
Portland State University
PDXScholar
Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

1998

Exact Graph Coloring for Functional Decomposition: Do We
Need It?
Marek Perkowski
Portland State University, marek.perkowski@pdx.edu

Rahul Malvi
Portland State University

Lech Jozwiak
Eindhoven University of Technology

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/ece_fac

Part of the Electrical and Computer Engineering Commons

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering
Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Perkowski, Marek; Malvi, Rahul; and Jozwiak, Lech, "Exact Graph Coloring for Functional Decomposition: Do We Need It?" (1998).
Electrical and Computer Engineering Faculty Publications and Presentations. Paper 227.
http://pdxscholar.library.pdx.edu/ece_fac/227

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/37771444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/ece_fac/227
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac/227?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


EXACT GRAPH COLORING FOR FUNCTIONAL

DECOMPOSITION� DO WE NEED IT�

Rahul Malvi� Marek Perkowski� Lech Jozwiak y

Portland State Univ�� Dept� Electr� and Comp� Engng��

Portland� OR� ��������	
� USA� mperkows�ee�pdx�edu

y Faculty of Electronics Engineering� Eindhoven Univ� of Technology�

P�O�Box 	
�� 	��� MB Eindhoven� The Netherlands� lech�eb�ele�tue�nl

Abstract� Finding column multiplicity index is one of important component processes in
functional decomposition of discrete functions for circuit design and especially Data Mining appli�
cations� How important it is to solve this problem exactly from the point of view of the minimum
complexity of decomposition� and related to it error in Machine Learning type of applications� In
order to investigate this problem we wrote two graph coloring programs� exact program EXOC
and approximate program DOM �DOM can give provably exact results on some types of graphs	�
These programs were next incorporated into the multi�valued decomposer of functions and rela�
tionsMVGUD� Extensive testing of MVGUD with these programs has been performed on various
kinds of data� Based on these tests we demonstrated that exact graph coloring is not necessary
for high�quality functional decomposers� especially in Data Mining applications� giving thus an�
other argument that e
cient and e�ective Machine Learning approach based on decomposition is
possible�

�� INTRODUCTION

Functional Decomposition is used in many applications including FPGA mapping� custom VLSI design�
regular arrays� Machine Learning� Data Mining and Knowledge Discovery in Data Bases �KDD�� Unfortunately�
many of the existing programs based on decomposition are slow� or� if they use heuristics for the speed of run� they
�nd solutions that are much inferior to those found by more optimized decomposers� The question thus arises�
�how to create a decomposer that will be both e�ective and e�cient��� To answer this question we investigated
separately several issues related to this topic� � partitioning of variables to bound� free and shared sets 	
�� �
creation of combined strategies that select point�oriented decomposition methods such as disjoint�nondisjoint�
Ashenhurs�Curtis� serial�parallel� and other types of decompositions for any sub�function 	
�� � representations of
data 	������� and in this paper we will concentrate only on the column minimization problem for a given bound
set of input variables�

This problem a�ects considerably the overall success of any functional decomposer� because a high percentage
of the decomposer�s run time is spent on it 	
�������� We need an algorithm that is both fast and produces
decomposed networks that have as small cost as possible� In case of circuits� the network cost relates to circuit�s
realization cost� area� or number of blocks� in Machine Learning and Data Minining applications the smaller cost
directly corresponds to the reduced decision error �Occam Razor � 	����� so in both cases it is very important to
obtain simple solution networks�

Here we want to �nd out what is the role of Column Minimization in the overall success of a decomposer�
especially� in terms of the calculation time� the memory usage� and the quality of results� We want to investigate
how the answers to these questions depend on the type of data� for instance on the percent of don�t cares� or
on the density of graphs in question� Presently the decomposer introduced by Pedram et al 	�� achieves the
best results in terms of data size� this program uses a set covering approach and does not assume many don�t
cares in functions� if any� This program is thus not useful for Machine Learning applications because it is not
intended for types of functions with very many don�t cares and other special characteristics of ML� KDD or
Pattern Recognition benchmark sets� Several decomposers developed in the collaboration of Portland State
University� Eindhoven University of Technology� and Technical University of Warsaw 	��������� achieve perhaps
the best overall e�ciency and e�cacy on Machine Learning benchmarks� cube speci�ed incomplete binary MCNC
benchmarks and other binary functions�

There are basically four methods to �nd the Column Multiplicity in Functional Decomposition� Set Covering�



Graph Coloring� Clique Partitioning and Clique Covering� A relation between the columns of the Karnaugh map
of a function� for a given bound and free sets can be represented as a CompatibilityGraph or as an Incompatibility
Graph� If represented as a Compatibility Graph� nodes which are connected together are compatible nodes
and can be colored with the same color� This is called Clique Covering� If the graph is represented as an
Incompatibility Graph then nodes which do not have a common edge can be colored with the same color� This
is called Graph Coloring� It was shown to be e�cient� especially for functions with high percent of don�t cares
�����	
�		�

Although few authors studied graph coloring in Functional Decomposition� nobody� to our knowledge� has
compared these methods� or evaluated the importance of �nding minimal solutions to the problem of Column
Multiplicity in the AshenhurstCurtis Decomposition� In this paper we will compare two new graph coloring
algorithms� exact �EXOC� and heuristic �DOM�� DOM uses dominations to color the graph and is based on
the approach that was �rst presented in ������ The idea for the Exact Graph Coloring Algorithm�EXOC� is a
modi�cation of the one from ��� by more e�cient implementation of backtracking�
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Fig� 	� �a� � �f� Example showing how DOM colors a non cyclic graph� �g� � �k� Example showing how DOM colors a
cyclic graph�

�� DOM � NEW HEURISTIC GRAPH COLORING PROGRAM�

A node �A� in an incompatibility graph dominates some other node �B� in the graph if the following is
satis�ed� �� Node �A� and node �B� have no common edge� �� Node �A� has edges with all the nodes that node
�B� has edges with� �� Node �A� has at least one more edge than node �B�� In Fig� 	a� node �	� dominates
node ��� since it satis�es the conditions for domination� When two nodes have a domination then both the nodes
can be colored with the same color� If conditions 	� and �� for dominations are satis�ed and node �A� has the
same number of edges as node �B�� then it is called a pseudo domination� In Fig� 	i nodes � and � have a pseudo
domination�

Theorem �� If any node �A� in a graph dominates any other node �B� in the graph� node �B� can be removed
from the graph� and in a pseudo domination any one of the nodes �A� or �B� can be removed�

A Complete graph is one in which all pairs of vertices are connected� In a complete graph� total edges �
nodes��nodes���

� � where total edges is the sum of all the edges in the graph� In a Complete Graph no dominations
or pseudo dominations can be found� In a Complete Graph all the nodes must have a unique color� A Complete
Graph is a special case of a Cyclic Graph� A Cyclic graph is a graph that is not complete and has no dominated
or pseudo�dominated node�s�� All graphs from Fig� 	a�d are non�cyclic� The graph from Fig� 	g is cyclic�

Theorem �� If a graph is not cyclic and can be reduced to a complete graph by successive removing of all its
dominated and pseudodominated nodes� then Algorithm DOM �nds the coloring with the minimum number of
colors �the exact coloring��



Theorem �� The graph created for SOP minimization of a non�cyclic single�output Boolean function using the
method from ��������	 is not cyclic


Thus� our approach� for either the SOP Minimization Problem� or the Column Minimization Problem in
Functional Decomposition� is the following� For and arbitrary graph� we assume that the graph is not cyclic and
we use our approximate algorithm
 If it �nds a solution without generating a cyclic graph� we know that this
solution is exact
 If a cyclic graph is generated� we have no proof of optimality� but still a good coloring is found
if only few cyclic graphs were consecutively created in the process
 Thus� if the characteristics of the graphs of
some class is that a small number of cyclic graphs are created by DOM� this class is easily colorable by DOM
 We
are interested in classes of problems that are easily colorable by DOM
 It can be shown that graphs created for
two�level Sum�of�Products minimization are easily colorable� because DOM is equivalent to the algorithm based
on �nding essential primes and removing them� next �nding secondary essential primes and removing them� and
so on� until a cyclic remainder function is created ��	
 On the other hand it was shown experimentally that most
of SOP benchmarks are non�cyclic
 In this paper we will show that a similar result is true for the functional
decomposition graphs


An Example showing how DOM colors a non cyclic graph� Here we illustrate use of the concept of
dominations to color an incompatibility graph

���� Fig
 �a� shows an Incompatibility Graph
 As can be seen Node � is dominated by Node �� so in Fig
 �b�
Node � is removed and it is remembered that it was dominated by Node �

���� Next� in Fig
 �b� Node � is removed as it is dominated by Node �� and it is remembered that Node �
dominates Node �

���� Then in Fig
 �c�� it can be seen that Node � is dominated by both nodes � and �� the choice made is the
�rst node which is Node �� and Node � is removed
 It is now remembered that Node � now dominates Node �
and Node �

���� After removing Node � the resulting graph shown in Fig
 �d� is a complete graph� so go to Step �
 In
a complete graph each node is connected to all the other nodes� each node in the complete graph must have a
unique color

�	�� In Fig
 �e�� each node in the Complete Graph is given a unique color

�
�� Finally in the last step in Fig
 �f� the dominated nodes are colored with the same color as the dominating
node
 The color assignments are� Color A f�� �� �g� Color B f�g� Color C f�� �g� Color D f� g
 Thus in this way
the graph is colored
 Fig
 �e� shows the completely colored graph
 Four colors were used which is the minimum
required for this graph
 �end�
 As we see� in this example an exact solution was found without backtracking

This corresponds to the type of graphs that are created for non�cyclic Boolean functions in SOP minimization
��	


An Example showing how DOM colors a cyclic Graph
 ���� An incompatibility graph is shown in
Fig
 �g�� as can be seen this graph has cycles
 ���� As the �rst step the graph is checked for dominations� but
no dominations are found in this graph� so the �rst node is removed from the graph� which is node �� and it
is assigned a minimum possible color which in this case is color A
 ���� This results in a new graph� shown in
Fig
 �h�
 In this graph node � dominates node � and node �
 So node � and node � are removed from the graph�
and it is remembered that node � dominates node � and node �
 ���� On removing node � and node �� in the
resulting graph shown in Fig
 �i� nodes � and � have a pseudo domination so the �rst one of these nodes which
is node � is removed� and then node �� �� and � form a complete graph
 The complete graph is shown in Fig
 �j�

�	�� Now nodes are colored with the minimum possible color� and each dominated node is given the same color
as the node which dominated it
 The coloring is shown in Fig
 �k�
 Three colors were used to color the graph�
which is the minimum required for this graph
 The color assignments are� Color A f�� �� �g� Color B f�g� Color
C f�� �� �g
 �end�
 As we see� in this example no proof of exact solution can be given but only few consecutive
graphs here� only the initial graph� were cyclic� so the solution is of a good quality
 Such �cyclic graphs� are
created for cyclic Boolean functions in SOP minimization ��	� and this explains where is their name coming from


�� EXOC � A NEW APPROACH TO EXACT GRAPH COLORING

Since Graph Coloring is an NP Complete problem� in general� nearly all possible solutions have to be evaluated
to �nd the exact minimum solution
 The algorithm used here for the exact Graph Coloring is a greedy algorithm
with backtracking and cut�o�
 EXOC uses a tree search in order to color the graph� and colors successively nodes
with an actually available color of a smallest number� remembering for each node all the remaining possibilities
of coloring it is assumed that initially the set of colors has as many elements as the set of nodes�
 The chromatic
number of a graph is de�ned as the number of colors in the exact solution
 EXOC stands for Exact One Child�
it uses a �depth��rst with one child� strategy
 In this strategy at every stage only one branch of the tree is
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Comparison of EXOC� DOM and CLIP on MCNC Benchmarks

Benchmark in out cubes option DFC nu of Av T�s� NP TC AC
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Table �

A Comparison of results obtained by running MVGUD with � variables in the Bound Set on MCNC Benchmarks



Comparison of EXOC� DOM and CLIP on Machine Learning Benchmarks

Function Algorithm

CLIP EXOC DOM

name cubes DFC nu of T�s� DFC nu of T�s� DFC nu of T�s�
blocks blocks blocks

add� �� �� � 	�
� �� � ��
� �� � 	�
�
add� �� �� � 	�
 �� � 	�
	 �� � 	�
	
add� �� 	� � �
� 	� � �
	 	� � �
�
and or chain� �� �� � 	� �� � 		
 �� � 	�
�
ch	�f� �� �� � ��
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� �� � 	�
�
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� �� � 	�
�
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� �� � ��
	 �� � ��
	
greater than �� �� � 	�
� �� � 	�
	 �� � 	�
�
interval	 �� �� � ��
� �� � ��
� �� � �	
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� �� � 	�
�
kdd	 �� �� � �
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� 	� � 
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kdd� �� �� � 	�
 �� � 	�
� �� � 	�
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� 	� � �
� 	� � �

kdd� �� � 	 �
� � 	 �
 � 	 �

kdd� �� �� � 	�
� �� � 	�
� �� � 	�
�
kdd� �� 	� � �
� 	� � �
� 	� � 
�
kdd� �� �� � 	�
� �� � 	�
� �� � 	�
�
kdd� �� 	� � �
	 	� � �
� 	� � �
�
kdd �� �� � 		
� �� � 		
� �� � 	�

majority gate �� �� � 	�
� �� � 	�
� �� � 	�
�
modulus� �� �� � 	� �� � 	�
� �� � 	�
�
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� 	� � �
� 	� � 
monkish� �� �� � 	�
 �� � 	�
� �� � 	�
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�
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� �� � 	�
�
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� �� � 	�
�
pal �� �� � 	�
 �� � 	�
� �� � 	�
�
pal dbl output �� � � ��
� � � �
	 � � ��
parity �� �� � 		 �� � 		
� �� � 	�
�
primes� �� �� � ��
� �� � ��
� �� � ��
�
remainder� �� �� � ��
 �� � �
� �� � ��
	
rnd	 �� 	�� � ��
� 	�� � 		� 	�� � ��
�
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� �� � ��
	

Table �
A Comparison of results obtained by running MVGUD with � variables in the Bound Set on � variable Machine Learning

Benchmarks

generated� and after �nding a solution in a new branch� the solution that is better than a previous one� EXOC

has a new� improved evaluation of the chromatic number� Thus� whenever a new solution is found� any color

greater than the best solution is removed from the possible color choices of the other nodes� This best solution

is used as the cut�o� criterium� In any branch if the number of colors used is greater than or equal to the best

solution� then EXOC does not proceed along that path and cuts it o��

The di�erence between the �depth��rst with one child	 and a �depth��rst search	 is that in a �depth��rst

search	 all the branches of the tree are created� all these branches are stored in memory� and each branch is

followed until a leaf node of the tree is reached� But in the �depth��rst with one child	 whenever a new branch

of the tree is created� only if its solution is better than the previous solution� is the new branch kept in memory

and the old branch deleted from it� Also in the �depth��rst with one child	 strategy� because there is a cut�o��

EXOC does not go down to the leaf nodes of each branch� EXOC was written in ANSI C on a SUN SPARC

workstation�

Theorem �� The number of colors generated for an incompatibility graph by EXOC will always be equal to the

chromatic number of the graph�

An Example showing how EXOC colors a graph� Fig� � is an example which shows how EXOC colors

a graph� In this example the incompatibility graph being colored is a non cyclic graph� but the algorithm for

EXOC does not consider if the graph is cyclic or not� it uses the same method to color a graph independent of

whether the graph is cyclic or not� Since EXOC deals with stack nodes and with nodes of the graph� in each

step given below SNODE refers to a node of the STACK and GNODE refers to a node of the incompatibility

graph� The search process is executed as follows� ��� Select GNODE �A	and �nd the possible colors for it and

push the SNODE labeled SNODE 
 in Fig� � on to the stack� Selected color for GNODE �A	 is 
� ��� Now
select a new GNODE which is node �B	� GNODE �B	 can be given the possible colors �� �� �� ��� Store this

information on SNODE labeled SNODE � in Fig� �� Selected color is �� ��� Now GNODE �C	 becomes the

selected node and it can obtain one of colors f������g� Selected color is �� ��� In this way� the �rst branch of the



tree from Fig� � is created� After �nding the �rst solution� color � � fAg� color � � fB�D�Eg� color 	 � fCg� we
know that three colors are enough� and these colors are �� � and 	� ��� All non
used colors are then removed from
sets POSS of all previous nodes� Now backtrack� and at each stage check the POSS colors of the node� If there
is a POSS color then go along the new path� else ignore and continue backtracking� ��� On reaching SNODE �
there is a POSS color � 	� Select this color for GNODE B� and go to SNODE �� ��� IN SNODE �� GNODE

�C is the selected node� and it has only one possible color� which is color �� Select color �� for GNODE �C
thus reaching SNODE �� ��� In SNODE �� CF � 	� which is the same as the best solution� which indicates
that any solution along this path will at most result in a solution equal to the best solution� but not better� So
cuto� and backtrack� ��� Ultimately on reaching SNODE �� select color � for GNODE �A and go along that
path� On reaching SNODE �� the CF is 	� so do not proceed any more along this path� and cut o� here and
backtrack� ��	� Fig� � shows all the paths of the tree that are traversed� The SNODEs are labeled in the order
in which they are visited� ���� If at any SNODE a solution is obtained that is better than the one obtained at
SNODE �� store the new solution and discard the old solution� Continue till all the possible paths of the tree
have been traversed� The solution saved is the minimum coloring of the graph�

Comparison of di
erent Strategies of �nding the ColumnMultiplicity on Machine Learning Bench�
marks�

To see if the same results were obtained on Machine Learning Benchmarks� MVGUD was also tested on
Machine Learning Benchmarks� These Benchmarks were obtained from the Wright Labs Database� These are
completely speci�ed functions with � and �� variables in the input and one output� Since we were interested in
don�t
cares in the function the program FLASH from Wright Labs was used to convert the above functions into
functions with ��� of don�t cares� The following Tables illustrate the results obtained� MVGUD was run in the
same way as before� with �� � and � variables in the Bound Set�

Table � shows the results of running MVGUD on Machine Learning Benchmarks�MLB�� These MLB have �
variables in the Bound Set� In these tables they have ��� of don�t cares �cubes � 	�� � ����� Table � is a result
of running MVGUD with � variables in the Bound Set�

On examining these Tables it was seen that here too EXOC fails to improve the quality of Decomposition� The
results with all three algorithms prove to be nearly the same� with slight di�erences in some cases� Testing was
not done on Bound Sets greater than � because for Bound Sets greater than �� EXOC is too slow to be practical�
Testing was also done to compare the total count of colors generated during the process of decomposition� but
here too it was found that the number of times the algorithms for calculating the column multiplicity is called
varies for the same function� Hence these Tables are not included here�

�� COMPARISON OF EXOC AND DOM ON COLUMN MULTIPLICITY

In this section� we will evaluate the importance of an Exact Graph Coloring in Curtis Decompositions� Our
aim is to investigate if an Exact Graph Coloring is required in Functional Decomposition and if it leads to
better results on the graphs that are created from practical function benchmarks� Or� is DOM su�cient� We
used the Decomposer Multi
Valued General Universal DecomposerMVGUD written at Portland State University
for the testing purpose� We instantiated three algorithms into MVGUD� a Greedy Clique Partitioning �CLIP��
the Dominance Graph Coloring �DOM� and the Exact Graph Coloring�EXOC�� The decomposer was run with
di�erent numbers of variables in the Bound Set on two kinds of benchmarks� MCNC benchmarks for circuits
�presented below�� and Machine Learning Benchmarks �from the Wright Labs Database� for data from Machine
Learning� Pattern Recognition and Knowledge Discovery in Data Bases�

A comparison of DOM and EXOC was �rst done on randomly generated graphs� for varying number of nodes
and varying percentage of edges �not shown because lack of space�� Conclusions were reached about how well
DOM and EXOC will perform on the di�erent kinds of graphs� Tests were done to characterize the kind of
graphs that are generated in decomposition with regard to the number of nodes in the graph and the percentage
of edges in the graph in order to see if the same conclusions hold for the graphs generated during Functional
Decomposition F � H�G�bound set�� free set��

Since MVGUD is a multi
valued decomposer� it has no encoding stage� Essentially MVGUD looks for the
Curtis Binary Decomposition criteria in evaluating if a decomposition is acceptable� but then creates the output
signal of the �G function with as many values as the �min �minimal column multiplicity index� found� This
approach results in one multi
valued output from each �G block� It can be called a multi�valued Ashenhurst

Decomposition ������� Whether the method used by MVGUD to calculate DFC �a measure of multi
valued
function complexity from �������� that is close to the equivalent total number of two
input gates in the circuit�� is a
good evaluation of the cost of the decomposed multi
valued blocks is not discussed here� but since the DFC is used
for a comparison between di�erent methods of calculating the Column Multiplicity in Decomposition� within the
same decomposer� the method of calculation of the DFC does not matter for the purpose of evaluating algorithms



for calculating column multiplicity� What matters is that the same method is used for all the algorithms that
are compared� Here a comparison is done between DOM� EXOC and CLIP� The goal of this testing is to see if
an Exact Graph Coloring is necessary to calculate the Column Multiplicity in Functional Decomposition� and if
the DFC can be improved in case that MVGUD is run with EXOC� in comparison to when it is run with DOM
or with CLIP� MVGUD was tested with two� four� and �ve variables in the Bound set�
Notations Used in the Tables� The following is an explanation of the Notations used in the Tables in
this section� Benchmark � Name of the Benchmark function� in � Number of inputs of the Benchmark� out �
Number of outputs of the Benchmark� cubes � Number of cubes in the Benchmark� DFC � Decomposed function
cardinality of the decomposed function� Algorithm � Name of Algorithm used in MVGUD� Nu of Blocks �
Number of multi�valued blocks in the decomposed function� NP � Number of passes� or number of times the
function to calculate the column multiplicity was called� TC � Total Colors� iterative sum of colors generated for
each pass� AC � Average Colors � TC	NP� T�s� � User time in seconds�

A Comparison of the di�erent Strategies of �nding the Column Multiplicity on MCNC Bench�
marks�

MVGUD was run with 
 variables and with � variables in the Bound Set �only a small sample of results is
shown here� In Table � Av Edge� was calculated to see how dense or sparse the graphs generated during the
decomposition are� This was calculated in the following way� For any graph with number of nodes � n� the
total possible edges for this graph� ���� edges  will be equal to n � �n� ���� Hence if the number of edges in
the graph is equal to e� then the edge percent � �e�����total possible edges� This will give the edge percent in
a graph with n nodes and e edges� Since the decomposer calls the function to calculate the ColumnMultiplicity a
number of times� the Av Edge� was calculated by adding the edge percent for a graph each time the function to
�nd ColumnMultiplicity was called� and then dividing this total by the number of times the function to calculate
the Column Multiplicity was called�

Looking at the results it is seen that EXOC� DOM and CLIP generate the same results in all the cases in
terms of DFC and number of CLB�s�

The reason for the slow times ofMVGUD with EXOC can be explained as follows� when MVGUD is run with
� variables in the Bound set� in most cases the average number of nodes in the graph is �� and the edge percentage
is always high with the highest being ��� and the lowest being 
����� This means that the graphs generated
during decomposition were nearly always �since this is an average dense graphs� It was found experimentally
on random graphs that for dense graphs EXOC takes a long time to �nd the Exact solution� hence we have such
slow times for EXOC� Whenever DOM does not generate an exact solution� it is usually � or � colors away from
the Exact solution and rarely more than that� and this being on randomly generated graphs� Now considering
that there were � variables in the Bound Set� then the Incompatibility graph will have �� nodes� and for a Curtis
decomposition to exist� if a coloring of the graph with �� colors or less is found then one exists�

For � variables in Bound Set in the column for Average colors AC it can be seen that the largest average
color is ���� for the benchmark sao�� But this means that these graphs generated during decomposition� had
low chromatic numbers� which were much less than ��� So even if DOM or CLIP generate a solution that is �
or � colors away� the solution will be accepted as a Curtis Decomposition because it will still be less than ���
The same in Table � where a comparison is made with 
 variables in the Bound Set� Hence we conclude that
for 
 or � or greater number of variables in the Bound Set an Exact Graph Coloring does not produce better
Curtis Decompositions� and having a good heuristic algorithm to �nd the Column Multiplicity or even a greedy
algorithm to �nd the Column Multiplicity is good enough�
A Summary of the Results Obtained from Testing on Machine Learning Benchmarks�

As can be seen fromTable � EXOCwas unable to provide a better DFC for the Machine Learning Benchmarks�
In order to see the total numbers of colors generated by DOM� EXOC and CLIP on the same graphs� which were
generated during the process of Functional Decomposition� the following experiment was performed� MVGUD

was made to run with all three algorithms EXOC� CLIP� and DOM calculating the Column Multiplicity� and
only the results of one of them was accepted and the results from the other two was discarded� The count of the
colors was kept for all three Algorithms� thus demonstrating how EXOC� CLIP� and DOM compare with respect
to the total number of colors generated on the same graphs� only now these graphs have been generated from
practical function Benchmarks� Table � shows the result of this comparison�

Table � shows the results of running MVGUD with all three algorithms� DOM� EXOC� and CLIP on the same
graphs which were generated during decomposition� Table 
 is a summary of the results of Table �� Table 
 shows
how DOM and CLIP compare with respect to the number of times that the total number of colors generated by
DOM and CLIP are the same as the total number of colors generated by EXOC� and the number of times the
total colors generated by DOM and CLIP were not exact and by how much�

In Table 
� the row Exact stands for the case when the total numbers of colors generated by DOM and CLIP
was the same as the total colors generated by EXOC� Error � stands for the case in which the total numbers of



Comparison of the Total Colors generated on Graphs

from Machine Learning � variable Benchmarks

Benchmark Total Colors

� variables in Bound � variables in Bound � variables in Bound
DOM EXOC CLIP DOM EXOC CLIP DOM EXOC CLIP

add� �� �� �� �	 �	 �� 
� 
� 
�

add� �� �� �� �� �� �� �
 �
 ��

add� �� �� �� 
� 
� 
� 
� 
� ��

and or chain� 	� 	� 	� �
 �
 �� 
� 
� ��

ch
�f� 
�	 
�	 ��� �	 �	 �� �	 �� ��

ch
�	f� �� �� �� �� �� �� 
� 
� 
�

ch
��f� 
� 
� 
� 
� 
� 
� 
� 
� ��

ch��f� 	
 	
 	
 
� 
� 
� 
� 
� 
�

ch��f� 
�	 
�	 
�	 �� �� �� �� �� ��

ch��f� 


 


 


 �� �� �� �� �	 �	

ch��f� 
�
 
�
 ��� �� �� �
 �� �� ��

ch��f� �� �� �� �� �� �� �� �� ��

ch��f
 
�� 
�� 
�� �	 �	 �� �� �� ��
ch��f� 
�� 
�� 
�� �� �� �� �� �� ��

ch�f� �� �� �� �
 �
 �
 
� 
� ��

contains � ones 
�	 
�	 
�	 �� �� �� �� �� ��

greater than 
�� 
�� 
�� �� �� �� �� �� ��

interval
 
�� 
�� ��� �
 �
 �� �� 
� ��

interval� 
�� 
�� ��� �� �� �� �� �� ��

kdd
 �	 �	 �	 
� 
� 
� 
� 
� 
�
kdd� �� �� �� 
� 
� 
� 
� 
� 
�

kdd� �� �� �� �� �� �� 
� 
� 
�

kdd� 
	 
	 
	 � � � � � �
kdd� �� �� �� �
 �
 �� �� �� ��

kdd	 �� �� �� � � � 
� 
� 
�
kdd� �� �� �� �� �� �� �� �� ��

kdd� �� �� �� 

 

 

 
� 
� ��

kdd� �� �� �� �� �� �� 
� 
� �


majority gate �� �� �� �� �� �� �
 �
 ��

modulus� 

� 

� ��� �	 �	 �� �� �� ��

monkish
 �
 �
 �
 
� 
� �� �� 

 ��

monkish� �� �� �� �� �� �	 �� �� ��

monkish� �� �� �� �� �� �� 
� 
� 
�

mux� 
�� 
�� 
�� �� �� �� 
� 
� ��

nnr
 
�
 
�
 ��� �� �� �
 �	 �	 �


nnr� �	 �	 �	 

 

 

 
� 
� 
�

nnr� 
�� 
�� ��� �� �� �� �
 �
 ��

or and chain� �	 �	 �	 �� �� �� 
� 
� ��

pal �� �� �� �� �� �� 
� 
� 
�
pal dbl output �
� �
� ��
 �� �� �� �� �
 �	

parity �	 �	 �	 
� 
� �� 
� 
� ��

primes� 
�� 
�� 
�� �	 �	 �	 �� �� ��

remainder� 
�� 
�� ��� �� �� �� �� �� ��

rnd
 ��� ��� �
	 �� �� �
 �� �� ��

rnd� �
� �
� ��� �� �� �� �� �� ��

rnd� 
�	 
�	 ��
 �� �� �� �� �� ��

Table �

A Comparison of the Total Colors obtained by running MVGUD on Machine Learning Benchmarks
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Table �

A Comparison of Total Colors generated by DOM� and CLIP compared with total colors generated by EXOC on

the same graphs for two� four and �ve variables in the Bound Set for Machine Learning Benchmarks
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A Summary showing the Addition of the Total Colors obtained in Table �



colors generated by DOM and CLIP were one color away from the total numbers of colors generated by EXOC�
and so on� till Error �� Corresponding to these rows� the column Nu gives the number of times� and column � is
equal to Nu�TotalNumberofProgramRuns � ���� As can be seen from the Table �� DOM performs extremely
well� and CLIP does not perform so well� DOM thus proves to be a very good heuristic algorithm� Table � is a
total of the rows of Table � for DOM and CLIP�

�� CONCLUSIONS�

Functional Decomposition has always been a very complex problem� and all the research done until now just
tried to solve the problem more e�ciently� but without trying to reason why Functional Decomposition is such
a di�cult problem� Here we have investigated only the part of Functional Decomposition which involves 	nding
the Column Multiplicity� and we did not show all our experimental results that support our conclusions� But�
the results obtained here provide a deep insight into the Column Multiplicity part of Functional

Decomposition�

By the results of the testing we can de�nitely say that we have proved that an Exact Graph

Coloring is not required to �nd the Column Multiplicity where Curtis Decompositions are consid�

ered� Exact Graph Colorings only take up more time and fails to produce any signi	cant change in the results�
This is true with respect to MCNC Circuit Benchmarks� Wright Labs Machine Learning Benchmarks� as well as
other Machine Learning and Circuit benchmarks not shown here�

Also the results shown raise the question that in cases where CLIP did not generate the same total numbers
of colors as EXOC� why did the DFC not improve when we used EXOC
 The only possible answer to this
question is that the decompositions generated by CLIP were still acceptable decompositions� even if they use non
minimum numbers of colors which in turn means that these graphs generated during the decomposition process
must be having low chromatic numbers� This provides a very valuable insight into the kinds of graphs that are
generated during the decomposition process�

Our experiments clearly demonstrated that the graphs generated during the decomposition process are much
simpler than graphs generated randomly� �For the lack of space the analysis of random graphs coloring is not
discussed here�� This was another important conclusion� because it provided us with a deeper insight into the
entire decomposition process� and not only to the part of 	nding the Column Multiplicity� With our detailed

experimentation we proved that the DOM program itself is su�cient for column minimization to

create an e�cient and e�ective decomposer for large functions�
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