
Portland State University
PDXScholar
Computer Science Faculty Publications and
Presentations Computer Science

2011

Finding Haystacks with Needles: Ranked Search for Data Using
Geospatial and Temporal Characteristics
Veronika Margaret Megler
Portland State University, vmegler@gmail.com

David Maier
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/compsci_fac

Part of the Databases and Information Systems Commons

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Megler, Veronika Margaret and Maier, David, "Finding Haystacks with Needles: Ranked Search for Data Using Geospatial and
Temporal Characteristics" (2011). Computer Science Faculty Publications and Presentations. Paper 129.
http://pdxscholar.library.pdx.edu/compsci_fac/129

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/37769976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/compsci_fac/129
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac/129?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Finding Haystacks with Needles: Ranked Search for
Data Using Geospatial and Temporal Characteristics

V.M. Megler, David Maier

Computer Science Department, Portland State University

{ vmegler@cs.pdx.edu, maier@cs.pdx.edu }

Abstract. The past decade has seen an explosion in the number and
types of environmental sensors deployed, many of which provide a
continuous stream of observations. Each individual observation
consists of one or more sensor measurements, a geographic location,
and a time. With billions of historical observations stored in diverse
databases and in thousands of datasets, scientists have difficulty finding
relevant observations. We present an approach that creates consistent
geospatial-temporal metadata from large repositories of diverse data by
blending curated and automated extracts. We describe a novel query
method over this metadata that returns ranked search results to a query
with geospatial and temporal search criteria. Lastly, we present a
prototype that demonstrates the utility of these ideas in the context of an
ocean and coastalmargin observatory.

Keywords: spatio-temporal queries, querying scientific data, metadata.

1 Introduction

In the past decade, the number and types of deployed environmental sensors have
exploded, with each sensor providing a sequence of observations. Each individual
observation has one or more sensor measurements and is associated with a geographic
location and a time. Almost a decade ago, this explosion was described as “the Data
Deluge” [14], and continued exponential growth in data volumes was predicted [19].
For example, an oceanography observatory and research center with which we
collaborate (CMOP, http://www.stccmop.org) now has terabytes of observations
spanning more than a decade, reported by a changing set of fixed and mobile sensors.
This collection of data provides a rich resource for oceanographic research.

Scientists now research ecosystem-scale and global problems. Marine biologists
wish to position their samples within a broader physical context; oceanographers look
for comparative times or locations similar to (or dissimilar from) their research target.
They want to search these collections of sensor observations for data that matches
their research criteria. However, it is getting harder to find the relevant data in the
burgeoning volumes of datasets and observations, and the time involved in searching
constrains scientist productivity and acts as a limit on discovery. For example, a

mailto:vmegler@cs.pdx.edu
mailto:maier@cs.pdx.edu

microbiologist may be looking for “any observations near the Astoria Bridge in June
2009” in order to place a water sample taken there into physical context. Within the
observatory, there are many observation types that the microbiologist needs to search.
Observations range from a point in space at a point in time, such as a group of water
samples, through fixed stations, which have a single point in space but may have a
million observations spanning a decade, to mobile sensors. The mobile sensors may
collect millions of observations over widely varying geographic and temporal scales:
science cruises may cover hundreds of miles in the ocean over several weeks, while
gliders and autonomic unmanned vehicles (AUVs) are often deployed for shorter time
periods – hours or days – and a few miles, often in a river or estuary. Locating and
scanning each potentially relevant dataset of observations is time-consuming and
requires understanding each dataset's storage location, access methods and format; the
scientist may not even be aware of what relevant datasets exist. Once geospatially
located, fixed sensors can easily be filtered based on location but must still be
searched on time; identifying whether mobile sensors were close by at the appropriate
time may require time-consuming individual analyses of each sensor’s observations.

The scientists have powerful analysis and visualization tools available to them
(e.g., [16, 25, 27]); however, these tools must be told the dataset and data ranges to
analyze or visualize. While these tools allow the scientist to find needles in a
haystack, they do not address the problem of which haystacks are most likely to
contain the needles they want. Visualizing a dataset of observations for the desired
location in June may confirm there is no match. However, potentially relevant
substitutes “close by” in either time or space (say, from late May in the desired place,
or from June but a little further away) are not found using current methods, much less
ranked by their relevance. Even with a search tool that can find data in a temporal or
spatial range, the scientist may not know how far to set those bounds in order to
encompass possible substitutes.

We can meet this need by applying concepts from Information Retrieval. The
scientists’ problem can be cast as a compound geospatial-temporal query across a
collection of datasets containing geospatial and temporal data; the search results
should consist of datasets ranked by relevance. The relevance score for each dataset
should be an estimate of the dataset content’s geographic and temporal relevance to
the query. The desire for real-time response implies that the query be evaluated
without scanning each dataset's contents.

This paper describes a method for performing such a ranked search. Our
contributions are:
1. An approach, described in Section 2, to scoring and ranking such datasets in

response to a geospatial-temporal query. We calculate a single rank across both
geospatial and temporal distances from the query terms by formalizing an intuitive
distance concept. The approach is scalable and light-weight.

2. An approach, described in Section 3, for creating metadata describing the relevant
geospatial and temporal characteristics of a collection of scientific datasets to
support the ranking method. The metadata supports hierarchical nesting of
datasets, providing scalability and flexibility across multiple collection sizes and
spatial and temporal scales.

3. A loosely-coupled, componentized architecture that can be used to implement
these approaches (Section 4).

4. A tool that implements these ideas and demonstrates their utility in the setting of an
ocean observatory, in Section 5. Figure 5 shows the user interface.

We provide additional notes and implications of our approach in Section 6, describe
related work in Section 7 and conclude with future research (Section 8).

In devising the details of our approach, we are biased towards identifying
computationally light-weight approaches in order to achieve speed and scalability; as
noted in considering the success of Google Maps, “Richness and depth are trumped
by speed and ease, just as cheap trumps expensive: not always, but often.” [22] We
are also biased towards exploiting well-studied and optimized underlying functions
and techniques wherever possible. We assume that after a successful search the
scientist (who we also call the user) will access some subset of the identified datasets;
we generically refer to a “download”, although it may take other forms.

2 Ranking Space and Time

The scientist identifies a physical area and a time period he or she wishes to explore,
which we will refer to as the query; we define the query as consisting of both
geospatial and temporal query terms. The scientists have a qualitative intuition about
which observations they consider a complete geospatial or temporal match, a
relatively close match, or a non-match for their queries.

The top of Figure 1 shows a temporal query term, denoted T, with a line
representing the query time span of “June”. We consider the temporal query to have a
center and a radius; here, the center is June 15 and the radius 15 days. Lines A(t),
B(t), ..., E(t) represent the time spans of observations stored in datasets A, B, …, E.
Span A(t) represents a complete match; all observations in this dataset are from June.
Span C(t)'s observations span the month of May and so is “very close”; similarly,
Span B(t) is “closer” than Span C(t) but is not a complete match. Span D(t) is further
away and Span E(t), with observations in February, is “far” from the June query.

The bottom section of Figure 1 shows a two-dimensional geospatial query term G
as drawn on a map, represented by a central point P (in our running example,
geocoordinate 46.23,-123.88, near the Astoria bridge), and a radius r (½ km) within
which the desired observations should fall. The marker labeled A(g) represents the
geospatial extent of observations in dataset A; here, they are at a single location, for
example a fixed station or a set of observations made while anchored during a cruise.
Extents B(g), E(g) and F(g) represent single-location datasets further away from the
query center. Linear Extents C(g) and D(g) represent transects traveled by a mobile
observation station such as a cruise ship, AUV or glider. Polygonal Extents J(g) and
K(g) represent the bounding box of a longer, complex cruise track. Point Extent A(g)
falls within the radius of the query and so is a complete match to the geographic query
term. The qualitative comparison remains consistent across geometry types, with
marker B(g) and line C(g) both being considered “very close” and polygon K(g) and
marker F(g) being “too far” from the query to be interesting.

Intuitively, these qualitative comparisons can be scaled using a multiple of the
search radius. For example, if the scientist searches for “within ½ km of P”, then
perhaps a point 5 km away from P is “too far”. However, if the scientist searches for

“within 5 km of P”, then 5 km away from P is a match but 50 km is too far. In fact,
the scientist is applying an implicit scaling model that is specific to his task [24].

The same intuitive scaling can be applied across both the temporal and spatial
query terms; temporal observations at F(t) and spatial observations at marker B(g)
could be considered equidistant from their search centers. Further, when considering
both the temporal and spatial distances simultaneously, the dataset F, with temporal
observations F(t) (quite close) at location F(g) (too far), is further from the query than
datasets A (“here” in both time and space), B and C (“quite close” in both time and
space). These examples illustrate the situation of one dataset dominating another:
being closer in both time and space. The more interesting case arises in ranking two
datasets where neither dominates the other, such as D and F: F is temporally closer,
but D is closer in space. To simplify such comparisons, we propose a numeric
distance representation that uses the query radii as the weighting method between the
temporal and geospatial query terms. For example, had the spatial portion of the
query been “within 5 km of P”, D(g) and F(g) would both be considered “here”
spatially, but D would now be dominated by F since it is temporally dominated by F.

Query T

A(t)
B(t)

D(t)E(t)
C(t)

P

Query G

F(g)

Time

B(g)

Distance

C
(g

) D(g) H(g)

K(g)

J(g)

 Too far Far Not Close Close Quite close Here Quite close Close Not Close Far Too far
 January February March April May June July August September October November

E(g)
A(g) r

F(t)

 4.5 km 3.5 km 2.5 km 1.5km 1.5 km 2.5 km 3.5 km 4.5 km

Fig. 1. Example of qualitative geospatial and temporal ranking: the top section shows a
temporal query T and the time spans of various observation datasets. Dataset A(t) is a complete
match, while datasets B(t), C(t), D(t), E(t) and F(t) are at increasing times from the query. The
bottom section shows a geospatial query G, with the geospatial locations and extents of the
same observation datasets represented by points (shown by markers), polygons and lines at
various distances. In the middle is a qualitative scale that applies to both time and space.

In essence, the observations within a dataset represent a distribution of both
temporal and geospatial distances from the query center, with a single point in time or
space being the most constrained distribution. Each query term itself represents a
distribution of times and locations. In order to rank the datasets, we need a single
distance measure to characterize the similarity between the dataset and the query
terms. There are many options for representing the proximity of two such entities,
with varying computational complexities [23]. A commonly used surrogate for
distance between two geographic entities is centroid-to-centroid distance. While it is a
poor approximation when the entities are large and close together, it is relatively
simple to calculate, at least for simple geometries. However, this measure ignores the
radii of the query terms, and does not directly identify overlaps between the
geometries. Another well-studied distance measure is minimum (and maximum)

distance between two entities. This distance can be estimated by knowing only the
bounds of the entities. This latter measure more closely matches our criteria; it can be
calculated quickly using information (the bounds) that can be statically extracted from
a dataset. This measure can be used to identify key characteristics that will drive our
ranking: whether a dataset is within our query bounds and so is a complete match;
whether the query and dataset overlap or whether they are disjoint, and if so by how
much. This discussion applies equally to the one-dimensional “space” of time. In
combining the space and time metrics, we will need to “scale” them by the radii of the
respective query terms.

To compute these comparisons across a potentially large number of datasets, we
have formulated a numerical similarity value that takes into account query-term radius
and dataset distribution and can be cheaply estimated with summary information
about temporal or spatial distributions, such as the bounds.

For the temporal term, let QTmin and QTmax represent the lower and upper bounds of
the query time range. Further let dTmin and dTmax represent the minimum and
maximum times of observations in dataset d. For calculation purposes, all times are
translated into a monotonically increasing real number, for example “Unix time”.
Equation 1 below calculates dRmin, the distance of dataset d’s minimum time from the
temporal query “center”, i.e., the mean of QTmin and QTmax, then scales the result by the
size of the query “radius”, i.e., half its range. Similarly Equation 2 calculates dRmax,
the “scaled time-range distance” of the dataset’s maximum time. Equation 3
calculates an overall temporal distance dTdist for the dataset from the query: the first
subcase accounts for a dataset completely within the query range, the second through
fourth account for a dataset overlapping the query range above, below, and on both
sides, and the last subcase accounts for a dataset completely outside of the query
range.

Then, we let s represent a scaling function that converts the calculated distance
from the query center into a relevance score, while allowing a weighting factor to be
applied to the distance result; per Montello [24], the implicit scaling factor may
change for different users or different tasks. Finally, Equation 4 calculates our overall
time score dTs for this dataset by applying the scaling function to dTdist. In our current
implementation, s is (100 – f * dTdist); that is, when the dataset is a complete match it
is given a score of 100, whereas if it is f “radii” (currently f = 10) from the query
center it is considered “too far” and given a score of 0 or less.

 Similarly, let C represent the center location of the geospatial query and r the
radius. Let the locations of all the observations within a single dataset d be
represented by a single geometry g. By convention this geometry can be a point, line
(or polyline) or polygon [12]. Let dGmin and dGmax represent the minimum and
maximum distances of the geometry from C, using some distance measure such as
Euclidean distance. Equation 5 calculates the overall distance measure for three
subcases: the dataset is completely within the query radius; the dataset overlaps the
query circle, or the dataset is completely outside the query circle. Equation 6 gives a
geospatial-relevance score dGs for dataset d by again applying the scaling function s to
the calculated overall distance measure.

In Equation 7, the geospatial score dGs and the temporal score dTs are composed to
give an overall score dscore. Combining these two distance measures results in a multi-
component ranking, which are the norm in web search systems today [7, 17, 18, 20].

We take a simple average of the two distance scores. Note, however, that each of
these rankings has been scaled by the radii of the query terms; thus, the user describes
the relative importance of time and distance by adjusting the query terms.

)(

1)2/|(|

,
||2

)1|(|)1|(|

,
||2

)1|(|

,
||2

)1|(|

,0

)/()2(

)/()2(
2/)(

)2/)((

minmaxmaxminmaxmin

maxmaxminmin
minmax

2
min

2
max

maxmaxminmin
minmax

2
min

maxmaxminmin
minmax

2
max

maxmaxminmin

minmaxminmaxmaxmax

minmaxminmaxmin

minmax

minminmaxmin
min

TdistTs

TTTTRR

TTTT
RR

RR

TTTT
RR

R

TTTT
RR

R

TTTT

Tdist

TTTTTR

TTTTT

TT

TTTT
R

dsd

QdQddd

QdQd
dd
dd

QdQd
dd

d

QdQd
dd

d

QdQd

d

QQQQdd

QQQQd
QQ

QQQd
d

=

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

<∨>−+

><
−

−+−

≤<
−
−

>≥
−
−

≤≥

=

−−−=

−−−=
−

+−−
=

(1)

(2)

(3)

(4)

)(

 1/)(

,
/)(2

)1/(

 0

maxmin

max
minmax

2
max

GdistGs

GminGG

GGmin
GG

G

Gmax

Gdist

dsd

rdrdd

rdrd
rdd

rd

rd

d

=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>−+

≥≤
−

−

≤

=

(5)

(6)

2/)(TsGsscore ddd += (7)

Given a collection of candidate datasets, each dataset’s dscore can be calculated.

Optionally, datasets with dscore ≤ 0 can be discarded. Remaining datasets are sorted in
decreasing order of dscore into a ranked list and become the results of the query.

We performed a 40-person user study, asking respondents to rank pairs of datasets
in response to spatial, temporal, and spatial-temporal queries. The questions included
comparisons with different geometries (e.g., polyline to point or polygon). Except for
a small number of outlier cases, across all categories, when agreement amongst
respondents is greater than 50% our distance measure agrees with the majority
opinion. When there is a large disagreement with our distance measure, there is
generally large disagreement amongst the respondents. Not surprisingly, these cases
are correlated with small differences in distance between the two options.

3 Metadata Representing A Dataset Collection

The scoring and ranking approach described here assumes availability of suitable
metadata against which to apply these equations. This section describes creating this
metadata from datasets with geospatial and temporal contents, using the collection of
observation datasets at our oceanography center as examples. We focus here only on
inherent metadata [15], that is, information derived from the datasets themselves.

The base metadata requirements of our ranking and scoring approach are simple:
the temporal bounds of each dataset, represented as a minimum and maximum time;
the spatial footprint of each dataset, represented by a basic geometry type such as a
point, line or polygon; and a dataset identifier. The temporal bounds can easily be
extracted by scanning the dataset. Similarly, every dataset’s observations fall within a
geographic footprint. For a single point location such as a fixed sensor, the dataset’s
metadata record is created by combining the time range information with the fixed
geographic location of the sensor.

Mobile sensors store a series of observations along with the geographic location
and time for each observation. The overall dataset can be represented by the time
range and the maximum geospatial bounds of the points within the dataset, that is, a
rectangle (polygon) within which all points occur. The geospatial bounds can be
extracted during the scan of the dataset, identifying the lowest and highest x and y
coordinates found. For mobile sensors that follow a path or a series of transects
during which the observations are collected (as in our case), a more informative
alternative is available; the series of points can be translated into a polyline with each
pair of successive points representing a line segment. If appropriate, the polyline can
be approximated by a smaller number of line segments. The simplified polyline can
be compactly stored as a single geometry and quickly assessed during ranking.

To provide for additional expressiveness across the range of possible dataset sizes
and scales, we incorporate the idea of hierarchical, nested metadata. Across our
collection of observations, we have locations where a single water sample was
collected, locations with millions of sensor observations made over many years, and
multi-week ocean cruises where millions of observations were collected across
several weeks with tracks that crossed hundreds of miles. The hierarchical metadata
allows us to capture a simple bounding box for a complex cruise, but also drill down
to the individual cruise segments to identify the subset closest to the query terms.

Metadata records are classified
recursively into parents and children. A
record with no parent is a root record. A
parent record’s bounds (both temporal
and geospatial) must include the union of
the bounds of its children. The children’s
regions might not cover all of the parent,
for example, if there are gaps in a time
series. A record with no children is a leaf
record. A metadata collection is made up
a set of root records and their children
(recursively). The number of levels
within the hierarchy is not limited. For
instance, we might decompose a cruise
temporally by weeks and days within
weeks, then segment each spatially.

Fig. 2. Scoring example for intermittent data: the
right-hand blocks represent downloadable data-
sets; the left-hand blocks represent the metadata
hierarchy and curation choices (one record per
year, plus one for the lifetime). Ovals show the
scores given each dataset relative to the query.

The scoring method is applied
recursively to the collection of metadata
records. We initially retrieve and score
root metadata records only. If an entry is
deemed interesting, it is added to a list of
records whose children will be retrieved
on the next pass. An entry is deemed
interesting if the minimum geographic
and time range distance is not “too far”,
and the minimum and maximum scaled
time or geographic range distances are
different from each other. The second
criterion implies that if subdivisions of
this dataset are available, some of these
subdivisions may be more highly
relevant than the parent dataset as a
whole. We repeat until either the list of
records to retrieve is empty or no
interesting records have children.

Figure 2 demonstrates these concepts.
It shows a fixed sensor station that
reports data only during some months.
Each light-gray block in the diagram
represents a metadata record, showing
time duration. In this case, three levels
of metadata exist: an overall lifetime
record, a medium level for the portion in
each year that the station reports data,
and a detailed level consisting of a
record for each month. Next to each
metadata record is shown its score for

the given query. It can be seen that there are two individual months that score 100;
datasets on either side score in the 90s. The year in which those months occur scores
88, whereas years that do not overlap the query range receive negative relevance
scores. The overall lifetime record, which overlaps the query at both ends, receives a
score of 22. Parent and child records are returned in the query result, allowing the
scientist to choose between accessing only the months of interest or the entire year.

4 Architecture

As shown in Figure 3, our architecture extends existing observatory repositories. In
general, observatories contain several major components: a network of sensors; a set
of processes that collect observations and normalize them (adjust record formats,
apply calibrations, etc.); a repository to store the normalized observations; and a set of
analysis programs that access the stored observations. There may also be a web
interface that allows the user to view the catalog and download specific subsets of the
data. To these existing system components, we add four loosely coupled components:
a metadata-creation component, a metadata repository, a scoring-and-ranking
component and a user interface.

Google Maps A
PI

Fig. 3. The combined system and deployment diagram shows existing components and the new
components added as part of Data Near Here.

The metadata-creation component extracts a minimal set of metadata from the

contents of the observation repository to represent the source observations, and stores
the extract into its own mini-repository. The goal is to support fast query access by
creating a simple abstraction over a far more complex data repository. The IT staff

can add new categories of observations (e.g., new types of mobile devices), change
the number or grouping of hierarchical levels used to represent data, or change the
representation of a category of observations (e.g., treating cruises solely as lines rather
than as lines and bounding boxes at different levels of the hierarchy); this activity is a
data curation process [13]. At present, these changes involve writing or modifying
scripts; an informal set of patterns is emerging and could be formalized if desired.

The scoring-and-ranking component receives query terms from the user interface
and interacts with the metadata. It scores each candidate metadata record, and returns
to the user interface a set of ranked records. The scoring and ranking algorithm is
loosely coupled with the metadata and is independent of the user interface, allowing
different algorithms to be easily tested without modifying the other components.

The user interface is responsible for collecting the geospatial and temporal query
terms from the user and presenting the search results; it also provides the user with
some control over the presentation (e.g., the number of search results to return). The
user interface exploits Google Maps [3] for geospatial representation of the query and
results. The sole direct interaction between the user interface and the metadata is
when the user interface requests metadata information to populate the query
interface’s selections (for example, the ‘Category’ entry field in Figure 5). The search
results link to the datasets within the repository and optionally to analysis programs.

The loosely coupled nature of the components allows maximum flexibility in
altering the internal design or methods used by any component without altering the
remaining components; the additive nature of the architecture minimizes changes to
the existing infrastructure necessary to add this capability.

5 “Data Near Here”: An Implementation

The approaches described in this paper have been implemented in an internal
prototype at the Center for Coastal Margin Observation and Prediction (CMOP).
This center’s rich inventory of over 250 million observations is available for public
download or direct analysis; additional data can be accessed internally via a variety of
tools. The observations and associated metadata are stored in a relational database:
most datasets are also stored in NetCDF-formatted downloadable files.

The observational sensors can be loosely grouped by their deployment on fixed or
mobile platforms. Mobile sensors are deployed in a series of missions, each of which
may span hours or days or weeks. Observations may be captured many times a
second, either continuously or according to some schedule; there may be a half
million or more observations per mission. Hierarchically nested metadata is created
at multiple scales; for the Astoria Bridge query, a fixed station that is far distant can
be recognized and ignored by looking at a single lifetime entry for the station.

A fixed sensor has a single geographic location over time; its dataset can be
geospatially characterized as a single point. Its continuous observations are, for
convenience, stored in multiple datasets, each containing a single time range such as a
month or (for sparser observations) a year. In addition to dataset leaf records, for
each year’s worth of observations we create a parent record that summarizes that
year’s data, plus a lifetime record for the overall time duration of the station.

….

May 2009,
Point Sur,
2009-05-19

5/19/2009,
15:01

5/19/2009,
14:24

Line(p3, p4)May 2009, Point
Sur, 2009-05-19,
Segment 3

May 2009,
Point Sur,
2009-05-19

5/19/2009,
14:23

5/19/2009,
06:15

Line(p2, p3)May 2009, Point
Sur, 2009-05-19,
Segment 2

May 2009,
Point Sur,
2009-05-19

5/19/2009,
06:14

5/19/2009,
00:00

Line(p1, p2)May 2009, Point
Sur, 2009-05-19,
Segment 1

May 2009,
Point Sur

5/19/2009,
23:59

5/19/2009,
00:00

Line(p1, p2, p3,
p4)

May 2009, Point
Sur, 2009-05-19

<null>5/25/20095/13/2009Polygon
[bounding box]

May 2009, Point
Sur

ParentMax. TimeMin. TimeGeometry

….

May 2009,
Point Sur,
2009-05-19

5/19/2009,
15:01

5/19/2009,
14:24

Line(p3, p4)May 2009, Point
Sur, 2009-05-19,
Segment 3

May 2009,
Point Sur,
2009-05-19

5/19/2009,
14:23

5/19/2009,
06:15

Line(p2, p3)May 2009, Point
Sur, 2009-05-19,
Segment 2

May 2009,
Point Sur,
2009-05-19

5/19/2009,
06:14

5/19/2009,
00:00

Line(p1, p2)May 2009, Point
Sur, 2009-05-19,
Segment 1

May 2009,
Point Sur

5/19/2009,
23:59

5/19/2009,
00:00

Line(p1, p2, p3,
p4)

May 2009, Point
Sur, 2009-05-19

<null>5/25/20095/13/2009Polygon
[bounding box]

May 2009, Point
Sur

ParentMax. TimeMin. TimeGeometry

Metadata Table

Original Cruise
Observations

Bounding Box
(derived)

Line per day
(derived)

Individual line
segments
(derived)

Fig. 4. Space metadata records for mobile stations (here, a multi-week cruise) are created by
creating a line from point observations and simplifying it (middle hierarchy level, on line 2 of
the table), then splitting the line into detailed line segments for the leaf records and extracting a
bounding box for the parent record.

Fig. 5. Map display of Data Near Here search results for the example query in this paper. The
map shows a section of the Columbia River near its mouth that includes Highway 101 crossing
the Astoria Bridge between Oregon and Washington. The search center and radius are shown
along with a set of markers and lines locating the highest-ranked datasets found for the search.
The list below the map shows the four highest-ranked results, the first of which is a complete
match; the next three are close either in time or space, but are not complete matches.

As is shown in Figure 4, the track for a mobile-sensor mission can be a represented
by a polyline. In order to extract the polyline from the observations, we use the
PostGIS makeline function to convert each day’s worth of observations into a
polyline, then apply the PostGIS implementation of the Douglas-Peucker algorithm,
simplify, to create a simplified polyline. The simplified polyline, along with the day’s
start and end time, is stored as a metadata record. We create an additional metadata
record for the lifetime of the mission; this record is simply the bounding box of the
polylines with the begin and end times of the overall mission. We then
programmatically extract each line segment from the simplified polyline, match the

vertices to the time the mission was at that location, and store each line segment with
its time range as a leaf metadata record. This three-level hierarchy for mobile sensors
can be created quickly, and provides multiple scales of metadata.

At the end of these processes, we have a consistent metadata format for both fixed
and mobile sensor observations. We also have the option of storing multiple sets of
metadata representing the same (or similar) underlying data, if, for example,
alternative groupings of the data are more appropriate for specific user groups (for
example, partitioned by day or by tide). A varying number of levels can be used for a
subset of the collection or even a subset of sensors within a specific category; we may
wish to, for example, add a daily metadata record for specific fixed sensors. In other
cases, such as water-sample data, we chose to only have one level in the hierarchy.

Keeping the metadata up-to-date involves adding new metadata records as new
missions occur or new datasets are created. For each category of data, this update can
occur automatically via a set of scripts and triggers that check for new datasets and
execute the predefined steps. The moment a new metadata record is created, it is
available to be searched. Setting up a new category of data requires deciding the
number of hierarchical levels to be defined and the download granularities to support,
and then setting up the appropriate scripts.

Figure 5 shows the tool’s user interface. The user interface combines three
interacting elements: a set of text query entry fields, a Google map that can be used to
locate the geospatial query and on which the geospatial locations of highly ranked
results are drawn, and the query results: a table of highly scoring datasets ordered by
score. All available categories of observational data can be searched, or the scientist
can limit the search to a subset. Scientists can provide both time and location
parameters; they can also search for all times in which observations were taken at a
specific location by leaving the time fields blank, and vice versa. The top-ranked
results will be displayed on the map – the scientist can select how many results to
return and to display. Clicking on a displayed dataset pops up a summary.

A “data location” field provides access to the data. Where the data can be directly
downloaded, this field contains a download link. This link is built when the metadata
is created and can contain parameters that subset the complete dataset to the relevant
portion if the download mechanism allows. In cases where direct download is not
currently possible, this field provides the scientist with the dataset location and an
extract command for the dataset’s access tool; for example, where the data is held
only in a relational database, this field can contain a SQL Select statement to extract
the relevant data. A future version will allow scientists to directly open a selected
dataset in a visualization and analysis tool.

The technologies used to implement the shown architecture were selected based on
existing technologies in use in the infrastructure, to allow for easy integration,
extension and support. Metadata creation is performed in a combination of SQL and
scripts. The repository is a PostGIS/Postgres database and is accessed via dynamic
SQL; the footprint data is stored in a PostGIS geometry column. The scoring and
ranking component is written in PHP. Geometric functions are performed by PostGIS
during data retrieval from the repository, with final scoring and ranking performed in
the PHP module. The user interface is implemented using Javascript, JQuery and the
Google Maps API. Current experience leads us to believe these technologies will
scale to support the observatory’s repository for some time. For a much larger

repository, other technology choices would provide greater speed. The architecture
allows us to easily make these choices per component as needed.

6 Discussion

Here we discuss the tradeoff between user performance and the design of the
metadata hierarchy. The response time seen by the user is driven by several main
factors: data transfer times between the components (scoring component to user
interface, metadata repository to scoring component); the number of hierarchical
levels of metadata; the total number of metadata records to be scored; and the
complexity of the scoring algorithm.

The intent of the metadata hierarchy is to bridge the gap between the dataset
granularity and the footprint of the dataset’s content, within the context of efficient
real-time user search. The more hierarchical levels, the more queries must be issued
to process the children of interesting metadata records; however, the hierarchical
design should allow fewer metadata records to be scored overall. An alternative is to
score all metadata records in a single query; however, as many of the roots will have
an increasing number of descendents over time (e.g., stations that continue to collect
data month after month), we expect that ruling out descendents by examining only the
parent record will balance the overhead of multiple queries and allow for greater
scalability. We expect the user, after a successful search, to download or analyze
selected datasets from the results presented. Thus, there is an assumed alignment
between a single metadata record and a single accessible or downloadable unit (such
as a single dataset). However, in many cases the capability exists to group multiple
datasets into a single accessible unit (e.g., by appending them), or alternatively to
access subsets of a dataset (e.g., by encoding parameters to limit the sections of the
dataset to access). The data curation process should consider the typical footprint and
the likely utility to the scientist of different aggregations of that data.

From a query-performance perspective, the number of leaf metadata records is
optimal when each dataset is described by a single metadata record and thus there is
only one record per dataset to score and rank. Where a single dataset is geospatially
and temporally relatively homogenous, this arrangement may be a practical choice.
Where a dataset is geospatially or temporally very diverse or is too large to
conveniently download, users are best served if a leaf metadata record exists for each
subcomponent or segment they may wish to download. The hierarchy provides a
mechanism for mediating this mismatch; a single metadata record can be created for a
larger dataset with children for the subcomponents. The scoring component may be
able to eliminate the dataset and its children from further consideration based on the
parent, and only score the children when the parent appears interesting.

To provide a tangible example of this tradeoff, Table 1 shows summary counts for
our currently existing metadata records, representing a subset of CMOP’s repository.
The breakdown by category in Table 2 highlights the different curation choices made
for different observation categories. At one extreme, the 22 fixed stations have an
average of 8.2 million observations each, and here a three-level hierarchy has been
created. At the other extreme is the water-sample collection, with two observations

taken per location and time. The same “cast” data is represented in two forms: one is
the unprocessed, or “raw”, collection of observations; the same data has also been
binned to specific depths and averaged into a much smaller collection of
measurements. Variation in geometric representation is also shown; in cruises, for
example, the most detailed level is most commonly represented by line segments
representing specific cruise transects, but is sometimes represented by points when
the cruise vessel was anchored in a single location for a longer period of time. These
different representations are easily discerned programmatically from the data but are
difficult for a user to identify from the source data without significant effort.

Table 1. Characterization of Data Near Here Metadata. This table summarizes characteristics
of the metadata records representing the 225 million observations currently searchable.

Metadata records 15,516
Number of observation categories 7
Records at each hierarchy level
 Roots without children 6,564
 Roots with children 60
 Children with children 800
 Children with no children 8,092
Observations represented 225,627,211

Average observations per metadata
record 14,541

 Table 2. Characterization of Existing Metadata Records by Category.

Category Hierarchy
Level Geometry

Number
of

Records

Number
with

Children

Total
Observations
Represented

Average
Observations

per Record

1 Polygon,
Line 22 11 225,757 10,261 AUV

2 Line 29 0 134,841 4,649
Cast-
Binned 1 Point 3,066 0 370,967 120

Cast-Raw 1 Point 2,908 0 33,908,614 11,660
1 Polygon 20 20 8,064,259 403,212
2 Line 607 607 8,064,259 13,285 Cruise

3 Line, Point 7,125 0 7,615,222 1,068
1 Polygon 7 7 2,237,628 319,661
2 Line 128 128 2,237,628 17,481 Glider
3 Line 357 0 1,670,470 4,679
1 Point 22 22 180,818,279 8,219,012
2 Point 65 65 171,903,806 2,644,673 Fixed

Stations
3 Point 581 0 180,818,239 311,219

Water
Samples 1 Point 579 0 1,707 2

The spatial scoring equations were designed to provide a reasonable approximation
of distance for the three primary cases – polygon, polyline and point – while
minimizing the number and complexity of spatial calculations needed; the current
approach uses a total of two spatial calculations (maximum distance and minimum
distance between two geometries) for each metadata record scored. Spatial functions
can be slow, so minimizing the number and complexity of geometries handled is
beneficial. A more complex spatial scoring system can easily be devised; what is less
clear is whether, given the uncertainties in people’s views of distance [24], the
additional complexity provides a better distance score as perceived by the user. What
is clear is that the additional complexity will add to the computation time.

7 Related Work

Adapting a definition from Information Retrieval (IR) [20], a dataset is relevant if the
scientist perceives that it contains data relevant to his or her information need. In IR
systems, the user provides query terms, usually a list of words, to be searched for
against an index representing a library of items (where each item may be, for
example, a web page). Each item is summarized as index entries of the words found
in the document, created prior to receiving the user’s query. In almost all cases, the
searches are performed against metadata, which itself varies in source and form. In
ranked retrieval, each item is given a score representing an estimate of the item's
relevance to the query. The list of items is then ranked by ordering items from
highest to lowest score. There is much research (e.g., [4, 20, 21]) into ranked
relevance of unstructured text documents against text queries. We adapt these ideas
to searching contents of scientific datasets with a query consisting of geospatial-
temporal search terms which are themselves ranges. The metadata we extract from
the datasets performs the role of the index.

Hill et al. [15] present a system for describing and searching a library's digital
collection of geographic items. They apply widely accepted collection concepts from
paper-based archives that are based on a textual description of a map series
(publisher, title, number in series, etc.) to digital map collections. A single collection
may contain a set of maps where each map has a different geographic coverage;
however, the specific map's geographic coverage is an access or index key to that
map. The challenge is how to represent these collections by searchable metadata.
They differentiate contextual metadata, which is externally provided (e.g., publisher),
from inherent metadata, derived from automated analysis of the data (e.g., count of
items included in a collection). This automatic data analysis adds to the metadata but
does not allow the content itself to be searched. They do not provide hierarchical
metadata, nor do they discuss methods for ranked search results.

Grossner et al. [11] provide a summary of progress in the last decade in developing
a “Digital Earth”, and identify gaps in efforts so far. They note that current
geographic and temporal search responses provide matches only on one level of
metadata; the contents of cataloged digital objects are not exposed and are not
searchable. Goodchild [8] notes that most geographic search systems score items
based on word matches against metadata without considering the temporal span or

geographic content of the items returned, and recognizes [9] the issue of containment
as an open research question. That is, a map may be cataloged by the extent of its
coverage (e.g., “Alaska”) but the search mechanism has no method with which to
recognize that this map is a match for an item contained within it, (e.g., a search for
“Fairbanks”). Goodchild et al. [10] expand on these concerns in the 2007 review of
Geospatial One-Stop (GOS) [1], a state-of-the-art government portal to geographic
information. GOS and similar portals such as the Global Change Master Directory’s
Map/Date Search [2] now allow searches using both geographic and temporal criteria;
three spatial tests are supported (the map view intersects, mostly contains, or
completely contains the dataset), and temporal search appears binary – if items do not
match the criteria they are not returned. Only one level of metadata is considered; if a
relevant item is embedded within a larger item (Fairbanks within Alaska), the relevant
item is not returned. In contrast, we explicitly rank returned items based on both the
temporal and geographic “distance” of the dataset contents from the query, and
address the containment issue with multiple levels of metadata.

One widely-used geospatial search system is Google Maps [22], which searches for
a place name or a specified latitude and longitude, and provides nearby points of
interest (“restaurants near here”). They do not currently expose a temporal search
capability. It is possible for a site to explicitly link a dataset to a specific location
using KML, but it is not currently possible to search ranges within linked datasets.
Egenhofer [6] describes some desired geographic request semantics but does not
propose an implementation.

Addressing a different kind of geographic search problem, Sharifzadeh and
Shahabi [26] compare a set of data points with a set of query points where both sets
potentially contain geographic attributes, and identify a set of points that are not
dominated by any other points. They do not specifically address time, but could
presumably treat it as another attribute. Their approach develops the database query
and algorithm to return the best points, but, unlike our approach, they do not return
ranked results nor place the queries within the context of a larger application.

Several researchers [16, 25, 27] have addressed the difficulty scientists have in
finding “interesting” data — data relevant to the scientist’s research question —
within the exploding quantity of data now being recorded by sensors by focusing on
visualization techniques for a specified set of data. The scientist specifies the dataset
and range of data within the dataset. The system then presents a visualization of the
specified numeric data. The question of how the scientist finds interesting datasets
and ranges to visualize is not addressed; that question is the subject of this research.

8 Conclusion

The rapid expansion of deployed observational sensors has led to collection of more
observational data than ever before available. The sheer volume of data is creating
new problems for scientists trying to identify subsets of data relevant to their research.
Techniques to help scientists navigate this sudden plethora of data are a fruitful area
for research. This work is one such contribution, focusing on the problem of finding
sets of observations “near” an existing location in both time and geospace.

This paper presents a novel approach to providing compound geospatial-temporal
queries across a collection of datasets containing geospatial and temporal data; search
results consist of datasets ranked by relevance and presented in real time. The
approach combines hierarchical metadata extracted from the datasets with a method
for comparing distances from a query across geospatial and temporal extents. This
approach complements existing visualization techniques by allowing scientists to
quickly identify which subset of a large collection of datasets they should review or
analyze. The combination of data represented by its geospatial and temporal
footprint, using the metadata for search, the metadata hierarchical design and overall
loosely-coupled architecture allows for scalability and growth across large, complex
data repositories. The prototype described already supports over quarter of a billion
observations and more are being added. User response has been very positive.

We plan to extend this work in several directions, including characterizing the
observed environmental variables and supporting more expressive queries. The third
geospatial dimension, depth, is currently being added. Contextual metadata [15] –
ownership, terms and conditions, etc. – will be added as the tool gains wider use. The
eventual goal is to combine geospatial-temporal search terms with terms such as
“with oxygen below 3 mg/liter, where Myrionecta Rubra are present”.

Finding relevant data is key to scientific discovery. Helping scientists identify the
“haystacks most likely to contain needles” out of the vast quantities of data being
collected today is a key component of reducing their time to discovery.

Acknowledgments. This work is supported by NSF award OCE-0424602. We would
like to thank the staff of CMOP for their support.

References

1. Geospatial One Stop (GOS), http://gos2.geodata.gov/wps/portal/gos.
2. Global Change Master Directory Web Site, http://gcmd.nasa.gov/.
3. The Google Maps Javascript API V3, http://code.google.com/apis/maps/
 documentation/javascript/.
4. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press

New York (1999).
5. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature. Cartographica. 10, 2,
112–122 (1973).

6. Egenhofer, M.J.: Toward the semantic geospatial web. Proceedings of the 10th
ACM international symposium on advances in geographic information systems.
pp. 1–4 (2002).

7. Evans, M.P.: Analysing Google rankings through search engine optimization
data. Internet Research. 17, 1, 21–37 (2007).

8. Goodchild, M.F., Zhou, J.: Finding geographic information: Collection-level
metadata. GeoInformatica. 7, 2, 95–112 (2003).

9. Goodchild, M.F.: The Alexandria Digital Library Project: Review, Assessment,
and Prospects, http://www.dlib.org/dlib/may04/goodchild/05goodchild.html,
(2004).

10. Goodchild, M.F. et al.: Sharing Geographic Information: An Assessment of the
Geospatial One-Stop. Annals of the AAG. 97, 2, 250-266 (2007).

11. Grossner, K.E. et al.: Defining a digital earth system. Transactions in GIS. 12, 1,
145–160 (2008).

12. Herring, J.R. ed: OpenGIS® Implementation Standard for Geographic
information - Simple feature access - Part 1: Common architecture, (2010).

13. Hey, T., Trefethen, A.: e-Science and its implications. Philosophical
Transactions of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences. 361, 1809, 1809 (2003).

14. Hey, T., Trefethen, A.E.: The Data Deluge: An e-Science Perspective. Grid
Computing: Making the Global Infrastructure a Reality (eds F. Berman, G. Fox
and T. Hey). pp. 809-824 John Wiley & Sons, Ltd, Chichester, UK (2003).

15. Hill, L.L. et al.: Collection metadata solutions for digital library applications. J.
of the American Soc. for Information Science. 50, 13, 1169–1181 (1999).

16. Howe, B. et al.: Scientific Mashups: Runtime-Configurable Data Product
Ensembles. Scientific and Statistical Database Management. pp. 19–36 (2009).

17. Kobayashi, M., Takeda, K.: Information retrieval on the web. ACM Comput.
Surv. 32, 144–173 (2000).

18. Lewandowski, D.: Web searching, search engines and Information Retrieval.
Information Services and Use. 25, 3, 137-147 (2005).

19. Lord, P., Macdonald, A.: e-Science Curation Report,
http://www.jisc.ac.uk/uploaded_documents/e-ScienceReportFinal.pdf, (2003).

20. Manning, C.D. et al.: An introduction to information retrieval. Cambridge
University Press (2008).

21. Maron, M.E., Kuhns, J.L.: On relevance, probabilistic indexing and information
retrieval. Journal of the ACM (JACM). 7, 3, 216–244 (1960).

22. Miller, C.C.: A Beast in the Field: The Google Maps mashup as GIS/2.
Cartographica. 41, 3, 187-199 (2006).

23. Miller, H.J., Wentz, E.A.: Representation and Spatial Analysis in Geographic
Information Systems. Annals of the AAG. 93, 3, 574-594 (2003).

24. Montello, D.: The geometry of environmental knowledge. Theories and methods
of spatio-temporal reasoning in geographic space. 136–152 (1992).

25. Perlman, E. et al.: Data Exploration of Turbulence Simulations Using a Database
Cluster. Proceedings of the 2007 ACM/IEEE conference on Supercomputing. pp.
1–11 (2007).

26. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. Proc. of VLDB. p. 762
(2006).

27. Stolte, E., Alonso, G.: Efficient exploration of large scientific databases. Proc. of
VLDB. p. 633 (2002).

	Portland State University
	PDXScholar
	2011

	Finding Haystacks with Needles: Ranked Search for Data Using Geospatial and Temporal Characteristics
	Veronika Margaret Megler
	David Maier
	Let us know how access to this document benefits you.
	Citation Details

	sv-lncs

