
Portland State University
PDXScholar
Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

1998

Multi-Level Programmable Arrays for Sub-Micron Technology
Based on Symmetries
Marek Perkowski
Portland State University, marek.perkowski@pdx.edu

Malgorzata Chrzanowska-Jeske
Portland State University

Yang Xu
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/ece_fac

Part of the Electrical and Computer Engineering Commons

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering Faculty
Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Perkowski, Marek; Chrzanowska-Jeske, Malgorzata; and Xu, Yang, "Multi-Level Programmable Arrays for Sub-Micron Technology
Based on Symmetries" (1998). Electrical and Computer Engineering Faculty Publications and Presentations. Paper 229.
http://pdxscholar.library.pdx.edu/ece_fac/229

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/37771332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/ece_fac/229
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac/229?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F229&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


MULTI�LEVEL PROGRAMMABLE ARRAYS FOR
SUB�MICRON TECHNOLOGY BASED ON SYMMETRIES

MAREK PERKOWSKI� MALGORZATA CHRZANOWSKA�JESKE and YANG

XU

Portland State University� Dept� of Electr� Engn�� Portland� Oregon ������

Tel� 	�
���	�	�

� Fax� 	�
���	������ mperkows�ee�pdx�edu

Regular layout is a fundamental concept in VLSI design which can have appli�
cations in custom design for submicron technologies� designing new architectures
for �ne�grain Field Programmable Gate Arrays �FPGAs� and Electrically Pro�
grammable Logic Devices �EPLDs�� and minimization of logic functions for exist�
ing FPGAs� PLAs are well�known examples of regular layouts� Lattice diagrams
are another type of regular layouts that have been recently introduced for layout�
driven logic synthesis ��� In this paper we extend and combine these two ideas�
by introducing the multi�level PLA�like structures� composed from multi�output
�pseudo�symmetrical lattice planes and other planes�multi�input�multi�output reg�
ular blocks�� The main idea is to decompose a non�symmetric general function to
planes� in order to realize as much as possible of the functionwith totally symmetric
and regularly connected planes�

� Introduction�

The concept of a cellular array to realize logic is an old one� but so far� only
the PLA�like structures �including EPLDs and Complex PLDs � CPLDs� have
achieved successful status commercially� In the past� three types of reg�
ular structures have been proposed� ��� PLA�like based on a rectangu�
lar grid ����������������� ��� Based on binary trees ����������� ��� Lattice dia�
grams ������	�������

In PLA�like structures� every cell has four neighbors in a rectangular
grid� One can observe that in these structures there are two types of functions
�planes�� ��� the subfunction generators �such as the AND plane in PLAs��
�	� the collectors of subfunctions �such as the OR plane in PLAs�� The inves�
tigations of improved PLA�like cellular structures have gone into the following
directions� ��� Replacing the OR gates in the collecting plane with other kind
of gates �for instance an EXOR instead of an OR in ���	�� ��� Replacing the
AND gates in the subfunction�generating plane with more powerful columns
realizing sequences of arbitrary two�input gates �such as for instance the gen�
eralized Maitra terms ����� or orthogonal functions������� ��� Adding function
generators on the inputs to the generating plane �	� �	� Adding more com�
plex generating planes� or more levels of generating planes with the simplest
possible gates� such as in TANT networks� �
� Combining 
 and �� such as
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in Multi�Valued TANT networks ��� ��� Adding vertical and horizontal buses
for cells� as in Concurrent Logic�s �Atmel�s� Architecture ���� ��� Creating
more powerful cells as in Motorola� Atmel or Xilinx �			 architectures ����
��� Adding more connections to neighbors ���� All these ideas proved to be
practically useful and contributed to the concept of the new designs�

Binary tree based regular structures were discussed in ������������ The
disadvantage of these structures is fast growth of tree width for some func�
tions and irregularity of trees in practical problems� Such structures were
investigated for Binary Decision Diagrams� Permuted Reed�Muller Trees� and
Kronecker Decision Diagrams�

A well�known switch realization of symmetric function� presented in the
classical textbook by Kohavi �Fig�
a� can be a starting point to derive three
structures� Universal Akers Array�UAA� �� Lattices ��� and the new
Multi�OutputPseudo�SymmetricArray �MOPS� and hierarchical MOPS
PLAs introduced below�

The approach of Akers from 
�
� was the �rst in the literature to propose
lattices� It can be treated as an attempt to combine the properties of PLA�like
and tree�like structures� Although based on rectangular grid similar to PLAs�
the UAAs used multiplexer cell� allowing to use Shannon expansions� and thus
UAAs were similar to tree expansions� To maintain the regularity of arrays for
non�totally symmetric functions the variables were repeated many times� The
universal construction of Akers basically created trees inside a square array�
by repeating consecutively the same variables� Thus� cancelling all path a �a
transformed a directed acyclic graph to a tree� Aker�s method� however� was
very wasteful� leading to large arrays for all functions� No e�cient procedures
for �nding the order of �repeated� variables were given� and it is easy to show
simple functions that have very large UAAs� Besides� Akers in� presented also
many other interesting symmetry�based properties of non�universal realizations
of single and multi�output functions� that can be utilized to develop new design
methods and e�cient computer algorithms�

Figure 
 presents the derivation of both UAAs and Lattices from switch
realization of a symmetric function� Figure 
a shows the multiplexer subcir�
cuits �oval loops� drawn on the switch realization� Each multiplexer has an
�input� control variable� and two data inputs� selected by a state 	 or 
 of
the control variable� For variable b the data inputs 	 and 
 correspond to �b
�denoted as b

�� and b� respectively� This circuit leads directly to Universal
Akers Array connection structure and layout� but not necessarily to Akers�
way of repeating variables and synthesizing functions� The lattice from Fig�
ure 
b is derived from the circuit in Figure 
a� Circles with � are OR gates�
circles with � are AND gates� Small circles are negations� Observe that every

�



a b c d

a’ b’ c’ d’

b’

c’

d’

d

c

b

d’

c’

d

d’

dc

*

*

* *

*

*

*

*

*

*

* *

*

* *

**

*

* *

S0

S

S

S

S4

3

2

1d

c

b

a

(a) (b)

f

Figure �� Derivation of Universal Akers Arrays and Lattice Diagrams from switch realization
of symmetric functions� �a� switch array with multiplexers grouped for UAAs� �b� structure

of UAAs and Lattice Diagrams derived from the switch array in �a��

variable from a diagonal bus goes to one negated AND and one non�negated
AND of a multiplexer with OR gate as its output� Each signal Si� correspond�
ing to a symmetry index of the function� is set to a Boolean constant� Each
multiplexer in the lattice obtains one data input from North and one from
East� and directs its output to South and West� Diagonal lines are used for
inputs �control variables of multiplexers�� UAA has the same structure and
gates� but has a square shape of area ��n�� � 	� � ��n�� � 	� cells� and a
total of �� � �n�� � 	� repeated variables on the diagonal� Thus� for instance
every function of 
 variables can be realized in a � � � square with variables
d�d�c�a�b�
a�
c� 
d� 
d on a diagonal� Akers proved that every single�output binary
function can be realized with such a structure� but an exponential number of
levels was necessary �which means� the control variables in diagonal buses are
repeated so many times that the structure becomes completely impractical for
functions with more than � variables��

The remaining of this paper is structured as follows� Section � intro�
duces Lattice Diagrams and illustrates how to realize incomplete multi�output
functions in them� Section � analyzes reasons of ine�ciency of multi�output
lattices� MOPS arrays and new MOPS�based PLAs for symmetric functions
are introduced in section 
� Section � generalizes these architectures for ar�
bitrary incompletely speci�ed multi�output functions� and section � concludes
the paper�
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� Lattice Diagrams� Lattice Arrays and Regular Layouts

Because of the progress in hardware and software technologies since ����� our
approach is quite di�erent from that of Akers� We do not want to design a
universal array for all functions� because such array would be very ine	cient
for nearly all functions� Instead we create layout�driven logic function

generators which give e	cient results for many real
life functions� not only
symmetrical ones� We argue that there is no need to realize the �worst
case�
functions� since it was shown in �� that� in contrast to the randomly generated
�worst
case� functions� ��
 of functions from real
life are decomposable by
Ashenhurst�Curtis type of decomposition� Therefore� the �other� functions
are either decomposable to the easy realizable functions� or they do not exist
in practice ������

We assume layout to be a two
dimensional shape such as a trapezoid with
horizontal parallel lines� Let us assume for a moment that outputs go vertically
and input variables come in horizontal buses �as in Fig� �b�� Then the �vertical
growth� of layout is increasing the depth of the circuit� and the �horizontal
growth� increases the circuit area in the other dimension �breadth�� We anal

ysed vertical and horizontal growth in various realizations of arithmetic� sym

metric� unate� �tough�� and standard benchmark functions in lattices� PLAs
and trees� Based on investigations of new commercial technologies ��� and dis

cussions with their designers we established these and other bottlenecks in the
regularly structured designs� Finally� we analysed the cases that Lattice Dia

grams gave poor solutions� We found that the multi
output lattices �� di�er
signi�cantly from the single
output ones �� Based on all of above� we arrived
at substantially generalized concepts of lattices and related PLAs� Although
for simplicity we will use here mostly the completely speci�ed multi
output
functions� all our new methods are also for incompletely speci�ed functions�
Moreover� the more unspeci�ed is the function� the better are the results� �We
extended the new methods also to the input data speci�ed as multi
output
Boolean relations ��� A function or relation is decomposed to relation blocks�
and next each of the relation blocks is realized in hardware as the simplest
function corresponding to this relation��

De�nition �� The Producted Cofactor fprod of function f is an intersection of
product of literals prod and function f � It is created as follows� ON �fprod� �
ON �f� � prod� OFF �fprod� � OFF �f� � prod�

Observe� that while calculating fprod � all minterms outside prod become
don�t cares� Producted Cofactor fa�b is equivalent to standard cofactor fa�b �
f�a � �� b � �� c� d� ��� inside product a�b� but is unspeci�ed outside a�b� in
contrast to the standard cofactor� Note that although these two concepts are
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Figure �� Creation of Multi�Output Ordered Shannon Lattice for ��input� ��output function
�f�� f�� f��� �a� the illustration of the method to create the expansions and of joining the
non�isomorphic nodes in �rst three levels of the lattice� �b� the complete lattice diagram
derived using the method from Fig� 	a� �c� its realization in 	x	 Ordered Shannon lattice�
�d� pass�transistor layout realization obtained directly from the lattice in Fig� 	c� �e� pass�

transistor layout from �d� after logic
layout simpli�cations and compaction�

similar� they are not the same�

Figure � presents the method to calculate the Ordered �x� Shannon Lattice

Diagram for a multi�output� incomplete function� Ordered means the same

order of variables and one variable per level� �x� means each cell has at most �

predecessors and at most � successors in a regular planar grid� Because func�

tion�s outputs f�� f�� f� are initially placed in the closest proximity ��� we call

this a �Distance�� Lattice� type of realization of a multi�output function� Cre�

ating the lattice is based on calculating the producted cofactors in expansions�

starting from the function outputs� and next joining some nodes together to

produce a regular level of the lattice� Kmaps are used to illustrate calculat�

ing producted cofactors and combining non�isomorphic nodes on the bottom

of the lattice� In Figure �a� only the 	rst three levels are shown� The nodes






are of two types� S type nodes realize the Shannon expansion� S� nodes realize
the �rotated� Shannon expansion� it means an expansion with negated control
variables� Example of S� expansion application is in the second from left node
of the second row in Fig� �b� Observe in Fig� �a that this method creates in�
complete subfunctions in lattices� even starting from complete functions� The
�gure shows the nodes of the lattice diagram� and how they are joined to form
next levels of the lattice� As we see� at every level� more and more don�t cares
are introduced� which produces an improved quality of results 	The method
for single�output complete functions is in �
� At every node of the diagram�
the subfunction is represented by OFF and ON cube sets� or by pointers to
respective ON� and OFF� BDDs� Kmaps are used here just for an ease of
explanation�
 Fig� �b presents the entire lattice diagram� Shannon expansions
have control variable a� and have negated data inputs from left 	denoted by a�

or �a
� and positive data inputs from right 	denoted by a
� Rotated Shannon
expansions have control variable a�� and have negated data inputs from right
and positive data inputs from left� By writing a � 
 in a node we denote that
by selecting a constant a � 
 for control variable a we �x the right direction
	corresponding to the non�negated variable
� so that no expansion with respect
to variable a is actually executed� By writing a � � in a node we denote that
by selecting a constant a � � for control variable a the left direction was �xed�
and no expansion with respect to variable a is executed� Fig� �c presents the
corresponding �x� lattice array realization�

Layout from pass transistors is the future of sub�micron technologies and is
recently investigated by many researchers� but no papers on lattice realizations
with pass transistors have appeared yet� Fig� �d presents the pass�transistor re�
alization obtained directly from Fig� �c 	For simpli�cation� technology�speci�c
details such as inverters and�or pullups are not shown� Input buses for vari�
ables and their negations are slightly skewed for better visibility only
� The
bold connections are the actual pass�transistor layout found� We impose this
layout on the standard grid structure of pass�transistor multiplexer cells drawn
with thin lines� just to demonstrate how the layout was mapped directly from
the lattice diagram�

Fig� �e presents the pass�transistor layout after logic simpli�cations aa � a

and horizontal compaction� Such layout model derived directly from Lattice
Diagram data structure can be used in a custom�layout software generator�
In such case� further compaction can be done by shifting in Fig� �e function
f
 one cell to the right� Another approach is to use this layout to develop
mask�programmable Lattice�type �building block� 	PGA or EPLD type
 for
PLA�EPLD technology 	such block is a generalization of AND and OR planes
used now in commercial devices
�

�



CAD tools for lattices and other regular layouts are presented in more
detail elsewhere ��������������� In short� the Lattice for a multi�output func�
tion is expanded level�by�level� and from left to right in every level� Usually�
this means combining some non�isomorphic nodes of trees� If only one non�
constant successor of a node exists� it is not combined with the neighbor� For
nonsymmetric functions� this procedure means repeating some variables in lat�
tices� The variable and expansion type controlling heuristics serve to avoid too
many repetitions� and also to create as few as possible branches of the lattice�
The e�ort is made to complete every branch of the lattice as soon as possible�
We have implemented a set of algorithms for generating Lattices in the C lan�
guage which runs in the UNIX environment on SPARC workstations ������� It
can be easily seen that for the real�life functions we have generated uniform
and simple Lattices� which are the most restrictive representation from the
family of the regular layouts we will introduce in this paper� with the reason�
able number of nodes and levels� Comparing a number of function variables
and a number of levels it can be seen that for the worst case function in this
set of benchmarks the average number of time a variable is repeated is three�
It is even more important that for the majority of tested function the aver�
age repetition is close to two� Our worst total number of levels was ��
�misex	
�esp�� while it would be � ��� in Akers method for the same function�
We have thus demonstrated that the lattice representation of a single�output
function leads to practical solutions and that the size of that representation
could be very attractive especially for technologies limited by the interconnec�
tions delay�

� Partitioning Lattices for Multi�Output Functions

Although every single� and multi� output function can be realized in a sin�
gle lattice with repeated variables� for some functions the solutions are quite
wasteful� It can be shown that even for symmetric multi�output functions it is
necessary to repeat variables when the functions are in 
Distance�� Lattices
�
�An example of such a 
Distance�� Lattice
 where functions are realized to�
gether and in the closest geometrical distance is shown in Fig� �b�� So� may
be each function should be realized separately� The problem is this� If out�
put functions are de�ned on only a subset of variables each� especially disjoint
subsets� mixing the positive and negative cofactors of functions� as shown in
Fig� �� can often only worsen the case by creating more complicated subfunc�
tions� Then� it is reasonable to realize the output functions separately� But
now much of the gain of common symmetries can be lost� and big 
empty

subareas are created �as shown between S�� S��� and S��� in Fig� �d� for a

�



+

S
3,1

a a

b b b b

c c c cc

d d d d

1 1

ab
cd

00 01 11 10

01

10
11

00

ab
cd

00 01 11 10

01

10
11

00

S (a,b,c,d)3

+ =

(b)

0
1

1
1

1

0
0

0
0 0

0
0

0

0

00
ab

cd
00 01 11 10

01

10
11

00

S    (a,b,c,d)43,

1
1

1 1
10 0

00
0
0

0
0000

1
1 1

1 1
10
0

0

0
00

0
-

-
-

(a) (c)

3,2
a a

b b b b

c c c c

d

c

ff1f 2 3 f4

d

c

d d d d d

+ h

h

MOPS
plane

OR plane

S

a a

b b b b

c c c

1
c c

d

11
d

S4

a

b

c

1

d (e)
3

2

h1

(d)

WASTED AREAS

Figure �� �a� Symmetric function S��a� b� c� d�� �b� Symmetric function S�����a� b� �c� d�� �c�
Sum of S��a� b� c� d� and S�����a� b� �c� d�� �d� multi�output Lattice for �counter of ones�� �e�

MOPS�OR PLA for the �counter of ones��

multi�output Lattice for �counter of ones� function� realized with separate re�
alization of outputs�� While the common realization of functions in Distance��
Lattice or Distance�k lattice with small k leads in general to variable repetition
and in consequence to the �vertical growth� of the layout� their independent
�disjoint� realization leads to the horizontal growth of the layout� Thus� large
area realizations of such functions are an argument against using simple lat�
tices �see example �counter of ones� in Fig� 	��

The solution to this problem is o
ered by the theory of functional decom�
position� It was long known that the functional �Ashenhurst�Curtis� decom�
position leads to simpler and thus more manageable functions� In addition�
the decomposition can be controlled to create symmetric �multi�output� pre�
decessor function blocks ��� Thus� �decomposed� �partitioned� regular struc�
tures� and corresponding design methods should be devised� in order to bal�
ance the horizontal and vertical growth and to optimize the area and speed for
�incompletely�speci�ed� multi�output functions�

Assuming that all variables in control inputs of a lattice level are not
negated �which means� all expansions are of S type�� we obtain the simple

totally symmetric functions� Such functions are also called totally symmetric

functions of positive polarity� They group to one level Sk all minterms that






have k ones in their binary number �see Figure �a�� Because there are n vari�
ables� and each of them can be negated or not� there are �n di	erent polarities
of symmetric functions� each polarity being a binary vector of polarities of
variables� If a variable is negated� the corresponding bit in the vector is 
�
otherwise it is �� Fig� �a shows function S��a� b� c� d� of polarity ���������� with
characteristic pattern centered in polarity cell ������� Fig� �b shows function
S����a� b� c� d� of polarity �
���
��� with characteristic pattern centered in polar�
ity cell �
�
��� Dotted lines demonstrate characteristic patterns for symmetric
functions of various polarities� The polarity cell is always in the center of
the pattern� An incomplete function to be synthesized� realizable as a sum of
symmetric functions S��a� b� c� d� and S�����a� b� �c� d�� is shown in Fig� �c�

The concept of polarity expands thus greatly the power of symmetric func�
tions at a very low price of adding S
 expansions to the diagrams and layoyts�

It can be proved that�
Theorem �� Every multi�outputBoolean function can be decomposed to vector�
OR of symmetric �multi�output� functions of various polarities

By a vector�OR we understand that each output signal is an OR of some
symmetric functions from the MOPS plane� This is illustrated in Fig� �e�
where MOPS�OR PLA for the �counter of ones�� a totally symmetric function
of polarity ������ is realized� In the worst case� the symmetric functions in
this decomposition become prime implicants of a standard AND�OR PLA�

Theorem �� Every multi�output Boolean function can be decomposed to vector
EXOR of symmetric functions of various polarities�
Theorem �� Every multi�output Boolean function can be decomposed to vector
AND of symmetric functions of various polarities�

Theorem �� Every multi�output Boolean function can be decomposed to a
serial composition of MOPS of symmetric functions of various polarities and
AND�OR PLA�
Theorem �� Every multi�output Boolean function with subsets SVi� i � �� ���K
of mutually symmetric variables can be decomposed to a serial composition of
K MOPS arrays� MOPSi� i � �� ����K followed by an AND�OR PLA �Fig�
�d�� Each MOPSi� i � �� ����K realizes symmetric multi�output functions on
set of variables SVi� and feeds its outputs to the AND�OR PLA� Function F is
decomposed as F � H�G��SV��� G��SV��� ����� GK�SVK �� REM �� where REM
are the remaining variables of F that did not occur in any symmetric set SVi�

It results from�� other references� and our tests� that many interesting func�
tions such as counters� threshold� EXOR� parity� and arithmetic have good de�
composed realizations� It can be also shown� that whenever some partial sym�
metries exist in the data �which is often the case�� the number of the MOPS
planes to realize the component symmetric functions in these decompositions
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Figure �� Multi�Output Pseudo�Symmetric Arrays �MOPS� PLAs for symmetric functions�
�a� MOPS�based PLA with OR�plane for totally symmetric functions� �b� MOPS�based PLA

with EXOR�plane for totally symmetric functions�

is much smaller than the number of prime implicants in AND�OR decompo�
sition used in PLAs� The results are especially good for strongly unspeci�ed
functions� Thus� the goal of the next sections will be to develop architectures
that will make use of these decompositional properties of real�life functions �in
contrast to the randomly generated functions that are the worst case ����

� MOPS Arrays and Generalized PLAs for Multi�Output Symmet�

ric Functions

In Figure 	a we present another way of grouping switches to the oval loops
representing multiplexers� and the circle loops representing AND gates� This
way� a multi�output function is created� but the same connection structure
as in Fig� 
a is basically preserved� Connections from diagonals are exactly
the same� but the direction of signals and location of OR gates is reversed�
The corresponding MOPS is presented in Figure 	b� Observe� that the whole
MOPS can serve as a term generator� with terms being symmetric functions fi�


�



corresponding to symmetry indices Si� The �nal output functions are created
by OR�ing function fi �Fig� �c�� Sometimes better results are obtained when
ORing� EXOR�ing �Fig� �d�� or AND�ing is done on arbitrary symmetric
functions fI in the collecting plane� where I is an arbitrary set of indices i�

The presented decompositions lead to a Generalized MOPS PLAs in which
MOPS plays the role of a generating plane� and OR� EXOR� or AND plane is
used for collecting ��������� As an example� the single�plane MOPS	OR PLA
has a single�polarity MOPS plane for non�repeated variables� followed by an
OR plane� Such PLA can realize only symmetric functions�


Counter of ones
 is a known totally symmetric function that calculates
in natural binary code the number of bits 
�
 among its all arguments� For
instance� for four input variables� a� b� c� d� the 
counter of ones
 is described
by the following output functions h� � S��a� b� c� d�� h� � S����a� b� c� d�� h� �
S����a� b� c� d��

Figure 
d�e compares disjoint realization of 
counter of ones
 function
in an Ordered Shannon Lattice and in MOPS	OR PLA with single MOPS
plane of single polarity� Observe� that because Boolean unions �ORs� of sym�
metric functions are symmetric� only symmetric functions can be realized in
MOPS	OR PLA with single�polarity MOPS� as well as in all other MOS PLAs
with only one single�polarity MOPS plane�

� MOPS PLA Architectures for ArbitraryMulti�Output Functions

To allow realization of arbitrary multi�output functions we have done
further generalizations to MOPS PLA from section ��
��� OR plane is used for summing outputs from several MOPS planes �see
Fig� �a for an example with � MOPS planes�� Each MOPS plane realizes
a symmetric function of a di�erent polarity� Practically all such planes are
realized as a single plane with the same input buses� possibly inverted inside the
plane to create various polarities� Alternatively� inverters can be parts of the
mux gates� Finally� both a variable and its negation can be used simultaneously
in these input buses�
��� Each MOPS plane can have di�erent input variables �and polarities�� see
Fig� �b� This requires variable folding�
��� Variables in each MOPS can be repeated� as in standard Lattices �see
Fig� �c��
�	� Variables in each MOPS can be repeated� and AND	OR PLA is used for
collecting� see Fig� �d� This structure realizes functions decomposed according
to Theorem ��

It can be proved that every function is realizable in a generalized PLA
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Figure �� MOPS PLA architectures for arbitrary multi�output functions� �a� an example
of a general scheme of MOPS�OR PLA with two MOPS planes of various polarities� �b� a
general scheme of MOPS�EXOR PLA with many MOPS of various polarities� and various
variable sets� �c� MOPS�OR�EXOR�AND PLA with MOPS using repeated variable and
Maitra functions in collecting Maitra plane� �d� MOPS AND�OR PLA with MOPS using
subsets of symmetric variables and collecting AND�OR PLA according to Theorem �	

having only one of these generalizations� thus it is also realizable if more than
one of these generalizations are applied together� Fig� �a is a MOPS�OR
PLA with two MOPS planes� each for di�erent polarity of the same variables�
Such structure can be used to implement function from Fig� �c� decomposed to
two symmetric function from from Fig� �a�b� respectively� The same extension
types as for MOPS�OR PLAs can be done for MOPS�EXOR PLAs �Fig� �b	�

A very interesting and general realizations can be obtained using a collect

ing plane in which each function is a Maitra cascade��� Fig� �c� The collecting
plane is then called a Maitra plane� Every row of the Maitra plane is a Maitra
function� i�e� a sequence of arbitrary two
input gates�

Another powerful decomposition is based on Theorem � �Fig� �d� drawn
in CPLD
like form	� Each MOPS is created for a maximum group of totally
symmetric variables in a function� For instance in Fig� �d� the maximum
groups were� fa� b� c� dg� fe� f� g� hg��� etc� Variables x
� ��xi were not in any
group of symmetric variables�

In conclusion� we can state that the Generalized MOPS
based PLAs unify
two former concepts of regular arrays� PLAs and Lattices� and borrow from
CPLDs the concept of partitioning�
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� Conclusions

The idea of partitioned lattices is very captivating from the point of view of
submicron technologies� because� ��� connections are short� ��� delays
are equal and predictable� ��� late�arriving variables can be given closer to the
output� and ��� logic synthesis can be combined with layout� so that no special
stage of placement and routing is necessary �similarly as in PLAs�EPLDs��

We showed new extensions to the concept of lattice layout developed pre�
viously� These extensions produce better results� especially for multi�output
symmetric functions with many outputs� Although presented examples used
non�repeated input variables to MOPS� we generalized also the decomposition
algorithms to arbitrary functions realized in any MOPS plane� which requires
repeating variables in them� Thus� our algorithms for repeating variables in
lattices �������� are still useful for the most general MOPS PLAs� However� the
number of repetitions is smaller than in standard lattices� thus leading in most
cases to more e	cient function realizations with MOPS PLAs�
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