
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(a) Connectivity tree. 0 
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(b) Implementation graph. 

A----~~--_+~~--~-+---4--+_--_+--~--~~H 

B 
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Garbage outputs = 2 

Input constants = 7 


(c) Cascaded realization 

Figure 3. Synthesis ofmulti~output ESOP. 
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Figure 4. Synthesis of single-output factorized ESOP. 
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