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THE DERIVATION OF HYBRIDIZABLE DISCONTINUOUS

GALERKIN METHODS FOR STOKES FLOW

BERNARDO COCKBURN ∗ AND JAYADEEP GOPALAKRISHNAN †

Abstract. In this paper, we introduce a new class of discontinuous Galerkin methods for the
Stokes equations. The main feature of these methods is that they can be implemented in an efficient
way through a hybridization procedure which reduces the globally coupled unknowns to certain
approximations on the element boundaries. We present four ways of hybridizing the methods, which
differ by the choice of the globally coupled unknowns. Classical methods for the Stokes equations
can be thought of as limiting cases of these new methods.

Key words. Stokes equations, mixed methods, discontinuous Galerkin methods, hybridized
methods, Lagrange multipliers

AMS subject classifications. 65N30, 65M60, 35L65

1. Introduction. This paper is devoted to the derivation of a new class of dis-
continuous Galerkin (DG) methods for the three-dimensional Stokes problem

−∆u + gradp = f in Ω,

div u = 0 in Ω,

u = g on ∂Ω.

As usual, we assume that f is in L2(Ω)3, that g ∈ H1/2(∂Ω)3 and that g satisfies the
compatibility condition

∫

∂Ω

g · n = 0, (1.1)

where n is the outward unit normal on ∂Ω. We assume that Ω is a bounded simply
connected domain with connected Lipschitz polyhedral boundary ∂Ω.

The novelty in the class of DG methods derived here lies in the fact that they can
be hybridized. Hybridized methods are primarily attractive due to the reduction in the
number of globally coupled unknowns, especially in the high order case. Hybridization
for conforming methods was traditionally thought of as a reformulation that moves the
inter-element continuity constraints of approximations from the finite element spaces
to the system of equations. Such reformulations are now well known to posses various
advantages [9] (in addition to the reduction in the number of unknowns). In adapting
the hybridization idea to DG methods, we face the difficulty that DG methods have
no inter-element continuity constraints to begin with. Nonetheless, some DG methods
realize inter-element coupling through constraints on numerical traces, which can be
used to perform hybridization. This idea was exploited in the context of the Poisson-
like equations in [10]. It will feature again in this paper, manifesting in a more
complicated form suited to the Stokes system.
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cockburn@math.umn.edu. Supported in part by the National Science Foundation (Grant DMS-
0712955) and by the University of Minnesota Supercomputing Institute.
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jayg@math.ufl.edu. Supported in part by the National Science Foundation under grants DMS-
0713833 and SCREMS-0619080.
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Let us put this contribution in perspective. This paper can be considered to be
part of a series of papers in which we study hybridization of finite element methods.
The hybridization of classical mixed methods for second-order elliptic problems was
considered in [5, 6]. Hybridization of a discontinuous Galerkin method for the two
dimensional Stokes system was carried out in [3], while hybridization of a mixed
method for the three dimensional Stokes system was developed in [7, 8]. A short
review of the work done up to 2005 is provided in [9].

Recently in [10] it was shown how mixed, discontinuous, continuous and even non-
conforming Galerkin methods can be hybridized in a single, unifying framework. This
was done for second-order elliptic problems. In this paper, we extend this approach
to Galerkin methods for the Stokes problem. However, although the hybridization
techniques we propose here provide a similar unifying framework, we prefer to sacrifice
generality for the sake of clarity, and concentrate our efforts on a particular, new class
of methods we call the hybridizable discontinuous Galerkin (HDG) methods. Then,
just as was done for second-order elliptic problems in [10], we show that this procedure
also applies to mixed and other classic methods which can be obtained as particular
or limiting cases of these HDG methods.

Our results are also an extension of previous work on hybridization of a DG [3]
and a classical mixed method [7, 8] for the Stokes equations. For these two methods,
hybridization was used to circumvent the difficult task of constructing a local basis for
divergence-free spaces for velocity. Moreover, in [7, 8], it was shown that hybridization
results in a new formulation of the method which only involves the tangential velocity
and the pressure on the faces of the elements. In this paper, we show that such a
formulation can also be obtained for the HDG methods. We also show that these
methods can be hybridized in three additional ways differing in the choice of variables
which are globally coupled.

The organization of the paper is as follows. In Section 2, we present the HDG
methods and show that their approximate solution is well defined. In Section 3, we
present the four hybridizations of the HDG methods in full detail. Proofs of the
theorems therein are displayed in Section 4. Finally, in Section 5, we end with some
concluding remarks.

2. The HDG methods.

2.1. Definition of the methods. Let us describe the HDG methods under
consideration. We begin by introducing our notation. We denote by Ωh = {K} a
subdivision of the domain Ω into shape-regular tetrahedra K satisfying the usual
assumptions of finite element meshes and set ∂Ωh := {∂K : K ∈ Ωh}. We associate
to this mesh the set of interior faces E o

h and the set of boundary faces E ∂
h . We say

that e ∈ E o
h if there are two tetrahedra K+ and K− in Ωh such that e = ∂K+∩∂K−,

and we say that e ∈ E ∂
h if there is a tetrahedra K in Ωh such that e = ∂K ∩ ∂Ω. We

set Eh := E o
h ∪ E ∂

h .
The HDG methods provide an approximate solution (ωh,uh, ph) in some finite

dimensional space W h × V h × Ph of the form

W h = {τ ∈ L2(Ω) : τ |K ∈ W (K) ∀ K ∈ Ωh},

V h = {v ∈ L2(Ω) : v|K ∈ V (K) ∀ K ∈ Ωh},

Ph = {q ∈ L2(Ω) : q|K ∈ P (K) ∀ K ∈ Ωh},

where the local spaces W (K),V (K) and P (K) are finite dimensional polynomial
spaces that we shall specify later.
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To define the approximate solution, we use the following formulation of the Stokes
equations:

ω − curlu = 0 in Ω, (2.1a)

curlω + gradp = f in Ω, (2.1b)

div u = 0 in Ω, (2.1c)

u = g on ∂Ω. (2.1d)

Multiplying the first three equations by test functions and integrating by parts, we ar-
rive at the following formulation for determining an approximate solution (ωh,uh, ph)
in W h × V h × Ph:

(ωh, τ )Ωh
− (uh, curl τ )Ωh

+ 〈ûh,n × τ 〉∂Ωh
= 0, (2.2a)

(ωh, curl v)Ωh
+ 〈ω̂h,v × n〉∂Ωh

(2.2b)

− (ph, div v)Ωh
+ 〈p̂h,v · n〉∂Ωh

= (f ,v)Ωh
,

− (uh, grad q)Ωh
+ 〈ûh · n, q〉∂Ωh

= 0, (2.2c)

for all (τ ,v, q) ∈ W h × V h × Ph. The notation for volume innerproducts above is
defined by

(ζ, ω)Ωh
:=

∑

K∈Ωh

∫

K

ζ(x) ω(x) dx and (σ,v)Ωh
:=

3∑

i=1

(σi, vi)Ωh

for all ζ, ω in L2(Ωh) := {v : v|K ∈ L2(K) for all K in Ωh}, and all σ,v ∈ L2(Ωh) :=
[L2(Ωh)]

3. More generally, our notation is such that if S represents the notation for
any given space (e.g., S can be L2, H1, etc.), the bold face notation S(Ωh) denotes
[S(Ωh)]

3, and

S(Ωh) := {ω : Ωh 7→ R, ω|K ∈ S(K) ∀ K ∈ Ωh},

S(∂Ωh) := {ω : ∂Ωh 7→ R, ω|∂K ∈ S(∂K) ∀ K ∈ Ωh}.

The boundary innerproducts in (2.2) are defined by

〈v ⊙ n, µ〉∂Ωh
:=

∑

K∈Ωh

∫

∂K

v(γ) ⊙ nµ(γ) dγ,

where ⊙ is either · (the dot product) or × (the cross product) and n denotes the
unit outward normal vector on ∂K. Similarly, for any Fh ⊆ Eh, the notation 〈·, ·〉Fh

indicates a sum of integrals over the faces in Fh.
To complete the definition of the HDG methods, we need to specify the numerical

traces, for which we need the following notation. For any vector-valued function v we
set

vt := n × (v × n), (2.3a)

vn := n (v · n). (2.3b)

Note that we have that v = vn + vt. In this paper we will often use double valued
functions on E o

h . One example is n. Indeed, on each interior mesh face e = ∂K+ ∩
∂K−, the unit normal n is double valued with two branches, one from K+, which
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we denote by n+, and another from K− which we denote by n−. Similarly, if v is
in H1(Ωh), its full trace, as well as the tangential and normal traces in (2.3), are
generally double valued on E o

h . We use v+ and v− to denote the full trace on e of
v from K+ and K−, respectively. On each e = ∂K+ ∩ ∂K−, the jumps of double
valued functions v in H1(Ωh) and q in H1(Ωh) are defined by

[[q n]] := q+ n+ + q− n−, (2.4a)

[[v ⊙ n]] := v+ ⊙ n+ + v− ⊙ n−, (2.4b)

where ⊙ is either · or ×.
With these preparations we can now specify our definition of the numerical traces

appearing in (2.2). On the interior faces E o
h , we set

(ω̂h)t =

(
τ−t (ω+

h )t + τ+
t (ω−

h )t

τ−t + τ+
t

)
+

(
τ+
t τ−t

τ−t + τ+
t

)
[[uh × n]], (2.5a)

(ûh)t =

(
τ+
t (u+

h )t + τ−t (u−
h )t

τ−t + τ+
t

)
+

(
1

τ−t + τ+
t

)
[[n × ωh]], (2.5b)

(ûh)n =

(
τ+
n (u+

h )n + τ−n (u−
h )n

τ−n + τ+
n

)
+

(
1

τ−n + τ+
n

)
[[ph n]], (2.5c)

p̂h =

(
τ−n p+

h + τ+
n p−h

τ−n + τ+
n

)
+

(
τ+
n τ−n

τ−n + τ+
n

)
[[uh · n]], (2.5d)

where the so-called penalization or stabilization parameters τt and τn are functions
on Eh that are constant on each e in Eh and double valued on E o

h ; indeed, if e =
∂K+∩∂K−, then τ±t and τ±n are the values on e∩∂K± of the stabilization parameters.
Finally, on the boundary faces of E ∂

h , we set

(ûh)t = gt, (2.6a)

(ûh)n = gn, (2.6b)

(ω̂h)t = (ωh)t + τt (uh − ûh) × n, (2.6c)

p̂h = ph + τn (uh − ûh) · n. (2.6d)

This completes the definition of the HDG method in (2.2), save the specification of
the spaces on each element.

Let us briefly motivate the choice of the above numerical traces. First, we want
them to be linear combinations of the traces of the approximate solution (ωh,uh, ph).
We also want them to be consistent and conservative; these are very important prop-
erties of the numerical traces as was shown in [1] in the context of second-order elliptic
problems. They are consistent because when the approximate solution is continuous
across interelement boundaries, or at the boundary of Ω, we have that

((ω̂h)t, (ûh)t, (ûh)n, p̂h) = ((ωh)t, (uh)t, (uh)n, ph).

They are conservative because they are single valued.
The above general considerations, however, are not enough to justify the specific

expression of the numerical traces on the parameters τt and τn. We take this particular
expression because it allows the hybridization of the methods. Although this will
become evident when we develop each of its four hybridizations, we can briefly argue
why this is so. Suppose that we want the numerical trace of the velocity, ûh =
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(ûh)t+(ûh)n, to be the globally coupled unknown. This means that, on each element
K ∈ Ωh, we should be able to express all the remaining unknowns in terms of ûh.
If in the weak formulation defining the method, (2.2), we take test functions with
support in the element K, we see that we can achieve this if we could write

(ω̂h)t = (ωh)t + τt (uh − ûh) × n and p̂h = ph + τn (uh − ûh) · n,

where (ωh,uh, ph) is the approximation on the element K, n is the outward unit
normal to K and τt and τn take the values associated with K. Note that this is
consistent with the choice of the corresponding numerical traces on the border of Ω,
equations (2.6c) and (2.6d). Since the element K was arbitrary, we should then have

(ω̂h)t = (ωh)
+
t + τ+

t (u+
h − ûh) × n+ = (ωh)

−
t + τ−t (u−

h − ûh) × n−,

p̂h = p+
h + τ+

n (u+
h − ûh) · n

+ = p−h + τ−n (u−

h − ûh) · n
−,

on all interior faces. A simple algebraic manipulation shows that this is possible only
if the numerical traces therein are taken as in (2.5).

Let us end this subsection by remarking that the choice of the penalization pa-
rameters τt and τn can be crucial since it can have an important effect on both the
stability and the accuracy of the method. This constitutes ongoing work; see the
last paragraph of last section. In Subsection 3.5, we show how by taking special
choices of these parameters, several already known methods for the Stokes system are
recovered.

2.2. Other boundary conditions. The vorticity-velocity variational formula-
tion admits imposition of boundary conditions other than (2.1d); see a short discussion
in Subsection 4.3 in [16]. In this paper, we consider the following types of boundary
conditions:

ut = gt

p = r

}
Type I boundary condition, (2.7a)

ut = gt

un = gn

}
Type II boundary condition, (2.7b)

ωt = γt

un = gn

}
Type III boundary condition, (2.7c)

ωt = γt

p = r

}
Type IV boundary condition. (2.7d)

We have already defined the HDG method in the case of the Type II boundary
condition in the previous subsection. Neither the equations of the HDG method (2.2),
nor the equations of the interior numerical traces (2.5a)–(2.5d) change when the other
boundary conditions are considered. But the equations for the boundary numerical
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traces, namely (2.6a)–(2.6d), must be changed as follows:

(ûh)t = gt,

(ûh)n = (uh)n +
1

τn
(ph − p̂h)n,

ω̂h = (ωh)t + τt (uh − ûh) × n,

p̂h = r,






for Type I, (2.8a)

(ûh)t = (uh)t +
1

τt
n × (ωh − ω̂h),

(ûh)n = gn,

(ω̂h)t = γt,

p̂h = ph + τn (uh − ûh) · n,





for Type III, (2.8b)

(ûh)t = (uh)t +
1

τt
n × (ωh − ω̂h),

(ûh)n = (uh)n +
1

τn
(ph − p̂h)n,

(ω̂h)t = γt,

p̂h = r,





for Type IV. (2.8c)

When we do not have boundary conditions on pressure, the pressure variable in Stokes
flow is only determined up to a constant. Therefore, for Type II and Type III boundary
conditions, in order to obtain unique solvability we must change the pressure space
from Ph to

P 0
h = Ph ∩ L

2
0(Ω),

where L2
0(Ω) is the set of functions in L2(Ω) whose mean on Ω is zero. In the case of

Type I and Type IV boundary conditions, the pressure space is simply Ph. Finally,
let us point out that the Type IV boundary conditions are not particularly useful
since they have to be complemented by additional conditions on the velocity. For
this reason, we do not consider them as possible boundary conditions for the Stokes
equations. However, we discuss it here because, as we are going to see, there is a one-
to-one correspondence between the four types of boundary conditions just considered
and the four hybridizations of the HDG method.

2.3. Existence and uniqueness of the HDG solution. With (strictly) pos-
itive penalty parameters, the HDG method is well defined, as we next show. When
we say that a multi-valued function τ is positive on ∂Ωh, we mean that both branches
of τ are positive on all faces of E o

h and furthermore that the branch from within Ω is
positive on the faces of ∂Ω. Of course, the branch from outside Ω is zero.

To simplify our notation, we will use a symbol for averages of double valued
functions. On any interior face e = ∂K+ ∩ ∂K−, let

{{v}}α = v+α+ + v−α−,

for any double valued function α. The notation {{v}} (without a subscript) denotes
{{v}}α with α+ = α− = 1/2. As a final note on our notation, we do not distinguish
between functions and their extensions by zero. Accordingly, we use the previously
defined notations like [[·]] and {{·}} even for boundary faces in E ∂

h with the understand-
ing that one of the branches involved is zero (which is the case when the function is
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extended by zero). E.g., on a boundary face e, the penalty function τn has only one
nonzero branch, say τ−n , so {{τn}} on e equals τ−n /2. With this notation it is easy to
verify that the identities

〈σ,v × n〉∂Ωh
= 〈 {{σ}}α, [[v × n]] 〉Eh

− 〈 [[σ × n]], {{v}}1−α〉Eh
, (2.9a)

〈q,v · n 〉∂Ωh
= 〈 {{q}}α, [[v · n]]〉Eh

+ 〈 [[qn]], {{v}}1−α〉Eh
, (2.9b)

hold for any α whose branches sum to one, i.e., α+ + α− = 1 on every face e in Eh.
Proposition 2.1. Assume that τt and τn are positive on ∂Ωh. Assume also that

curlV (K) ⊂ W (K),

gradP (K) ⊂ V (K),

div V (K) ⊂ P (K),

for every element K ∈ Ωh. Then we have that

1. For Type I boundary condition, there is one and only one (ωh,uh, ph) in the

space W h × V h × Ph satisfying (2.2), (2.5), and (2.8a).
2. For Type II boundary condition, there is a solution (ωh,uh, ph) in the space

W h × V h × Ph satisfying (2.2), (2.5), and (2.6), if and only if g satis-

fies (1.1). When a solution (ωh,uh, ph) exists, all solutions are of the form

(ωh,uh, ph + κ) for some constant function κ. There is a unique solution if

Ph is replaced by P 0
h .

3. For Type III, the statements of Type II case hold verbatim after replacing (2.6)
with (2.8b).

Proof. The proof proceeds by setting all data to zero and finding the null space
in each of the three cases. Taking (τ ,v, q) := (ωh,uh, ph) in the equations (2.2) and
adding them, we obtain

(ωh,ωh)Ωh
+ Θh = 0, (2.10)

where

Θh := 〈−uh,n × ωh〉∂Ωh
+ 〈ûh,n × ωh〉∂Ωh

− 〈uh,n × ω̂h〉∂Ωh

− 〈ph,uh · n〉∂Ωh
+ 〈p̂h,uh · n〉∂Ωh

+ 〈ph, ûh · n〉∂Ωh
.

Rewriting Θh using (2.9), we obtain

Θh = − 〈ω̂h − {{ωh}}1−α, [[n × uh]]〉Eh
+ 〈ûh − {{uh}}α, [[n × ω̂h]]〉Eh

+ 〈p̂h − {{ph}}1−β, [[uh · n]]〉Eh
+ 〈ûh − {{uh}}β, [[ph n]]〉Eh

,

for any α and β whose branches sum to one on every face of Eh. We set α = τt/2 {{τt}}
and β = τn/2 {{τn}} on all the interior faces of E o

h . On the remaining boundary faces,
we set α and β case by case as follows, letting α−

∂Ω, β
−

∂Ω and α+
∂Ω, β

+
∂Ω denote the

branches of α, β from outside and inside Ω, respectively.
For the Type I case, we set α+

∂Ω = 0, α−

∂Ω = 1, β+
∂Ω = 1, β−

∂Ω = 0. Then,
inserting the expressions for the interior and boundary numerical traces given by (2.5)
and (2.8a),

Θh = Θo
h + 〈τt,

∣∣uh × n
∣∣2〉∂Ω + 〈τn, |phn|2〉∂Ω
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where

Θo
h = 〈

2

{{τt}}
,
∣∣ [[n × ωh]]

∣∣2〉E o

h
+ 〈

2

{{1/τt}}
,
∣∣ [[uh × n]]

∣∣2〉E o

h

+ 〈
2

{{1/τn}}
, [[uh · n]]2〉E o

h
+ 〈

2

{{τn}}
,
∣∣ [[ph n]]

∣∣2〉E o

h
.

Hence (2.10) implies that ωh vanishes, uh and ph are continuous on Ω, and (uh)t and
ph vanishes on ∂Ω. With this in mind, we integrate by parts the equations defining
the method, namely (2.2), to obtain

(curluh, τ )Ωh
= 0,

(grad ph,v)Ωh
= 0,

(div uh, q)Ωh
= 0,

for all (τ ,v, q) ∈ W h×V h×Ph. By our assumptions on the local spaces, this implies
that the following (global) distributional derivatives on Ω vanish:

grad ph = 0, div uh = 0 and curluh = 0 (2.11)

The first equality implies that ph vanishes since we already found ph to vanish on
∂Ω. Moreover, since (uh)t vanishes on the boundary ∂Ω, and since we have assumed
that ∂Ω consists of just one connected component, the last two equalities imply that
uh = 0. Thus, the null space is trivial.

For the Type II case, we set α+
∂Ω = 0, α−

∂Ω = 1, β+
∂Ω = 0, β−

∂Ω = 1 and simplify
Θh using the interior and boundary numerical traces given by (2.5) and (2.6) to find
that

Θh = Θo
h + 〈τt,

∣∣uh × n
∣∣2〉∂Ω + 〈τn,

∣∣uh · n
∣∣2〉∂Ω.

Hence (2.10) implies that ωh vanishes, uh is continuous on Ω, and uh is zero on ∂Ω,
and ph is continuous on Ω. Proceeding as in the Type I case, we find that (2.11)
holds, so uh vanishes. But unlike the Type I case, we can now only conclude that
ph is constant. Thus the null space consists of (ωh,uh, ph) = (0,0, κ) for constant
functions κ. Hence, all statements of the proposition on the Type II case follow.

The Type III case is proved similarly.
It is interesting to note that the proof of Type II case required only minimal

topological assumptions on Ω, namely that Ω is connected. However, the proof of the
other two cases used the further assumptions we placed on Ω. The mixed method pre-
sented in [8] without such topological assumptions dealt only with Type II boundary
conditions.

We can now give some possible choices for polynomial spaces that can be set
within each element. Clearly, Proposition 2.1 gives the conditions that we must
satisfy. Let Pd denote the space of polynomials of degree at most d and let Pd

denote the space of vector functions whose components are polynomials in Pd. Let
dP ≥ 1, dV ≥ 0, dW ≥ 0 be some integers satisfying

dP − 1 ≤ dV ≤ min(dP + 1, dW + 1). (2.12)

Then if we set

W (K) = PdW
, V (K) = PdV

, P (K) = PdP
,
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the conditions of Proposition 2.1 are satisfied. Some examples are

(dW , dV , dP ) =





(k − 1, k − 1, k),
(k − 1, k, k),

(k, k − 1, k),
(k, k, k),
(k, k + 1, k),

(k + 1, k − 1, k),
(k + 1, k, k),
(k + 1, k + 1, k),

for some integer k ≥ 1. Clearly there is greater flexibility in the choice of spaces than,
for instance, in the mixed methods for the Stokes problem. E.g., from (2.12) it is
clear that we can choose dW to be as large as we wish and the method continues to
be well defined.

Having established that the HDG methods are well defined, we show in the next
section, that they can be hybridized in different ways according to the choice of
variables that are globally coupled.

3. Hybridizations of the HDG methods. In this section, we will restrict
ourselves to considering the Stokes problem with the Type II boundary condition.
We hybridize the HDG method for this case. As we shall see, while hybridizing we
can choose to set HDG methods with the other types of boundary conditions within
mesh elements.

For constructing hybridized methods based on the vorticity-velocity formulation,
let us recall the following four transmission conditions for the Stokes solution compo-
nents:

[[ω × n]]

∣∣∣∣
E o

h

= 0, [[u × n]]

∣∣∣∣
E o

h

= 0, [[u · n]]

∣∣∣∣
E o

h

= 0, [[pn]]

∣∣∣∣
E o

h

= 0. (3.1)

Corresponding to these four transmission conditions, there are four variables on which
boundary conditions of the following form can be prescribed:

ωt = γt, ut = λt, un = λn, p = ρ. (3.2)

With this correspondence in view, we can describe our approach for constructing
hybridization techniques as follows. We pick any two of the variables in (3.2) as un-
known boundary values on the boundary of each mesh element. (Once these values are
known, the solution inside the element can be computed locally.) Then, we formulate
a global system of equations for the picked unknown variables, using the transmis-
sion conditions on the other two variables in (3.1). Of course, we must identify the
proper discrete versions of these transmission conditions for this purpose. According
to this strategy, there appears to be six possible cases. But two of the six cases yield
underdetermined or overdetermined systems. For instance if we pick γt and λt as
unknowns, counting their components, we would have a total of four scalar unknown
functions. However, the transmission conditions (the last two in (3.1)) form only two
scalar equations, so will yield an underdetermined system. Similarly, if we pick λn
and ρ as the unknowns, we get an overdetermined system. We discard these two
possibilities. In the remainder, we now work out the specifics for the remaining four
cases.

3.1. Hybridization of type I. A formulation with tangential velocity and pres-

sure. Here, we choose the second and the last of the variables in (3.2), namely (u)t
and p, as the unknowns on the mesh interfaces. Their discrete approximations will
be denoted by λt and ρ, respectively. We shall then use the transmission conditions
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on the other two variables, namely

[[ω × n]]

∣∣∣∣
E o

h

= 0, and [[u · n]]

∣∣∣∣
E o

h

= 0 (3.3)

to derive a hybridized formulation that will help us solve for the approximations λt
and ρ.

The success of this approach relies on us being able to compute approximate solu-
tions within each element locally, once the discrete approximations λt ≈ ut and ρ ≈ p
are found. In other words, we need a discretization of the following Stokes problem
on one element:

ωK − curluK = 0 in K,

curlωK + grad pK = f in K,

div uK = 0 in K,

(uK)t = λt on ∂K,

pK = ρ on ∂K.

We use the HDG method (with Type I boundary conditions) applied to a single
element as our discretization. Specifically, given (λt, ρ,f) in L2(∂Ωh) × L2(∂Ωh) ×
L2(Ω), we define (W,U,P) in W h×V h×Ph on the element K ∈ Ωh as the function
in W (K) × V (K) × P (K) satisfying

(W, τ )K − (U, curl τ )K = −〈λt,n × τ 〉∂K , (3.4a)

(W, curl v)K + 〈Ŵ,v × n〉∂K (3.4b)

− (P, div v)K = (f ,v)K − 〈ρ,v · n〉∂K ,

− (U, grad q)K + 〈Û · n, q〉∂K = 0. (3.4c)

for all (τ ,v, q) ∈ W (K) × V (K) × P (K), where

(Û)n = (U)n +
1

τn
(P − ρ) n, (3.4d)

Ŵ = W + τt (U − λt) × n. (3.4e)

Note that the above system (3.4) is obtained from the HDG system (2.2) with Ω set
to K, and the numerical traces set by (2.8a) (and there are no interior faces). The
above system of equations thus defines a linear map (the “local solver”)

(λt, ρ,f)
L

I

7−→ (W,U,P) (3.4f)

due to the unique solvability of the HDG method on one element, as given by Propo-
sition 2.1(1).

Next, we identify conditions on λt and ρ that make (W,U,P) identical to the
approximation (ωh,uh, ph). We begin by restricting the function (λt, ρ) to the space
(Mh)t × Ψh, where

(Mh)t := {µt ∈ L2(Eh) : µt|e ∈ M (e) ∀ e ∈ E
o
h }, (3.5a)

Ψh := {ψ ∈ L2(Eh) : ψ|e ∈ Ψ(e) ∀ e ∈ Eh}, (3.5b)
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where, on each face e ∈ Eh, the finite dimensional spaces M(e) and Ψ(e) are such
that

M(e) ⊇ {(vt + n × τ )|e : (τ ,v) ∈ W (K) × V (K) ∀ K : e ⊂ ∂K}, (3.5c)

Ψ(e) ⊇ {(q + v · n)|e : (v, q) ∈ V (K) × P (K) ∀ K : e ⊂ ∂K}. (3.5d)

The next theorem identifies discrete analogues of the transmission conditions (3.3) as
the requirements for recovering the discrete solution.

Theorem 3.1 (Conditions for type I hybridization). Suppose (ωh,uh, ph) is

the solution of the HDG method defined by (2.2), (2.5), and (2.6). Assume that

(λt, ρ) ∈ (Mh)t × Ψh is such that

λt = gt on ∂Ω, (3.6a)

〈 [[n × Ŵ]],µt〉E o

h
= 0 ∀ µt ∈ Mh, (3.6b)

〈 [[Û · n]], ψ〉Eh
= 〈g · n, ψ〉∂Ω ∀ ψ ∈ Ψh, (3.6c)

(P, 1)Ω = 0. (3.6d)

Then (W,U,P) = (ωh,uh, ph), λt = (ûh)t, and ρ = p̂h.
Proof. We begin by noting that (W,U,P) is in the space W h×V h×Ph, by the

definition of the local solvers. Moreover, by adding the equations defining the local
solver, namely (3.4a)–(3.4c), we find that (W,U,P) satisfies the equations of (2.2),

with (Ŵ)t in place of (ω̂h)t, λt in place of (ûh)t, (Û)n in place of (ûh)t, and ρ

in place of p̂h. Hence, if we show that the (Ŵ)t, λt, (Û)n, and ρ can be related to
(W,U,P) as in the expressions for the numerical traces (2.5a)–(2.5d), then the proof
will be complete because of the uniqueness result of Proposition 2.1(2) (which applies
due to condition (3.6d)).

Therefore, let us first derive such expressions for λt and ρ. By the choice of the
space Mh × Ψh, the jump conditions (3.6b) and (3.6c) imply that

[[n × Ŵ]] = 0 and [[Û · n]] = 0 on E
o
h .

Inserting the definition of the numerical traces (3.4d) and (3.4e), we readily obtain
that, on E o

h ,

[[n × W]] + τ+
t (U+)t + τ−t (U−)t − (τ+

t + τ−t ) λt = 0,

[[U · n]] +
1

τ+
n

P
+ +

1

τ−n
P
− − (

1

τ+
n

+
1

τ−n
) ρ = 0,

or, equivalently,

λt =

(
τ+
t (U+)t + τ−t (U−)t

τ−t + τ+
t

)
+

(
1

τ−t + τ+
t

)
[[n × W]],

ρ =

(
τ−n P+ + τ+

n P−

τ−n + τ+
n

)
+

(
τ−n τ+

n

τ−n + τ+
n

)
[[U · n]].

Substituting these expressions into (3.4d) and (3.4e),

(Ŵ)t =

(
τ−t (W+)t + τ+

t (W−)t

τ−t + τ+
t

)
+

(
τ+
t τ−t

τ−t + τ+
t

)
[[U × n]],

(Û)n =

(
τ+
n (U+)n + τ−n (U−)n

τ−n + τ+
n

)
+

(
1

τ−n + τ+
n

)
[[P n]].
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In other words, the numerical traces satisfy the equations of (2.5). The fact that
they satisfy the equations (2.6a) and (2.6b) follows from conditions (3.6a) and (3.6c),
respectively. Finally, the equations (2.6c) and (2.6d) follow directly from the definition
of the numerical traces of the local solvers (3.4e) and (3.4d), respectively.

Thus, by the uniqueness result of Proposition 2.1(2), we now conclude that
(W,U,P) coincides with (ωh,uh, ph), and consequently, λt = (ûh)t and ρ = p̂h.
This completes the proof.

At this point, we can comment more on our strategy for construction of hy-
bridized DG methods. Roughly speaking, the derivation of our hybridized methods
proceeds by imposing discrete versions of all four transmission conditions in (3.1)
through the four numerical traces of the HDG method. The two numerical traces we
picked as unknowns in this case, namely λt and ρ, being single valued on E o

h , already
satisfy a zero-jump transmission condition, so we have in some sense, already imposed
the second and the fourth of the conditions in (3.1). The discrete analogues of the
remaining two (the first and the third) transmission conditions are (3.6b) and (3.6c),
which requires the remaining two numerical traces to be single valued. Theorem 3.1
shows that once these conditions are imposed, the HDG solution is recovered.

Next, we give a characterization of unknown traces λt and ρ and the discrete
HDG solution (ωh,uh, ph) in terms of the local solvers. In particular, we show that
the jump conditions (3.6b) and (3.6c) define a mixed method for the tangential velocity
and the pressure. To state the result, we need to introduce some notation. Letting
λot = λt|E o

h
, and remembering our identification of functions with their zero extension,

we can write

λt = λot + gt.

We denote by (M o
h )t the functions of (Mh)t which are zero on ∂Ω (so λot is in (Mo

h)t).
Finally, we use the following notation for certain specific local solutions

(Wλt
,Uλt

,Pλt
) := L

I(λt, 0,0), (3.7a)

(Wρ,Uρ,Pρ) := L
I(0, ρ,0), (3.7b)

(Wf ,Uf ,Pf ) := L
I(0, 0,f), (3.7c)

where LI is as in (3.4f). We are now ready to state our main result for this case.

Theorem 3.2 (Characterization of the approximate solution). We have that

ωh = Wλo
t

+ Wρ + Wf + Wg
t
,

uh = Uλo

t
+ Uρ + Uf + Ug

t
,

ph = Pλo
t

+ Pρ + Pf + Pg
t
,

where (λot , ρ) is the only element of (Mo
h)t × Ψh such that

ah(λ
o
t ,µt) + bh(ρ,µt) = ℓ1(µt), (3.8a)

−bh(ψ,λ
o
t ) + ch(ρ, ψ) = ℓ2(ψ), (3.8b)

for all (µt, ψ) ∈ (M o
h)t × Ψh, and

(Pλo
t

+ Pρ + Pf + Pg
t
, 1)Ω = 0. (3.8c)
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Here

ah(λt,µt) :=(Wλt
,Wµ

t
)Ωh

+ 〈τt(λt − Uλt
)t, (µt − Uµ

t
)t〉∂Ωh

+ 〈
1

τn
Pλt

,Pµ
t
〉∂Ωh

bh(ρ,µt) := 〈ρ,n · Uµ
t
+

1

τn
Pµ

t
〉∂Ωh

,

ch(ρ, ψ) := (Wρ,Wψ)Ωh
+ 〈τt(Uρ)t, (Uψ)t〉∂Ωh

+ 〈
1

τn
(ρ− Pρ), (ψ − Pψ)〉∂Ωh

and

ℓ1(µt) := (f ,Uµ
t
)Ωh

− ah(g,µt)

ℓ2(ψ) := − (f ,Uψ)Ωh
− 〈g · n, ψ〉∂Ω + bh(ψ, gt)

The proof of this theorem is in Section 4. In view of this theorem, we can obtain
the HDG solution by first solving a symmetric global system that is smaller than (2.2)
and then locally recovering all solution components (by applying LI). This is the main
advantage brought about by hybridization. It makes this HDG method competitive
in comparison with other existing DG methods for Stokes flow.

It is interesting to note that the space in which the trace variables lie, namely
(Mh)t and Ψh can be arbitrarily large. While it is in the interest of efficiency to
choose as small a space as possible (for a given accuracy), in mixed methods one also
often require spaces to be not too large for stability reasons. In the HDG method,
stability is guaranteed through the penalty parameters τn and τt. A consequence of
this is that (3.8) is uniquely solvable, no matter how large (Mh)t and Ψh are. For the
analogous hybridized mixed method of [8], we needed the trace spaces corresponding to
(Mh)t and Ψh to be exactly equal to certain spaces of jumps, which created additional
implementation issues such as construction of local basis functions for the spaces.

3.2. Hybridization of type II. A formulation with velocity and means of pres-

sure. Recalling our scheme for construction of hybridized methods described in the
beginning of this section, we now consider the case when ut and un (i.e., all compo-
nents of u) are chosen as the unknowns in the mesh interfaces. Correspondingly, we
should use the transmission conditions on the other two variables, namely

[[ω × n]]

∣∣∣∣
E o

h

= 0, and [[pn]]

∣∣∣∣
E o

h

= 0, (3.9)

to derive a hybridized formulation. However, the success of this strategy relies on
us being able to compute approximate Stokes solutions within each element locally,
once a discrete approximation to u, say λ, is obtained on the boundary of every mesh
element. Here we find a difficulty not encountered in the previous case, namely the
HDG discretization (2.2) on one element with λ as boundary data (of Type II) is not
solvable in general, unless

∫

∂K

λn · n = 0, (3.10)

as seen from Proposition 2.1(2). Thus we are led to modify our local solvers, which
in turn necessitates the introduction of a new variable (ρ) approximating the means
of pressures on the element boundaries, as we shall see now.
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The new local solver, denoted by LII, maps a given function (λ, ρ,f) in L2(∂Ωh)×
ℓ2(∂Ωh)×L2(Ω) to a triple (W,U,P) ∈ W h×V h×Ph defined below. Here, ℓ2(∂Ωh)
denotes the set of functions in L2(∂Ωh) that are constant on each ∂K for all mesh
elements K. On any element K ∈ Ωh, the function (W,U,P) restricted to K is in
W (K) × V (K) × P (K) and satisfies

(W, τ )K − (U, curl τ )K = −〈λ,n × τ 〉∂K , (3.11a)

(W, curl v)K + 〈Ŵ,v × n〉∂K (3.11b)

− (P, div v)K + 〈P̂,v · n〉∂K = (f ,v)K ,

− (U, grad q)K = 〈λ · n, q − q〉∂K , (3.11c)

P = ρ, (3.11d)

where

Ŵ = W + τt (U − λ) × n, (3.11e)

P̂ = P + τn (U − λ) · n. (3.11f)

Here, we use the convention that for a given function q (that may not be in ℓ2(∂Ωh)),
we understand q to mean the function in ℓ2(∂Ωh) satisfying

q|∂K =
1

|∂K|

∫

∂K

q dγ. (3.12)

Obviously, for functions ρ in ℓ2(∂Ωh), we have ρ = ρ. Let λ0
n be the function on

∂Ωh defined by λ0
n|∂K = λn|∂K − λ · n|∂Kn, for all mesh elements K. Then, we

can rewrite the right hand side of (3.11c) as 〈λ0
n, qn〉∂K . Hence, the system (3.11)

minus (3.11d) is the same as the HDG system (2.2) applied to one element with the
data gt = λt and gn = λ0

n. Consequently, by Proposition 2.1(2), the system has a
solution, and moreover, the solution is unique once (3.11d) is added to the system.
Thus, the map LII is well defined.

Note that (3.11) is the HDG discretization of the exact Stokes problem

ωK − curl uK = 0 in K,

curlωK + gradpK = f in K,

div uK = 0 in K,

uK = λt + λ0
n on ∂K,

pK = ρ,

on a single element K.
Next, we find conditions on (λ, ρ,f ) that makes (W,U,P) ≡ LII(λ, ρ,f ) equal

to (ωh,uh, ph). First, we restrict λ to the space Mh defined by

Mh := {µ ∈ L2(Eh) : µ|e ∈ M(e) ∀ e ∈ E
o
h }, (3.14a)

Ψh := ℓ2(∂Ωh), (3.14b)

where M(e) is a finite dimensional space on the face e ∈ Eh such that

M (e) ⊇ {(v + n × τ + n q)|e : (τ ,v, q) ∈ W (K) × V (K) × P (K) (3.14c)

∀ K : e ⊂ ∂K}.

14



Then we have the following theorem, which identifies certain discrete analogues of (3.9)
as sufficient conditions for the coincidence of the locally recovered solution with the
HDG solution.

Theorem 3.3 (Conditions for type II hybridization). Suppose (ωh,uh, ph) is

the solution of the HDG method defined by (2.2), (2.5), and (2.6). Assume that

(λ, ρ) ∈ Mh × Ψh is such that

λ = g on ∂Ω, (3.15a)

〈 [[n × Ŵ]],µt〉E o

h
= 0 ∀ µ ∈ Mh, (3.15b)

〈 [[P̂ n]],µn〉E o

h
= 0 ∀ µ ∈ Mh, (3.15c)

〈λ · n, q〉∂Ωh
= 0 ∀ q ∈ Ψh, (3.15d)

(P, 1)Ω = 0. (3.15e)

Then (W,U,P) = (ωh,uh, ph), λt = (ûh)t, and λn = (ûh)n.
Proof. We will show that (W,U,P) and (ωh,uh, ph) satisfy the same set of

equations. To do this, just as in the proof of Theorem 3.1, it suffices to show that

the numerical traces (Ŵ)t, λt, λn, and P̂ can be related to (W,U,P) through the
expressions in (2.5).

We therefore derive expressions for (Ŵ)t, λt, λn, and P̂. By the choice of the
space Mh, the jump conditions (3.15b) and (3.15c) imply that

[[n × Ŵ]] = 0 and [[P̂ n]] = 0 on E
o
h .

Inserting the definition of the numerical traces (3.11e) and (3.11f), we readily obtain
that, on E o

h ,

[[n × W]] + τ+
t (U+)t + τ−t (U−)t − (τ+

t + τ−t ) λt = 0,

[[P n]] + τ+
n (U+)n + τ−n (U−)n − (τ+

n + τ−n ) λn = 0,

or equivalently,

λt =

(
τ+
t (U+)t + τ−t (U−)t

τ−t + τ+
t

)
+

(
1

τ−t + τ+
t

)
[[n × W]],

λn =

(
τ+
t (U+)n + τ−t (U−)n

τ−t + τ+
t

)
+

(
1

τ−t + τ+
t

)
[[P n]].

Hence,

(Ŵ)t =

(
τ−t (W+)t + τ+

t (W−)t

τ−t + τ+
t

)
+

(
τ+
t τ−t

τ−t + τ+
t

)
[[U × n]],

P̂ =

(
τ+
n P+ + τ−n P−

τ−n + τ+
n

)
+

(
τ+
n τ−n

τ−n + τ+
n

)
[[U · n]].

In other words, the numerical traces satisfy the equations (2.5a), (2.5b), (2.5c) and
(2.5d). The fact that they also satisfy (2.6) follows from conditions (3.15a) and (3.15c)
and the definition of the local solvers.

Consequently, by Proposition 2.1(2), we conclude that the difference between
(W,U,P) and (ωh,uh, ph) is (0,0, κ) for some constant function κ. Equation (3.15e)
then completes the proof.
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Next, we show that the jump conditions (3.15b) and (3.15c) define a mixed
method for the velocity traces and pressure averages on element boundaries. We
denote by M o

h the set of functions in Mh that vanish on ∂Ω and split λ = λo + g

with λo in M o
h . In analogy with (3.7) of the type I hybridization, we now define the

specific local solutions for this case by

(Wλ,Uλ,Pλ) := L
II(λ, 0,0), (3.16a)

(Wρ,Uρ,Pρ) := L
II(0, ρ,0), (3.16b)

(Wf ,Uf ,Pf ) := L
II(0, 0,f), (3.16c)

but note that by Proposition 2.1(2),

(Wρ,Uρ,Pρ) = (0,0, ρ). (3.17)

Our main result for the type II hybridization is the following theorem.
Theorem 3.4 (Characterization of the approximate solution). We have that

ωh = Wλo + Wf + Wg,
uh = Uλo + Uf + Ug,
ph = Pλo + Pf + Pg + Pρ,

where (λo, ρ) is the only element of Mo
h × Ψh such that

ah(λ
o,µ) + bh(ρ,µ) = ℓ(µ),

−bh(ψ,λ
o) = 0,

for all (µ, ψ) ∈ Mo
h × Ψh, and

(Pλo + Pρ + Pf + Pg, 1)Ω = 0.

Here

ah(λ,µ)= (Wλ,Wµ)Ωh
+ 〈τt(λ − Uλ)t, (µ − Uµ)t〉∂Ωh

+ 〈τn(λ − Uλ)n, (µ − Uµ)n〉∂Ωh
,

bh(ρ,µ) = −〈ρ,µ · n〉∂Ωh
,

ℓ(µ) = (f ,Uµ)Ωh
− ah(g,µ).

A proof can be found in Section 4. For appropriate choice of polynomial spaces,
as in the previous case, to satisfy the conditions of Proposition 2.1, we choose the
degrees dP , dV and dW to be integers obeying (2.12). Then Mh is fixed once we pick
any M(e) satisfying (3.14c), e.g., M(e) = Pmax(dV ,dW ,dP )(e).

3.3. Hybridization of type III. A formulation with tangential vorticity, nor-

mal velocity, and pressure means. Next we hybridize the HDG methods by making
another choice of two variables in (3.2), namely ωt and un, as the unknowns on the
mesh interfaces. Their discrete approximations will be denoted by γt and λn, respec-
tively. When we try to formulate a system for these unknowns using the transmission
conditions on the other two variables, namely

[[u × n]]

∣∣∣∣
E o

h

= 0, and [[pn]]

∣∣∣∣
E o

h

= 0, (3.18)
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we again face the same difficulty we faced in the Type II case. Consequently, as we
shall see, we must introduce a new variable ρ approximating the averages of pressure
on element boundaries, just as in the Type II case.

To hybridize the HDG method, we begin as in the previous cases by introducing
discrete local solutions. These will be obtained using the HDG discretization of the
following Stokes problem

ωK − curluK = 0 in K,

curlωK + grad pK = f in K,

div uK = 0 in K,

(ωK)t = γt on ∂K,

(uK)n = λ0
n on ∂K,

pK = ρ.

on a single element K. Given the function (γt,λn, ρ,f) in L2(∂Ωh) × L2(∂Ωh) ×
ℓ2(∂Ωh) × L2(Ω), we define (W,U,P) in W h × V h × Ph on the element K ∈ Ωh as
the function in W (K) × V (K) × P (K) such that

(W, τ )K − (U, curl τ )K + 〈Û,n × τ 〉∂K = 0, (3.20a)

(W, curl v)K − (P, div v)K + 〈P̂,v · n〉∂K = (f ,v)K − 〈γt,v × n〉∂K , (3.20b)

−(U, grad q)K = −〈λn · n, q − q〉∂K . (3.20c)

P = ρ, (3.20d)

where

Û = U +
1

τt
n × (W − γt), (3.20e)

P̂ = P + τn (U − λn) · n. (3.20f)

By Proposition 2.1(3), there is a unique solution to (3.20) on each mesh element K.
In other words, the local solver L

III(γt,λn, ρ,f) := (W,U,P) is well defined.
As in the previous cases, we now proceed to identify the discrete analogues

of (3.18) that make LIII(γt,λn, ρ,f ) identical to (ωh,uh, ph). This will yield a mixed
method for (γt,λn, ρ,f). To do this, we begin by restricting the function (γt,λn, ρ)
to the space (Gh)t × (Mh)n × Ψh, where

(Gh)t := {δt ∈ L2(Eh) : δt|e ∈ G(e) ∀ e ∈ Eh}, (3.21a)

(Mh)n := {µn ∈ L2(Eh) : µn|e ∈ M(e) ∀ e ∈ E
o
h }, (3.21b)

Ψh := {ψ ∈ L2(∂Ωh) : ψ|∂K ∈ R ∀ K ∈ Ωh} ≡ ℓ2(∂Ωh), (3.21c)

where, G(e) and M(e) for each face e ∈ Eh are finite dimensional spaces satisfying

G(e) ⊇ {(vt + n × τ )|e : (τ ,v) ∈ W (K) × U(K) ∀ K : e ⊂ ∂K}, (3.21d)

M(e) ⊇ {(vn + n q)|e : (v, q) ∈ U(K) × P (K) ∀ K : e ⊂ ∂K}, (3.21e)

Theorem 3.5 (Conditions for type III hybridization). Suppose (ωh,uh, ph) is

the solution of the HDG method defined by (2.2), (2.5), and (2.6). Assume that
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(γt,λn, ρ) ∈ (Gh)t × (Mh)n × Ψh, is such that

λn = gn on ∂Ω, (3.22a)

〈 [[Û × n]], δt〉Eh
= 〈gt × n, δt〉∂Ω ∀ δt ∈ (Gh)t, (3.22b)

〈 [[P̂ n]],µn〉E o

h
= 0 ∀ µn ∈ (Mh)n, (3.22c)

〈λn · n, q〉∂Ωh
= 0 ∀ q ∈ Ψh, (3.22d)

(P, 1)Ω = 0. (3.22e)

Then (W,U,P) = (ωh,uh, ph), λn = (ûh)n, and γt = (ω̂h)t.
Proof. We begin by noting that (W,U,P) is in the space W h ×V h×Ph. More-

over, (W,U,P) satisfies the weak formulation (2.2) by the definition of the local solver
(3.20).

Next, we note that, by the choice of the space (Gh)t×(Mh)n, the jump conditions
(3.22b) and (3.22c) imply that

[[Û × n]] = 0 and [[P̂ n]] = 0 on E
o
h .

Inserting the definition of the numerical traces (3.20e) and (3.20f), we readily obtain
that, on E o

h ,

[[U × n]] +
1

τ+
t

(W+)t +
1

τ−t
(W−)t − (

1

τ+
t

+
1

τ−t
) γt = 0,

[[P n]] + τ+
n (U+

h )n + τ−n (U−
h )n − (τ+

n + τ−n ) λn = 0,

or, equivalently,

γt =

(
τ−t (W+)t + τ+

t (W−)t

τ−t + τ+
t

)
+

(
τ−t τ+

t

τ−t + τ+
t

)
[[U × n]],

λn =

(
τ+
n (U+)n + τ−n (U−)n

τ−n + τ+
n

)
+

(
1

τ−n + τ+
n

)
[[P n]].

Hence,

(Û)t =

(
τ+
t (U+)t + τ−t (U−)t

τ−t + τ+
t

)
+

(
1

τ−t + τ+
t

)
[[n × W]],

P̂ =

(
τ−n P+ + τ+

n P−

τ−n + τ+
n

)
+

(
τ−n τ+

n

τ−n + τ+
n

)
[[U · n]].

In other words, the numerical traces satisfy the equations (2.5a), (2.5b), (2.5c) and
(2.5d). The fact that they also satisfy (2.6) follows from conditions (3.22a) and (3.22c).
They also satisfy the equations (2.6c) and (2.6d) by definition of the local solvers.

By the uniqueness result of Proposition 2.1(2), we can now conclude that the
approximation (W,U,P) coincides with (ωh,uh, ph). Moreover, we also have γt =
(ω̂h)t and λn = (ûh)n. This completes the proof.

We now proceed to formulate a mixed method for the numerical traces. Define
specific local solutions by

(Wγ
t
,Uγ

t
,Pγ

t
) := L

III(γt,0, 0,0), (Wλn
,Uλn

,Pλn
) := L

III(0,λn, 0,0),

(Wρ,Uρ,Pρ) := L
III(0,0, ρ,0), (Wf ,Uf ,Pf ) := L

III(0,0, 0,f),
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and observe that by Proposition 2.1(2), (Wρ,Uρ,Pρ) = (0,0, ρ). We additionally
denote by (M o

h )n the functions of (Mh)n which are zero on ∂Ω, and we write λn as
the sum of λon and gn, where λon is in (Mo

h)n. We are now ready to state our main
result.

Theorem 3.6 (Characterization of the approximate solution). We have that

ωh = Wγ
t

+ Wλo
n

+ Wf + Wg
n
,

uh = Uγ
t

+ Uλo
n

+ Uf + Ug
n
,

ph = Pγ
t

+ Pλo
n

+ Pf + Pg
n

+ Pρ,

where (γt,λ
o
n, ρ) is the only element of (Gh)t × (M o

h)n × Ψh such that

ah(γt, δt) + bh(λn, δt) = ℓ1(δt),

−bh(µn,γt) + ch(λn,µn) + dh(ρ,µn) = ℓ2(µn),

−dh(q,λn) = 0,

for all (δt,µn, ρ) ∈ Gh × (M o
h )n × Ψh, and

(Pλo
t

+ Pρ + Pf + Pg
t
, 1)Ω = 0.

Here

ah(γt, δt) := (Wγ
t
,Wδt

)Ωh

+ 〈
1

τt
n × (γt − Wγ

t
),n × (δt − Wδt

)〉∂Ωh
+ 〈τn (Uγ

t
)n, (Uδt

)n〉∂Ωh
,

bh(λn, δt) := 〈λn,Pδt
+ τn (Uλt

)n〉∂Ωh
,

ch(λn,µn) := (Wλn
,Wµ

n
)Ωh

+ 〈
1

τt
n × Wµ

n
,n × Wλn

〉∂Ωh
+ 〈τn(µn − Uµ

n
)n, (λn − Uλn

)n〉∂Ωh

dh(ρ,µn) := − 〈ρ,µn · n〉∂Ωh
,

and

ℓ1(δt) := − (f ,Uδt
)Ωh

− bh(gn, δt) − 〈gt × n, δt〉∂Ω,

ℓ2(µn) := (f ,Uµ
n
)Ωh

− ch(gn,µn).

3.4. Hybridization of type IV. A formulation with tangential vorticity, pres-

sure, and harmonic velocity potentials. There is now only one more remaining choice
of two variables from in (3.2), namely ωt and p, that we have not investigated yet.
This is the type IV case. This case presents additional complications not found in
previous three cases. The complications are rooted in the same reason for which we
did not consider a “type IV boundary condition” in Section 2.

To explain the difficulty, suppose we are given an approximation (γt, ρ) to (ωt, p)
on ∂Ωh. To obtain an approximate solution inside the mesh elements, let us try to
define a local solution (W,U,P) generated by data (γt, ρ,f) in L2(∂Ωh)×L

2(∂Ωh)×
L2(Ω). For this, we would like to use the HDG method applied to one element
K, with boundary conditions on tangential vorticity and pressure (which would be
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discrete versions of boundary conditions ωt = γt and p = ρ on ∂K). Thus we are led
to take (W,U,P) as the function in W (K) × V (K) × P (K) such that

(W, τ )K − (U, curl τ )K + 〈Û,n × τ 〉∂K = 0,

(W, curl v)K − (P, div v)K = (f ,v)K

− 〈n × γt + ρ n,v〉∂K

−(U, grad q)K + 〈Û · n, q〉∂K = 0,

with (Û)t = (U)t+τ
−1
t n×(W−γt), and (Û)n = (U)n+τ−1

n (P−ρ) n. Unfortunately
this problem is not solvable in general, which is the same reason we omitted this type
of boundary condition in Proposition 2.1.

Nonetheless, upon reviewing the proof of Proposition 2.1 in the case of one el-
ement, we find that the null space of the above system is of the form (W,U,P) =
(0, gradφ, 0) where φ is in the following local space harmonic velocity potentials:

Φ(K) = {ξ : grad ξ ∈ V (K) : ∆ξ = 0 and (ξ, 1)K = 0}.

Hence we can recover unique solvability if the velocity is kept orthogonal to Φ(K).
Keeping this in mind, we are motivated to reformulate the local problems to give a
consistent system of equations as follows. Denote the L2-projection of v ∈ V (K)
into gradΦ(K) by gradφv . Given the function (γt, ρ, φ,f) in L2(∂Ωh) × L2(∂Ωh) ×
H1(Ωh) × L2(Ω), we define (W,U,P) in W h × V h × Ph on the element K ∈ Ωh as
the function in W (K) × V (K) × P (K) such that

(W, τ )K − (U, curl τ )K + 〈Û,n × τ 〉∂K = 0, (3.24a)

(W, curl v)K − (P, div v)K = (f ,v − gradφv)K (3.24b)

− 〈n × γt + ρ n,v − gradφv〉∂K

−(U, grad q)K + 〈Û · n, q〉∂K = 0, (3.24c)

(U, grad ξ)K =(gradφ, grad ξ)K , (3.24d)

where

(Û)t = (U)t +
1

τt
n × (W − γt), (3.24e)

(Û)n = (U)n +
1

τn
(P − ρ) n. (3.24f)

A minor modification of the arguments in Proposition 2.1 shows unique solvability
of (3.24), hence we can define a fourth local solver LIV : L2(∂Ωh)×L

2(∂Ωh)×H
1(Ωh)×

L2(Ω) 7→ W (K) × V (K) × P (K) that takes (γt, ρ, φ,f) to (W,U,P).
Note that (3.24) is a discretization of the exact Stokes problem

ωK − curluK = 0 in K,

curlωK + grad pK = f in K,

div uK = 0 in K,

(ωK)t = γt on ∂K,

pK = ρ on ∂K,

with the additional condition that the velocity field uK is L2-orthogonal to all gradi-
ents of harmonic functions, which is necessary for well-posedness.
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Although we could have considered a global “type IV boundary condition” case
in Proposition 2.1 through the addition of an equation like (3.24d), it does not appear
to be very useful, because we do not know the data needed for the right hand side.
However, we can use type IV boundary conditions locally to hybridize a global problem
with type II boundary condition because we already have global solvability for the
type II boundary condition case. We only need to ensure that the local problems are
solvable, and the reformulation of the local solvers with (3.24d) guarantees it.

Now, we proceed as in the previous cases to identify conditions on γt, ρ and φ
in such a way that (W,U,P) is identical to (ωh,uh, ph). We begin by restricting the
function (γt, ρ, φ) to the space (Gh)t × Ψh × Φh, where

(Gh)t := {δt ∈ L2(Eh) : δt|e ∈ G(e) ∀ e ∈ E
o
h }, (3.26a)

Ψh := {ψ ∈ L2(Eh) : ψ|e ∈ Ψ(e) ∀ e ∈ Eh}, (3.26b)

Φh := {ξ ∈ H1(Ωh) : ξ|K ∈ Φ(K) ∀K ∈ Ωh}, (3.26c)

where, on each face e ∈ Eh, we have finite dimensional spaces G(e) and Ψ(e) satisfying

G(e) ⊇ {(vt + n × τ )|e : (τ ,v) ∈ W (K) × U(K) ∀ K : e ⊂ ∂K}, (3.26d)

Ψ(e) ⊇ {(q + v · n)|e : (v, q) ∈ U(K) × P (K) ∀ K : e ⊂ ∂K}. (3.26e)

The next theorem identifies the discrete analogues of the transmission conditions

[[u × n]]

∣∣∣∣
E o

h

= 0, [[u · n]]

∣∣∣∣
E o

h

= 0,

that recovers the original solution. An additional condition also appears because of
our reformulation of the local solvers.

Theorem 3.7 (Conditions for type IV hybridization). Suppose (ωh,uh, ph) is

the solution of the HDG method defined by (2.2), (2.5), and (2.6). Assume that

(γt, ρ, φ) ∈ Mh × Ψh × Φh is such that

〈 [[Û × n]], δt〉Eh
= 〈g × n, δt〉∂Ω ∀ δt ∈ Gh, (3.27a)

〈 [[Û · n]], ψ〉Eh
= 〈g · n, ψ〉∂Ω ∀ ψ ∈ Ψh, (3.27b)

〈n × γt + ρ n, grad ξ〉∂Ωh
= (f , grad ξ)Ωh

∀ ξ ∈ Φh, (3.27c)

(P, 1)Ω = 0. (3.27d)

Then (W,U,P) = (ωh,uh, ph), γt = (ω̂h)t, and ρ = p̂h.
Proof. The proof is similar to the analogous proofs in the previous three cases,

and begins with the observation that (W,U,P) satisfies the weak formulation (2.2)
by the definition of the local solver (3.24) and condition (3.27c). Next, the jump
conditions (3.27a) and (3.27b) imply that

[[Û × n]] = 0 and [[Û · n]] = 0 on E
o
h .

Inserting the definition of the numerical traces (3.24e) and (3.24f), we readily obtain
that, on E o

h ,

[[U × n]] +
1

τ+
t

(W+)t +
1

τ−t
(W−)t − (

1

τ+
t

+
1

τ−t
) γt = 0,

[[U · n]] +
1

τ+
n

P
+
h +

1

τ−n
P
−

h − (
1

τ+
n

+
1

τ−n
) ρ = 0,
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or, equivalently,

γt =

(
τ−t (W+)t + τ+

t (W−)t

τ−t + τ+
t

)
+

(
τ−t τ+

t

τ−t + τ+
t

)
[[U × n]],

ρ =

(
τ−n P+ + τ+

n P−

τ−n + τ+
n

)
+

(
τ−n τ+

n

τ−n + τ+
n

)
[[U · n]].

Hence,

(Û)t =

(
τ+
t (U+)t + τ+

t (U−)t

τ−t + τ+
t

)
+

(
τ+
t τ−t

τ−t + τ+
t

)
[[n × W]],

(Û)n =

(
τ+
n (U+)n + τ−n (U−)n

τ−n + τ+
n

)
+

(
1

τ−n + τ+
n

)
[[P n]].

In other words, (W,U,P) satisfies (2.2), (2.5), and (2.6). By the uniqueness result of
Proposition 2.1(2), we can now conclude that the approximation (W,U,P) coincides
with (ωh,uh, ph) and consequently γt = (ω̂h)t and ρ = p̂h.

Next, we give a characterization of the approximate solution in terms of the local
solutions

(Wγ
t
,Uγ

t
,Pγ

t
) := L

IV(γt, 0, 0,0), (Wρ,Uρ,Pρ) := L
IV(0, ρ, 0,0),

(Wφ,Uφ,Pφ) := L
IV(0, 0, φ,0), (Wf ,Uf ,Pf ) := L

IV(0,0, 0,f).

Note that

(Wφ,Uφ,Pφ) = (0, gradφ, 0) (3.28)

by direct verification in (3.24). The next theorem gives a mixed problem for the
numerical traces γt, ρ together with the volumetric unknown φ. The presence of
the variable φ defined within the elements (and not element boundaries, as in the
previous cases) may appear to annul the potential advantages of dimensional reduction
brought about by hybridization. However, this is not the case because φ is completely
determined by its values on element boundaries.

Theorem 3.8 (Characterization of the approximate solution). We have that

ωh = Wγ
t

+ Wρ + Wf ,
uh = Uγ

t
+ Uρ + Uf + gradφ,

ph = Pλo

t
+ Pρ + Pf ,

where (γt, ρ, φ) is the only element of (Gh)t × Ψh × Φh such that

ah(γt, δt) + bh(ρ, δt) + ch(φ, δt) = ℓ1(µt),

bh(ψ,γt) + dh(ρ, ψ) + eh(φ, ψ) = ℓ2(ψ),

−ch(ξ,γt) − eh(ξ, ρ) = ℓ3(ξ),

for all (δt, ψ, ξ) ∈ (Gh)t × Ψh × Φh, and

(Pγ
t
+ Pρ + Pf , 1)Ω = 0.
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Here

ah(γt, δt) := (Wγ
t
,Wδt

)Ωh
+ 〈

1

τn
Pγ

t
,Pδt

〉∂Ωh

+ 〈
1

τt
n × (γt − Wγ

t
),n × (δt − Wδt

)〉∂Ωh
,

bh(ρ, δt) := −〈Uδt
+

1

τn
Pδt

, ρ〉∂Ωh
,

ch(φ, δ) := 〈n × gradφ, δt〉∂Ωh
,

dh(ρ, ψ) := (Wρ,Wψ)Ωh
+ 〈

1

τn
(ρ− Pρ), (ψ − Pψ)〉∂Ωh

+ 〈
1

τt
n × Wρ,n × Wψ〉∂Ωh

,

eh(φ, ψ) := −〈gradφ · n, ψ〉∂Ωh
,

and

ℓ1(δt) := −(f ,Uδt
)Ωh

− 〈g × n, δt〉∂Ω,

ℓ2(ψ) := −(f ,Uψ)Ωh
− 〈g · n, ψ〉∂Ω,

ℓ3(ψ) := +(f , grad ξ)Ωh
,

3.5. Summary. We have shown how to hybridize the HDG methods in four
different ways according to the choice of globally coupled variables. These variables
are described in Table 3.1 for each of the hybridizations we considered. They are
referred to as unknowns therein since all the other variables can be eliminated from
the original equations. The corresponding discrete transmission conditions appear
alongside under the heading jump conditions. The primary motivation for all these
hybridizations is the reduction in the number of global degrees of freedom achieved
by the elimination of volumetric unknowns ωh,uh and ph. The variational equations
on the mesh faces that we derived in each type result in significantly smaller systems,
especially in the high order case.

Table 3.1
The unknowns and jump conditions for the hybridizations

type unknowns jump conditions

I (ûh)t p̂h [[n × (ω̂h)t]] = 0 [[(ûh)n · n]] = 0
II (ûh)t (ûh)n ph [[n × (ω̂h)t]] = 0 [[p̂h n]] = 0

III (ω̂h)t (ûh)n ph [[(ûh)t × n]] = 0 [[p̂h n]] = 0

IV (ω̂h)t p̂h φh [[(ûh)t × n]] = 0 [[(ûh)n · n]] = 0

For DG methods, the possibility to derive a hybridized formulation is strongly
dependent on the structure of the numerical traces. Although we gave expressions for
the numerical traces in the traditional DG format as in (2.5), we should note that the
numerical traces on which the jump conditions are imposed can be expressed element
by element. Indeed, on the boundary of each mesh element K, the numerical traces
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on which the jump conditions are imposed, have the following expressions using the
values of variables from just that element:

Type I:





(ω̂h)t = (ωh)t + τt (uh − (ûh)t) × n, on ∂K

(ûh)n = (uh)n +
1

τn
(ph − p̂h)n on ∂K,

(3.29)

Type II:

{
(ω̂h)t = (ωh)t + τt (uh − (ûh)t) × n, on ∂K,

p̂h = ph + τn (uh − (ûh)n) · n on ∂K,
(3.30)

Type III:





(ûh)t = (uh)t +

1

τt
n × (ωh − (ω̂h)t), on ∂K,

p̂h = ph + τn (uh − (ûh)n) · n, on ∂K,

(3.31)

Type IV:





(ûh)t = (uh)t +
1

τt
n × (ωh − (ω̂h)t) on ∂K,

(ûh)n = (uh)n +
1

τn
(ph − (p̂h)t) n. on ∂K.

(3.32)

Finally, let us note that in the rewritten expressions of the numerical traces above,
it is easy to formally set the parameters τt, τn to either zero or infinity, which gives rise
to numerical methods we can think of as being limiting cases of the HDG methods. In
Table 3.2, for each of these limiting cases, we give the associated continuity properties
of some the components of the approximate solution as well as the corresponding
natural hybridizations.

In particular, if we use the hybridizations of type I or IV and formally set τn = ∞
in (3.29) or (3.32), we immediately obtain that uh ∈ H(div,Ω), by the jump condition
(3.6c), respectively, jump condition (3.27b), for the type I, respectively, type IV,
boundary condition. We also immediately see that the discrete incompressibility
condition (2.2c) becomes

(div uh, q)Ωh
= 0 ∀ q ∈ Ph,

and if we assume, as in Proposition 2.1, that

div V (K) ⊂ P (K) ∀ K ∈ Ωh,

we can conclude that our approximate velocity uh is strongly incompressible. That
is, the distributional divergence of the numerical velocity approximation satisfies
div uh = 0 in all Ω. It is interesting that even though the space V h is a space of
completely discontinuous functions, we are able to recover such a velocity approx-
imation. The first DG methods producing strongly incompressible velocities were
introduced, in the framework of the Navier-Stokes equations, in [12] and were later
more explicitly developed in [13]; see also [21], where this idea is applied to square and
cube elements. Another DG method able to provide strongly incompressible velocities
is the method introduced in [3]. It uses a velocity space V h of exactly divergence-free
velocities and uses a hybridization technique to avoid the almost impossible task of
constructing its bases.

Unfortunately, the above-mentioned methods do not fit in our setting. The meth-
ods in [12, 13] do not use the vorticity as an unknown; instead, they use the gradient
of the velocity. The method in [3] almost fits in our setting except for the fact that
the numerical traces for the tangential vorticity and the tangential velocity do not
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coincide for any finite values of τ±t . If, on the other hand, we formally set τ−t = ∞ and
then take τ+

t = 0, we do recover the general form of the numerical traces considered
in [3]. However, in that case, the numerical trace for the tangential vorticity becomes
independent of the tangential velocity. This is certainly not the case for the scheme
treated in [3].

Table 3.2
The continuity properties induced by the formal limits.

formal limit continuity property hybridization type

τt = 0 ωh ∈ H(curl,Ω) I, II
1
τt

= 0 uh ∈ H(curl,Ω) III, IV

τn = 0 ph ∈ C0(Ω) II, III
1
τn

= 0 uh ∈ H(div,Ω) I, IV

In Table 3.3, we describe four special limiting cases. Most finite element methods
for the Stokes problem use approximate velocities uh in H1(Ω), see [2]; they thus
correspond to the case 1

τt
= 1

τn
= 0. The method introduced by Nédélec in [17]

corresponds to the case τt = 1
τn

= 0; its hybridization was carried out in [7, 8].

Table 3.3
Four special formal limits of HDG methods.

τt = 0 1
τt

= 0

τn = 0
ωh ∈ H(curl,Ω)
ph ∈ C

0(Ω)
type II hybridization

uh ∈ H(curl,Ω)
ph ∈ C

0(Ω)
type III hybridization

1
τn

= 0
ωh ∈ H(curl,Ω)
uh ∈ H(div,Ω)

type I hybridization

uh ∈ H(curl,Ω)
uh ∈ H(div,Ω)

type IV hybridization

4. Proofs of the characterization theorems.

4.1. Preliminaries. We begin by proving an auxiliary identity that we will use
in all our proofs. It is stated in terms of functions (wh,uh, ph) in W h×V h×Ph that
are assumed to satisfy the equations

(wh, τ )Ωh
− (uh, curl τ )Ωh

= −〈ûh,n × τ 〉∂Ωh
, (4.1a)

(wh, curl v)Ωh
− (ph, div v)Ωh

= (f,v − Pv)Ωh
− 〈p̂h, (v − Pv) · n〉∂Ωh

(4.1b)

− 〈ŵh, (v − Pv) × n〉∂Ωh

−(uh, grad q)Ωh
= −〈ûh · n, q − Pq〉∂Ωh

, (4.1c)

for all (τ ,v, q) ∈ W h×V h×Ph. Here P is a projection from Ph, and P is a projection
from V h. Their ranges are denoted by ψh and Hh, respectively. The symbols ŵh, ûh,
and p̂h, while evocative of numerical traces, are not assumed to be related to the
variables (wh,uh, ph) as in (2.5), nor are they assumed to be single-valued on Eh.
They simply denote some given functions on ∂Ωh.
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Lemma 4.1. Let (wh,uh, ph) be a function satisfying equations (4.1a) and (4.1c),
and let (w′

h,u
′
h, p

′
h) be a function satisfying (4.1b) with f, ŵh, and p̂h, replaced by f

′,

ŵ
′

h, and p̂′h, respectively. Then

−〈ûh,n × ŵ
′

h + n p̂
′

h〉∂Ωh
= (wh,w

′
h)Ωh

− 〈ûh − uh,n × (ŵ
′

h − w
′
h) + n (p̂′

h − p′h)〉∂Ωh

− (uh, f
′)Ωh

,

whenever (Puh,Pp′h) = (0, 0) .

Proof. By equation (4.1a) with τ := w
′
h, we have that

(wh,w
′
h)Ωh

= (uh, curlw′
h)Ωh

− 〈ûh,n × w
′
h〉∂Ωh

and so, after integration by parts,

(wh,w
′
h)Ωh

= (curl uh,w
′
h)Ωh

+ 〈uh − ûh,n × w
′
h〉∂Ωh

.

By (4.1b) with v := uh and wh,uh, ph, and f replaced by w
′
h,u

′
h, p

′
h, and f

′, respec-
tively, we get

(wh,w
′
h)Ωh

= − 〈ŵ′

h, (uh − Puh) × n〉∂Ωh
+ 〈uh − ûh,n × w

′
h〉∂Ωh

+ (p′h, div uh)Ωh
− 〈p̂′

h, (uh − Puh) · n〉∂Ωh
+ (f ′,uh − Puh)Ωh

,

= − 〈uh,n × ŵ
′

h, 〉∂Ωh
+ 〈uh − ûh,n × w

′
h〉∂Ωh

+ (div uh, p
′
h)Ωh

− 〈uh · n, p̂
′

h〉∂Ωh
+ (uh, f

′)Ωh
,

since Puh = 0. If we now integrate by parts, we get

(wh,w
′
h)Ωh

= − 〈uh,n × ŵ
′

h, 〉∂Ωh
+ 〈uh − ûh,n × w

′
h〉∂Ωh

− (uh, gradp′
h)Ωh

− 〈uh · n, p̂
′

h − p′h〉∂Ωh
+ (uh, f

′)Ωh
,

and by (4.1c) with q := p′h,

(wh,w
′
h)Ωh

= − 〈uh,n × ŵ
′

h, 〉∂Ωh
+ 〈uh − ûh,n × w

′
h〉∂Ωh

− 〈ûh · n, p
′
h − Pp′h〉∂Ωh

− 〈uh · n, p̂
′

h − p′h〉∂Ωh
+ (uh, f

′)Ωh

= − 〈ûh,n × ŵ
′

h, 〉∂Ωh
+ 〈uh − ûh,n × (w′

h − ŵ
′

h)〉∂Ωh

− 〈ûh · n, p̂
′
h〉∂Ωh

+ 〈(ûh − uh) · n, p̂
′

h − p′h〉∂Ωh
+ (uh, f

′)Ωh
,

since Pp′h = 0. The result now follows after a simple rearrangement of terms. This
completes the proof.

The following immediate consequence of this result will also be useful.
Corollary 4.2. Let (wh,uh, ph) be a function satisfying the equations (4.1)

and (w′
h,u

′
h, p

′
h) a function satisfying equations (4.1) with f, ŵh, ûh, and p̂h, replaced

by f
′, ŵ

′

h, û
′

h, and p̂′h, respectively. Then we have

−〈ûh,n × ŵ
′

h + n p̂
′

h〉∂Ωh
+ (uh, f

′)Ωh
= −〈û′

h,n × ŵh + n p̂h〉∂Ωh
+ (u′

h, f)Ωh
,

provided (Puh,Pph) = (Pu
′
h,Pp′h) = (0, 0) and

−〈ûh−uh,n×(ŵ
′

h−w
′
h)+n (p̂′

h−p′h)〉∂Ωh
= −〈û

′

h−u
′
h,n×(ŵh−wh)+n (p̂h−ph)〉∂Ωh

.
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4.2. Proof of the characterization of Theorem 3.2. To prove the charac-
terization Theorem 3.2, we are going to use several key identities gathered in the
following result. Recall the definitions of specific local solutions in (3.7) (such as

Wλt
,Uλt

, etc.). We denote by Ŵ⊙ and Û⊙ the corresponding numerical traces, for
all choices of the subscript “⊙” that make sense in the discussion of this hybridization
case:

Ŵλt
= Wλt

+ τt (Uλt
− λt) × n, Ûλt

= Uλt
+

1

τn
Pλt

n (4.2a)

Ŵρ = Wρ + τt (Uρ × n), Ûρ = Uρ +
1

τn
(Pρ − ρ)n (4.2b)

Ŵf = Wf + τt (Uf × n), Ûf = Uf +
1

τn
Pf n (4.2c)

Clearly these equations are inherited from the definitions (3.4d) and (3.4e).
Lemma 4.3 (Elementary identities). For any λt,µt ∈ L2(Eh), any ρ, ψ ∈ L2(Eh)

and any f ∈ L2(Ω), we have

−〈 [[n × Ŵλt
]],µt〉Eh

= (Wλt
,Wµ

t
)Ωh

+ 〈τt(λt − Uλt
)t, (µt − Uµ

t
)t〉∂Ωh

+ 〈
1

τn
Pλt

,Pµ
t
〉∂Ωh

−〈 [[n × Ŵρ]],µt〉Eh
= 〈 [[Ûµ

t
· n]], ρ〉Eh

,

−〈 [[n × Ŵf ]],µt〉Eh
= − (f ,Uµ

t
)Ωh

.

and

−〈 [[Ûλt
· n]], ψ〉Eh

= 〈 [[n × Ŵψ]],λt〉Eh
,

−〈 [[Ûρ · n]], ψ〉Eh
= (Wρ,Wψ)Ωh

+ 〈τt(Uρ)t, (Uψ)t〉∂Ωh

+ 〈
1

τn
(Pρ − ρ), (Pψ − ψ)〉∂Ωh

−〈 [[Ûf · n]], ψ〉Eh
= + (f ,Uψ)Ωh

.

Proof. In all the applications of Lemma 4.1 and Corollary 4.2 in this proof, we
take (P,P) = (0, 0). Observe that (4.1) is satisfied by (wh,uh, ph) = (Wµ

t
,Uµ

t
,Pµ

t
)

if we set

(ŵh, (ûh)t, (ûh)n, p̂h, f) = (Ŵµ
t
,µt, (Ûµ

t
)n, 0,0).

The system (4.1) is also satisfied by (w′
h,u

′
h, p

′
h) = (Wλt

,Uλt
,Pλt

), if we set

(ŵ
′

h, (û
′

h)t, (û
′

h)n, p̂
′
h, f

′) = (Ŵλt
,λt, (Ûλt

)n, 0,0).

Hence, by Lemma 4.1,

− 〈 [[n × Ŵλt
]],µt〉Eh

= (Wλt
,Wµ

t
)Ωh

− 〈µt − Uµ
t
, n × (Ŵλt

− Wλt
)〉∂Ωh

− 〈Ûµ
t
− Uµ

t
, n (0 − Pλt

) 〉∂Ωh
.

The first identity of the lemma follows from this and the identities defining the nu-
merical traces such as (4.2).
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The second identity of the lemma follows just as the fourth; see below. The third
identity follows from Corollary 4.2. It is easy to check that the conditions of the
corollary are satisfied with

(wh,uh, ph) = (Wµ
t
,Uµ

t
,Pµ

t
), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (Ŵµ

t
,µt, (Ûµ

t
)n, 0,0),

(w′
h,u

′
h, p

′
h) = (Wf ,Uf ,Pf ), (ŵ

′

h, (û
′

h)t, (û
′

h)n, p̂
′

h, f
′) = (Ŵf ,0, (Ûf )n, 0,f).

Hence the corollary implies that

−〈ut,n × Ŵf 〉∂Ωh
+ (Uµ,f)Ωh

= −〈ûh,n × ŵ
′

h〉∂Ωh
+ (uh, f

′)Ωh

= −〈û
′

h,n × ŵh〉∂Ωh
+ (u′

h, f)Ωh

= −〈0,n × Ŵµ〉∂Ωh

= 0,

and the required identity follows.
The fourth identity also follows from Corollary 4.2 after verifying its conditions

with

(wh,uh, ph) = (Wλt
,Uλt

,Pλt
), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (Ŵλt

,λt, (Ûλt
)n, 0,0),

(w′
h,u

′
h, p

′
h) = (Wψ,Uψ,Pψ), (ŵ

′

h, (û
′

h)t, (û
′

h)n, p̂
′
h, f

′) = (Ŵψ,0, (Ûψ)n, ψ,0).

The fifth identity follows from Lemma 4.1 with

(wh,uh, ph) = (Wρ,Uρ,Pρ), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (Ŵρ,0, (Uρ)n, ρ,0).

(w′
h,u

′
h, p

′
h) = (Wψ,Uψ,Pψ), (ŵ′

h, (û
′

h)t, (û
′

h)n, p̂
′
h, f

′) = (Ŵψ,0, (Ûψ)n, ψ,0).

The sixth identity follows from Corollary 4.2 after verifying its conditions with

(wh,uh, ph) = (Wf ,Uf ,Pf ), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (Ŵµ
t
,0, (Ûf )n, 0,f),

(w′
h,u

′
h, p

′
h) = (Wψ ,Uψ,Pψ), (ŵ

′

h, (û
′

h)t, (û
′

h)n, p̂
′
h, f

′) = (Ŵψ,0, (Ûψ)n, ψ,0).

This completes the proof of the lemma.
Proof of Theorem 3.2. By the jump conditions (3.6b) and (3.6c),

−〈 [[n × (Ŵλo
t

+ Ŵρ)]],µt〉Eh
= 〈 [[n × (Ŵf + Ŵg)]],µt〉Eh

,

−〈 [[(Ûλo
t

+ Ûρ) · n]], ψ〉Eh
= 〈 [[(Ûf + Ûg) · n]], ψ〉Eh

− 〈g · n, ψ〉∂Ω.

By Lemma 4.3, we have that

− 〈 [[n × Ŵλo

t
]],µt〉Eh

= ah(λ
o
t ,µt), − 〈 [[Ûλo

t
· n]], ψ〉Eh

= −bh(ψ,λ
o
t ),

− 〈 [[n × Ŵρ]],µt〉Eh
= bh(ρ,µt), − 〈 [[Ûρ · n]], ψ〉Eh

= ch(ρ, ψ).

In order to prove (3.8a) and (3.8b), we now only have to show that ℓ1 = ℓ̃1 and ℓ2 = ℓ̃2
where

ℓ̃1(µt) := 〈 [[n × Ŵf ]],µt〉Eh
+ 〈 [[n × Ŵg]],µt〉Eh

,

ℓ̃2(ψ) := 〈 [[Ûf · n]], ψ〉Eh
+ 〈 [[Ûg · n]], ψ〉Eh

− 〈g · n, ψ〉∂Ω.
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But, again by Lemma 4.3, we have

ℓ̃1(µt) = (f ,Uµ
t
)Ωh

− ah(g,µt)

= ℓ1(µt).

Similarly, applying Lemma 4.3 one more time,

ℓ̃2(ψ) = −(f ,Uψ)Ωh
− 〈g, [[n × Ŵψ]]〉Eh

− 〈g · n, ψ〉∂Ω

= −(f ,Uψ)Ωh
+ bh(ψ, gt) − 〈g · n, ψ〉∂Ω

= ℓ2(ψ).

It now only remains to prove that (λot , ρ) is the only solution of (3.8a)–(3.8c).
First observe that the above arguments in fact show that the jump conditions (3.6b)

and (3.6c) hold if and only if (3.8a) and (3.8b) hold, respectively. Hence if (λ̃
o

t , ρ̃) is

another solution of (3.8a)–(3.8c), then the numerical traces generated by LI(λ̃
o

t , ρ̃,f )
will also satisfy (3.6b) and (3.6c). But then, since (3.8c) implies (3.6d), we find that

all the conditions of Theorem 3.1 are verified, so we conclude that λ̃
o

t + gt = (ûh)t
and ρ̃ = p̂h. Since we also have (λot + gt, ρ) = ((ûh)t, p̂h), we conclude that (λ̃

o

t , ρ̃) =
(λot , ρ). This completes the proof of Theorem 3.2.

4.3. Proof of the characterization of Theorem 3.4. To prove Theorem 3.4,
we proceed as in the previous case and gather several key identities in the following
result. Recall the definitions of specific local solutions in (3.16) (such as Wλ,Uλ, etc.).

The numerical traces Ŵ⊙ and P̂⊙ are given by (3.11) for the choices of subscript ⊙
that make sense here, such as when ⊙ is λ, ρ or f , e.g.,

P̂λ = Pλ + τn (Uλ − λ) · n, Ŵρ = Wρ + τt Uρ × n,

just as in the previous case.
Lemma 4.4 (Elementary identities). For any λ,µ ∈ L2(Eh), any ρ ∈ ℓ2(∂Ωh)

and any f ∈ L2(Ω), we have

−〈 [[n × Ŵλ + P̂λ n]],µ〉Eh
= (Wλ,Wµ)Ωh

+ 〈τt(λ − Uλ)t, (µ − Uµ)t〉∂Ωh

+ 〈τn(λ − Uλ)n, (µ − Uµ)n〉∂Ωh
,

−〈 [[n × Ŵρ + P̂ρ n]],µ〉Eh
= −〈ρ,µ · n〉∂Ωh

,

−〈 [[n × Ŵf + P̂f n]],µ〉Eh
= − (f ,Uµ)Ωh

.

Proof. The second identity immediately follows because by (3.17),

n × Ŵρ + n P̂ρ = +ρ n.

To prove the remaining identities, we set P = 0 and Pψ = ψ̄ (where ψ̄ is as
defined in (3.12) and apply Lemma 4.1 and Corollary 4.2 appropriately. Indeed, to
prove the first identity, first observe that (4.1) is satisfied by

(w′
h,u

′
h, p

′
h) = (Wλ,Uλ,Pλ) with (ŵ

′

h, û
′

h, p̂
′

h, f
′) = (Ŵλ,λ, P̂λ,0), and

(wh,uh, ph) = (Wµ,Uµ,Pµ) with (ŵh, ûh, p̂h, f) = (Ŵµ,µ, P̂µ,0).
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Furthermore, PPλ = 0. Hence the first identity follows by applying Lemma 4.1.
Similarly, the last identity follows from Corollary 4.2 setting

(w′
h,u

′
h, p

′
h) = (Wf ,Uf ,Pf ) (ŵ

′

h, û
′

h, p̂
′

h, f
′) = (Ŵf ,0, P̂f ,f), and

(wh,uh, ph) = (Wµ,Uµ,Pµ) (ŵh, ûh, p̂h, f) = (Ŵµ,µ, P̂µ,0).

This completes the proof of the identities.
Proof of Theorem 3.4. By the jump conditions (3.15b) and (3.15c),

−〈 [[n × Ŵλo + P̂λo n + n × Ŵρ + P̂ρn]],µ〉Eh

= 〈 [[n × Ŵf + P̂f n + n × Ŵg + P̂g n]],µ〉Eh
.

By Lemma 4.4, we have that

−〈 [[n × Ŵλo + P̂λo n]],µ〉Eh
= ah(λ

o,µ),

−〈 [[n × Ŵρ + P̂ρn]],µ〉Eh
= bh(ρ,µ).

It remains to show that the form ℓ(·) of the theorem coincides with ℓ̃ defined by

ℓ̃(µ) := 〈 [[n × Ŵf + P̂f n]],µ〉Eh
+ 〈 [[n × Ŵg + P̂g n]],µ〉Eh

.

But, again by Lemma 4.4, we have

ℓ̃(µ) = (f ,Uµ)Ωh
− ah(g,µ)

= ℓ(µ).

The proof of uniqueness of the trace solution (λo, ρ) proceeds as in the type I
case, so we omit it.

4.4. Proof of the characterization of Theorem 3.6. We now prove Theo-
rem 3.6, using the identities gathered in the next lemma. The notation for the numer-
ical traces of the form Û⊙ and P̂⊙ have meanings inherited from (3.20e) and (3.20f)
as in the previous cases.

Lemma 4.5 (Elementary identities). For any γt, δt ∈ L2(Eh), any λn,µn ∈
L2(Eh), any ρ, ψ ∈ L2(Eh) and any f ∈ L2(Ω), we have

−〈 [[Ûγ
t
× n]], δt〉Eh

= (Wγ
t
,Wδt

)Ωh
+ 〈τn(Uγ

t
)n, (Uδt

)n〉∂Ωh

+ 〈
1

τt
n × (γt − Wγ

t
),n × (δt − Wδt

)〉∂Ωh
,

−〈 [[Ûλn
× n]], δt〉Eh

= 〈 [[P̂δt
n]],λn〉Eh

,

−〈 [[Ûρ × n]], δt〉Eh
= 0,

−〈 [[Ûf × n]], δt〉Eh
= (f ,Uδt

)Ωh
,

and

−〈 [[P̂γ
t
n]],µn〉Eh

= 〈 [[Ûµ
n
× n]],γt〉Eh

,

−〈 [[P̂λn
n]],µn〉Eh

= (Wλn
,Wµ

n
)Ωh

+ 〈
1

τt
n × Wλn

,n × Wµ
n
〉∂Ωh

+ 〈τn(λn − Uλn
)n, (µn − Uµ

n
)n〉∂Ωh

−〈 [[P̂ρn]],µn〉Eh
= −〈ρ,µn · n〉∂Ωh

−〈 [[P̂f n]],µn〉Eh
= −(f ,Uµ

n
)Ωh

.
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Proof. The third and seventh identities immediately follow because Ûρ = 0 and

P̂ρ = ρ.
For proving the remaining identities, we apply Lemma 4.1 and Corollary 4.2 with

P = 0 and Pψ = ψ̄. To prove the first identity, observe that (4.1) is satisfied by

(w′
h,u

′
h, p

′
h) = (Wδt

,Uδt
,Pδt

) with (ŵ′

h, (û
′

h)t, (û
′

h)n, p̂
′

h, f
′) = (δt, (Ûδt

)t, 0, P̂δt
,0).

Eq. (4.1) is also satisfied by

(w′
h,u

′
h, p

′
h) = (Wγ

t
,Uγ

t
,Pγ

t
) with (ŵ

′

h, (û
′

h)t, (û
′

h)n, p̂
′

h, f
′) = (γt, (Ûγ

t
)t, 0, P̂γ

t
,0).

Since we also have PPδt
= 0 because of (3.20d), all the conditions for applying

Lemma 4.1 are satisfied. Thus the first identity follows from the Lemma 4.1.
The second identity follows like the fifth; see below. The fourth identity follows

from Corollary 4.2 with

(w′
h,u

′
h, p

′
h) = (Wδt

,Uδt
,Pδt

), (ŵ
′

h, (û
′

h)t, (û
′

h)n, p̂
′

h, f
′) = (δt, (Ûδt

)t, 0, P̂δt
,0),

(wh,uh, ph) = (Wf ,Uf ,Pf ), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (0, (Ûf )t,0, P̂f ,f ).

The fifth identity follows from Corollary 4.2 with

(w′
h,u

′
h, p

′
h) = (Wγ

t
,Uγ

t
,Pγ

t
), (ŵ

′

h, (û
′

h)t, (û
′

h)n, p̂
′

h, f
′) = (γt, (Ûγ

t
)t, 0, P̂γ

t
,0),

(wh,uh, ph) = (Wµ
n
,Uµ

n
,Pµ

n
), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (0, (Ûµ

n
)t,µn, P̂µ

n
,0).

The sixth identity follows from Lemma 4.1 with

(wh,uh, ph) = (Wµ
n
,Uµ

n
,Pµ

n
), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (0, (Ûµ

n
)t,µn, P̂µ

n
,0),

(w′
h,u

′
h, p

′
h) = (Wλn

,Uλn
,Pλn

), (ŵ
′

h, (û
′

h)t, (û
′

h)n, p̂
′

h, f
′) = (0, (Ûλn

)t,λn, P̂λn
,0).

The eighth identity follows from Corollary 4.2 with

(wh,uh, ph) = (Wµ
n
,Uµ

n
,Pµ

n
), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (0, (Ûµ

n
)t,µn, P̂µ

n
,0),

(w′
h,u

′
h, p

′
h) = (Wf ,Uf ,Pf ), (ŵ

′

h, (û
′

h)t, (û
′

h)n, p̂
′

h, f
′) = (0, (Ûf )t,0, P̂f ,f).

This completes the proof.
Proof of Theorem 3.6. By the jump conditions (3.22b) and (3.22c),

−〈 [[(Ûγ
t
+ Ûλo

n
+ Ûρ) × n]], δt〉Eh

= 〈 [[(Ûf
t
+ Ûg

n
) × n]], δt〉Eh

− 〈gt × n, δt〉∂Ω,

−〈 [[(P̂γ
t
+ P̂λo

n
+ P̂ρ) n]],µn〉Eh

= 〈 [[(P̂f
t
+ P̂g

n
) n]],µn〉Eh

.

By Lemma 4.5, we have that

− 〈 [[Ûγ
t
× n]], δt〉Eh

= ah(λ
o
t , δt), − 〈 [[P̂γ

t
n]],µn〉Eh

= −bh(µn,γt),

− 〈 [[Ûλo
n
× n]], δt〉Eh

= bh(λ
o
n, δt), − 〈 [[P̂λo

n
n]],µn〉Eh

= ch(λ
o
n,µn),

− 〈 [[Ûρ × n]], δt〉Eh
= 0, − 〈 [[P̂ρ n]],µn〉Eh

= d(ρ,µn).

It remains to show that ℓ1 = ℓ̃1 and ℓ2 = ℓ̃2 where

ℓ̃1(δt) := −〈 [[(Ûf + Ûg
n
) × n]], δt〉Eh

− 〈gt × n, δt〉∂Ω,

ℓ̃2(ψ) := 〈 [[(P̂f
t
+ P̂g

n
) n]],µn〉Eh

.
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But, again by Lemma 4.5, we have

ℓ̃1(δt) = −(f ,Uδt
)Ωh

− bh(gn, δt) − 〈gt × n, δt〉∂Ω

= ℓ1(δt),

and, similarly, by Lemma 4.5,

ℓ̃2(µn) = (f ,Uµ
n
)Ωh

− ch(gn,µn)

= ℓ2(µn).

The proof of Theorem 3.6 is completed by also establishing the uniqueness as in the
previous cases.

4.5. Proof of the characterization of Theorem 3.8. To prove Theorem 3.8,
we use the identities below. The numerical traces of the form Û⊙ appearing in these
identities are defined using (3.24e) and (3.24f) as in the previous cases for all possible
choices of the subscripts ⊙ that make sense for this case.

Lemma 4.6 (Elementary identities). For any γt, δt ∈ L2(Eh), any ρ, ψ ∈ L2(Eh),
any φ ∈ H1(Ωh) and any f ∈ L2(Ω), we have

−〈 [[Ûγ
t
× n]], δt〉Eh

= (Wγ
t
,Wδt

)Ωh
+ 〈

1

τn
Pγ

t
,Pδt

〉∂Ωh

+ 〈
1

τt
n × (γt − Wγ

t
),n × (δt − Wδt

)〉∂Ωh
,

−〈 [[Ûρ × n]], δt〉Eh
= −〈 [[Ûδt

· n]], ρ〉Eh
,

−〈 [[Ûφ × n]], δt〉Eh
= 〈n × gradφ, δt〉∂Ωh

,

−〈 [[Ûf × n]], δt〉Eh
= +(f ,Uδt

)Ωh
,

and

−〈 [[Ûγ
t
· n]], ψ〉Eh

= −〈 [[Ûψ × n]],γt〉Eh

−〈 [[Ûρ · n]], ψ〉Eh
= (Wρ,Wψ)Ωh

+ 〈
1

τn
(ρ− Pρ), (ψ − Pψ)〉∂Ωh

+ 〈
1

τt
n × Wρ,n × Wψ〉∂Ωh

,

−〈 [[Ûφ · n]], ψ〉Eh
= −〈gradφ · n, ψ〉∂Ωh

,

−〈 [[Ûf · n]], ψ〉Eh
= +(f ,Uψ)Ωh

.

Proof. The third and seventh identities are immediate because (3.28) implies that

Ûφ = gradφ.

In the remainder of the proof, whenever we apply Lemma 4.1 or Corollary 4.2 we take
Pv = gradφv and P = 0. To prove the first identity, we proceed as in the previous
cases and apply Lemma 4.1 (now additionally noting that PUγ

t
= 0) with

(wh,uh, ph) = (Wγ
t
,Uγ

t
,Pγ

t
), (ŵh, ûh, p̂h, f) = (γt, Ûγ

t
, 0,0),

(w′
h,u

′
h, p

′
h) = (Wδt

,Uδt
,Pδt

), (ŵ
′

h, û
′

h, p̂
′

h, f
′) = (δt, Ûδt

, 0,0).
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The second identity is proved just like the fifth; see below. The fourth identity follows
from Corollary 4.2 with

(wh,uh, ph) = (Wf ,Uf ,Pf ), (ŵh, ûh, p̂h, f) = (0, Ûf , 0,f),

(w′
h,u

′
h, p

′
h) = (Wδt

,Uδt
,Pδt

), (ŵ′

h, û
′

h, p̂
′

h, f
′) = (δt, Ûδt

, 0,0),

The fifth identity follows from Corollary 4.2 with

(wh,uh, ph) = (Wγ
t
,Uγ

t
,Pγ

t
), (ŵh, ûh, p̂h, f) = (γt, Ûγ

t
, 0,0),

(w′
h,u

′
h, p

′
h) = (Wψ,Uψ ,Pψ), (ŵ

′

h, û
′

h, p̂
′

h, f
′) = (0, Ûψ, ψ,0).

The sixth identity follows from Lemma 4.1 with

(wh,uh, ph) = (Wρ,Uρ,Pρ), (ŵh, ûh, p̂h, f) = (0, Ûρ, ρ,0).

(w′
h,u

′
h, p

′
h) = (Wψ ,Uψ,Pψ), (ŵ′

h, û
′

h, p̂
′

h, f
′) = (0, Ûψ, ψ,0).

The eighth identity follows from Corollary 4.2 with

(wh,uh, ph) = (Wf ,Uf ,Pf ), (ŵh, ûh, p̂h, f) = (0, Ûf , 0,f),

(w′
h,u

′
h, p

′
h) = (Wψ ,Uψ,Pψ), (ŵ

′

h, û
′

h, p̂
′

h, f
′) = (0, Ûψ, ψ,0).

Proof of Theorem 3.8. By the jump conditions (3.27b) and (3.27c),

−〈 [[(Ûγ
t
+ Ûρ + Ûφ) × n]], δt〉Eh

= 〈 [[(Ûf × n]], δt〉Eh
− 〈g × n, δt〉∂Ω,

−〈 [[(Ûγ
t
+ Ûρ + Ûφ) · n]], ψ〉Eh

= 〈 [[Ûf · n]], ψ〉Eh
− 〈g · n, ψ〉∂Ω,

By Lemma 4.6, we have that

− 〈 [[Ûγ
t
× n]], δt〉Eh

= ah(γt, δt), − 〈 [[Ûγ
t
· n]], ψ〉Eh

= bh(ψ,γt),

− 〈 [[Ûρ × n]], δt〉Eh
= bh(ρ, δt), − 〈 [[Ûρ · n]], ψ〉Eh

= dh(ρ, ψ),

− 〈 [[Ûφ × u]], δt〉Eh
= ch(φ, δt), − 〈 [[Ûφ · n]], ψ〉Eh

= eh(φ, ψ),

and that

〈 [[(Ûf × n]], δt〉Eh
− 〈g × n, δt〉∂Ω = ℓ1(δt),

〈 [[Ûf · n]], ψ〉Eh
− 〈g · n, ψ〉∂Ω = ℓ2(ψ).

The proof of Theorem 3.8 is now completed by a uniqueness argument as in the
previous cases.

5. Concluding remarks. In this paper, we introduced a new HDG method for
the Stokes system and showed four different ways of hybridizing it. In order for these
methods to be competitive with previously known ones [14, 20, 18, 19, 12, 15, 3, 13],
they need to be, not only efficiently implemented, but also efficiently solved. We would
like to emphasize that our characterization theorems are a first step towards such a
goal since they shed light on the structure of the corresponding equations. However,
we feel that a meaningful study of those equations deserves a separate paper. The
design of efficient solvers for these methods constitutes work in progress.
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Another subject that constitutes the subject of ongoing work is the analysis of
the accuracy of the methods. A careful a priori error analysis of the HDG methods
should reveal what is the effect of the choice of the stabilization parameters τn and τt
on their accuracy. Let us recall that, in the context of second-order elliptic problems,
the HDG methods [10] were shown to be more accurate than all previously known DG
methods when their stabilization parameters are suitably chosen. In particular, when
using polynomial approximations of the same degree for both the solution and its
gradient, both approximations were shown to converge with optimal order; see [4, 11].
It is thus reasonable to expect that by a proper choice of the parameters τn and τt, the
HDG method using polynomial approximations of the same degree for the vorticity,
velocity and pressure, will also converge optimally in all three variables. This is work
in progress.
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