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I. INTRODUCTION 

Material aging is understood as changes of material properties with time. 
The aging is usually observed as an improvement of some properties and a 
deterioration of others. For example an increase of rigidity and strength and 
reduction in toughness with time are commonly observed in engineering ma­
terials ([1],[6]). In an attempt to model aging phenomena on a continuum 
(macroscopical) level one faces three major tasks. The first is to identify an 
adequate age parameter that represents, on a macroscopic scale, the mi­
cro and sub microscopical features, underlying the aging phenomena such as 
nucleation, growth and coalescence of microdefects, physico-chemical trans­
formations etc. The age parameter should be considered as a parameter of 
state, in addition to the conventional parameters such as stress tensor and 
temperature. 

The second task consists of formulation of a constitutive equation of ag­
ing, i.e., equations of age parameter evolution expressed in terms of controlling 
factors, e.g., load and temperature. It is expected that at common circum­
stenses a small variation of controlling factors results in a small variation of 
age parameter. However, at certain conditions, a sudden large variation of age 
parameter may result from a small perturbation of controlling factors. Exper­
imental examination, classification and analysis of the condition that lead to 
such a catastrophic behavior, constitute the third task of the modeling. For­
mulation of local failure criteria within the scope of continuum mechanics is 
an example of this task. 

In many engeneering materials the aging is manifested in variations of mass 
density as well as in the spectrum of relaxation time. Thus in a macroscopic 

tThis research was supported by the AFOSR grant 92-J-0201 and by NSF grant MSS 
NSF-9310729. 
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test the aging can be detected in variations of intrinsic (material) length 
and time scales. Following this notion, in the present paper we employ the 
material metric tensor G as an age parameter. An evolution of Gin 4D 
-material space-time determines in our approach an inelastic behaviour and 
time dependent material properties recorded by an external observer. 

The objective of the present work is to derive the constitutive equations of 
aging based on Extremal Action Principle. The variational approach seems to 
be most promissing in view of complexity of the problem and lack of experi­
mental data. It provides with a guide line for the experimental examination 
of the basic assumptions and modifications, if necessary. 

The major task in implementation of extremal action principle is the con­
struction of an appropriate Lagrangian. In variational formulations of Elas­
ticity theory the Lagrangian is usually constructed in terms of invariants of 
the gradient of deformation. In Classical Field Theories invariants of metric, 
connection and the corresponding curvatures together with the gradients of 
"material fields" are emploied in the Lagrangian ([9],[11],[14]). In the present 
paper we combine the above approaches and revisit the classical continuum 
mechanics from the point of view of an intrinsic (material) geometry that 
includes an inner time. 

In Sec. II we discuss the kinematics of an aging media emploing a 4-
dimentional material space-time P = IR x B endowed with the 4D-metric 
G of Lorentz type (intrinsic metric) embedded into 4-dimentional Absolute 
(Newton's) space-time M4. We define the mass form and formulate the mass 
conservation law that, in the context, gives a non-trivial relation between the 
"reference density" Po and the time evolution of the material metric G. A 
strain tensor Eel and a ground "state" are introduced as a measure of de­
formation and a natural analog of the "unstrained state" respectively. The 
central part of the work is the Sec. III where we propose a variational for­
mulation of aging theory. The equation of Elasticity together with the gen­
eralized Hooke's equation are conventionaly derived considering the variation 
of the action integral with respect to the deformations (pi. Similarly, new 
equations of evolution of the age parameter (and, therefore, of elastic moduli, 
mass density and inelastic deformation) result from the variation of the action 
integral with respect to the material metric tensor. The balance equations 
(conservation laws) resulting from the symmetries of the Absolute (Newton's) 
space-time and material (intrinsic) space-time respectively and the relations 
between them are discussed in the Sec. IV. Considerations of the paper are 
illustrated in Sec. V by the example - linearized model of aging of a rod whose 
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time dependent elastic properties and irreversible deformation are associated 
with an evolving metric in 2D material space-time. More detailed exposition 
of the results presented here will be published in the article [2]. 

II. KINEMATICS OF AGING MEDIA 

Material body is considered here, in a conventional way, as a 3D manifold 
B, i.e. a set of "idealized" material points (with the coordinates X I, I = 
1,2,3). Cylinder P = IR x B (with the coordinates (XO = T,XI,I = 1,2,3)) 
equiped with the Lorentz type "intrinsic" ("material") metric tensor G with 
components G I J is refered to a material "space-time" (P, G). We require that 
all the sections BT = {T = const} are space-like, while the material "world 
lines" {IR x (X I, I = 1,2, 3)} are time-like with respect to the metric G. 

Metric G defines the 4D volume element dV = v-IGld4X, we denote the 
determinant of the matrix (G IJ) by the symbol I GI. 

History of deformation of the body B is represented by a diffeomorphic 
embedding ¢ : P --+ M of the material space-time P into the Minkowski space 
M = JR4 (with the coordinates (t = xO,xi,i = 1,2,3)), equiped with the 3D 
Eucledian space metric h with components dij . Later we restrict ¢ by requiring 
t = ¢O(X) = T. Such deformations are called "sinchronized". 

Using the deformation ¢, we define the slicing of P by the level surfaces of 
the zeroth component of ¢ 

(2.1) 

For the sinchronized deformation B""t = B T , therefore these surfaces are 
spacelike (see above). We assume the same to be true in the general case. 

There is a "flow vector field" u'" in P associated with the slicing B""t. It is 
the only time directed vector field orthogonal to the slices B""t for all values 
of t and < u"', u'" >= -1 (see [5],[14]). u'" = [-Goo]-! a~ for sinchronized de­
formation ¢ and the block-diagonal metric G in coordinates T, XI, 1= 1,2,3. 

In addition to the volume element, the mass form dM = PodV is defined 
in P. The reference mass density Po, defined by this representation satisfies 
the mass conservation law Luq,dM = 0, where Luq, is the substantial (Lie) 
derivative in the direction of the field u. In the sinchronized case the mass 
conservation law is equivalent to the following representation of the reference 
density: 

( I rc;;; 
Po T, X ) = Po(O, X)y TGT' (2.2) 
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where Po(O, X) is the initial values of Po (we assume that G(O, X) is the 
Minkowski metric). Space density p is defined, as usual, by the condition 
¢*(pdv) = PodV, that gives po ¢ = poJ'{i;, where J(¢) is the Jacobian of the 
deformation ¢. 

Slicing B¢ ,t defines the covariant tensor, = G + u¢ ® u¢ (see [9],[14]). 
Denote by II the orthonormal projector II = G-1, to the planes tangent to 
the slices B¢t. Tensor, induces the time dependent 3D-metric gt on the slices 
B¢ ,t (see [5]). In the sinchronized case and the block-diagonal metric G, gt is 
just the restriction of 4D-metric G to the slices BT . We do not put any futher 
condition on the metric gt. In particular, it may have non-zero curvature 
(Le. incompatibility of deformation). Apparently there are residue stresses 
associated with this curvature. 

We also introduce the 4D tensor K4 = G-IC4(¢)-U~®u. ¢' where C4(¢) = 
¢* h, and define 3D-elastic covariant strain tensor Eel as follows 

1 1 
E(¢)el = "2 IIln (K)II = "2 IIln (G- 1¢*h - u~ ® u. ¢)II. (2.3) 

Then, 3D elastic strain tensor E(¢)el results from the restrictions of tensors 
G-1 and ¢*h to the slices B¢,t. It is a natural measure of a deviation of 
the actual state from the "ground state" ¢, ¢*h = gt. For the sinchronized 
deformation ¢ and the block-diagonal metric G, Eel = ~ln(gtlC(¢)) i.e con­
ventional logarithmic measure of deformation. 

The total deformation Etot of the body at each given moment T that mea­
sures the deviation of the deformed Eucledian metric ¢* hIB</>.t from the initial 
(Eucledian) 3D-metric h on B¢,t translated there from B, Etot = ~ln(h-lC(¢)) 
in important practical cases can be represented as the sum of the elastic defor­
mation Eel = ~ln(gtlC(¢)) and an irreversible deformation Eir = ~ln(h-lgt) 
(the logarithm of (l,l)-tensors is taken on the slices B¢ ,t): 

(2.4) 

The following diagram presents the above decomposition: The actual state 
under the load at any given moment T results from both elastic (with the 
variable elastic moduli) and inelastic (irreversible) deformations. The "ground 
state" of the body is characterized by the 3D-metric gt. This state is the 
background to which the elastic deformation is added to reach the actual 
state. 

Transition from the reference state to the "ground state" that manifests 
in the evolution of the (initial) Eucledian metric h to the metric gt can not 
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11111111111 
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Figure 1. Geometrical modeling of physical systems 

be described, in general, by any point transformation. Transition from the 
"ground state" to the actual state at the moment t also is not compatible in 
this sense. Yet the transition from the reference state to the actual state is 
represented by the diffeomorphism <f;t. Here we consider the material 4D­
metric G and the deformation <f; (or elastic strain tensor Eel (<f;)) to be the 
dynamical variables of the theory. Reference density Po is found by the formula 
given above if its initial value Po(T = 0) is known. 

III. VARIATIONAL FORMULATION OF EQUATIONS OF AGING 

VARIATIONAL PRINCIPLE Following the framework of the classical field 
theory we take Lagrangian density £(G,E) refered to the volume form 
dV = v-IGld4X as a density that depends on the dynamic variables of our 
model i.e. 4D-material metric G and the deformation history <f;: £(G, Eel) = 
L(G, Eel)dV, with L(G, Eel) being the Lagrangian. 

Deformation <f; is 3-dimensional in the sense that it reflects only spacial part 
h of the metric in M and, the 4D-tensor C4 (<f;) = <f;*h is the degenerate metric 
in P. We compare it with the tensor 'Y = G + u¢ Q9 u¢. Elastic deformation 
Eel measures the deviation of C(<f;) from'Y on the slices B¢,t. 

Coincidence of'YIB"", and C(<f;) is possible ifthere is no elastic deformation 
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and if deformation ¢ describes just an evolution of the metric gt. 
Based on these arguments we present the Lagrangian L(G, E) as the sum 

of the "ground state" Lagrangian Lm (G) that depends on the metric G only 
and the elastic part Le (G, E) that is a perturbation of the metric part due to 
the elastic deformation: 

(3.1) 

In a quasistatic theory we ignore the kinetic energy and the last term is simply 
related to the elastic strain energy f that is assumed to be a function of two 
first invariants of the (1,1)-strain tensor Eel, Tr(Eel) and Tr((Eel)2). 

(3.2) 

where Po = Po / Po (0) = J TtJt is the reference density normalized to its initial 

value and the strain energy has the form f(Eel) = JlTr(Eel 2) + >"(Tr(Eel))2, 
Jl and >.. are initial values of elastic constants. F is the potential of the body 
forces. 

In more general consideration, one can take the strain energy Le as a 
function of joint invariants of tensor Eel with the tensor K and the Ricci 
tensor Ric(gt) of the metric gt. 

Notice that when the intrinsic metric G coincides with the Minkowski 
metric (with c=1), tensor Eel is the usual strain tensor of the classical elasticity 
theory ([10],[11]) and the expression (3.2) is the conventional quadratic form 
of the strain energy of linear elasticity. 

Term Lm(G) in (3.1) can be interpreted as the "cohesive energy" of the 
solid. We assume that the ground state Lagrangian Lm (G) depends on the 
invariants of the tensor of extrinistic curvature K = Luq, 'Y of slices B""t in 
the material space-time P (see [5,14]) and on the Ricci tensor Ric(gt) of the 
metric gt. In the case of a block-diagonal metric G, 'Y = (g ~) and, therefore, 
K is, essentially, the time derivative of the 3D projection gt of material metric 
G: JCj = V_ICDD G1AGAJ,0. Tensor K is interpreted as the rate of change of 
effective intrinsic spacial scales in the media due to different inelastic processes 
together with the influence of elastic deformation on these processes. 

The ground state Lagrangian Lm is constructed as a linear combination of 
quadratic invariants of tensors Ric(gt) and K: 

Here 'Yo is the initial energy density (per unit mass) that is considered to 
be constant and serves as the parameter of the theory, R(gt) is the scalar 
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curvature of the 3D metric y. Coeficients a, (3,~, T are also parameters to be 
choosen later. 

In simpliest cases (homogeneous case, ID case) scalar curvature R of the 
metric Yt is zero and the last term in (3.3) vanishes. More general case where 
Y has nonzero curvature localized on some surfaces or lines (situation studied 
in gravity by A. Taub [15]) will be considered elsewhere. 

Notice that the 4D-scalar curvature R( G) of the metric G can be expressed 
as -(tr(K?) - (trlC)2) + R(Yt), up to a divergence term (see [5], [14]). As a 
result, Hilbert-Einstein action R(G)J-IGI is the special case of (3.3). Follow­
ing the standard procedure for the Lagrangian formulations of the Elasticity 
(see [11]) we add the surface term J W(cp, G)d3 r, with W representing the 
power of surface truction; to formulate the action integral on a tube domain 
U = [0, t] x V, with (V, BV) being an arbitrary subdomain of B with the 
boundary BV: 

Au(G, cp) = {(Lm(lC) + Le(E))dV + ( W(cp, G)d3 r,. (3.4) Jv Jav 

EULER-LAGRANGE EQUATIONS Variation principle of extremal action 
8A = ° taken with respect to the dynamic variables cp and G gives a system 
of Euler-Lagrange equations that can be interpreted as the coupled elasticity 
and aging equations 

;~~ - B~I (;~7) + poJ-IGI(VF)m = 0, 1= 0,1,2,3. (3.5) 

8Lm J-IGI 
8GIJ = - 2 TIJ , 1= 0,1,2,3. (3.6) 

Elasticity Equations (3.5) are obtained by taking the variation 8A with re­
spect to the components cpi inside the domain U. These equations (except of 
one with I = 0) coincide with the conventional equations of equilibrium of the 
Nonlinear Elasticity. However their special features are associated with the 
different definition of the elastic strain tensor Eel and with the dependence 
of the elastic Lagrangian Le on time through the metric G and in general 
through the Ricci tensor and the extrinsic curvature tensor. As a result, ten­
sor of elastic constants is a function of these parameters and, therefore, of 
time. Evolution of these parameters is defined by the equations (3.6) (refered 
as Aging Equations). Zeroth equation is an identity for sinchronized deforma­
tions. The Hooke's law (obtained by the equating zero of surface variation of 
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deformation history qi) takes the form 

aCe = pI I 0 1 2 3 acpm m' , m = , , , . 
,I 

(3.7) 

Here Pfn = - ~:: is the first Piola-Kirchoff tensor, with pI being the 

components of the traction surface density (vir d3 ~ = pI d~ I). Using Hooke's 
law and assuming the absence of body forces ('\7 F = 0) one can rewrite the 
elasticity Equations in the well known form 

aCe a I 
acpm - aXIPm = 0, m = 1,2,3 (3.8) 

(If Ce is traslationally invariant in space, the first term in the left side vanishes). 

AGING EQUATIONS Variation of the action with respect to the metric 
G give us the equations of the material metric G evolution i.e. the aging 
equations (3.6) where ~r-lGT TIJ = ~~tJ defines the "canonical" Energy­
Momentum tensor (EMT). This tensor is symmetric and has a close relation 
with the Eshelby Energy-Momentum tensor bIJ ([4],[7]). Indeed, (see [2]) 
components of these tensors in a case of a block-diagonal metric G are related 
as follows 

(3.9) 

Notice also that the spacial part of the tensor T coincide with the symmetrized 
second Piola-Kirchoff tensor S: r-lGTTIJ = SCIJ) , I, J = 1,2,3. 

Equations (3.5-3.6) together with the expression (2.2) for the reference 
density form the closed system of equations for dynamical variables (G I J, Eel). 
They complemented with the initial and boundary conditions, provides one 
with a closed non-linear boundary value problem for deformation and material 
properties evolution. 

In general system (3.5-6) seems rather complex especially if the Le depen­
dence on Ric{gt) or K is included. Yet some problems can be readily analysed. 

BLOCK-DIAGONAL METRIC G, SINCHRONIZED cp. In this case 

(KIJ) = (~ ~G ). 
v-Goo IJ,O 

From this it follows that only derivatives in Xl, I = 1,2,3 that appears in 
Lm = 'Yo + p(K) + TR{g) {p is a sum of term linear by K and homogeneous 
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function of invariants of tensor K- of degree 2) are those in R(gt) and that gt 
is equal to the restriction of G to the slices BT for each t. No derivatives in 
Goo appears anywhere in C. In particular, (OO)-equation is not a dynamical 
equation but rather the condition, similar to the "energy condition" in the 
gravity, see [5]. 

This equation has the form 

(3.10) 

where ..,fiii is the volume element of the 3D metric g, P2 is the quadratic part of 
Lm and f is the strain energy. This equation can be used to exclude Goo from 
the other six equations (3.6). Alternatively, it can be used as the additional 
equation to select convinient variables (see [2], Example 2). 

Spacial part of equation (3.6) takes the form 

V9 ·AB· . -2FCJ; (agIJgAB + (3gIAgJB) 9 + qIJ(g,g, Goo, Goo) + TEIJ(gt) = S(IJ). 

(3.11) 
Here EIJ(g) is the analog of the Einstein tensor of the 3D-metric gt. The differ­
ence with the usual Einstein tensor is due to the presence of the factor J -Goo 
in the term J-IGIR3(g) of the Lagrangian density (J-IGI = J-Goo..,fiii). 
Term q on the left side depends on the metric coefficients and their first deriva­
tives in time. 

Right side of (3.7) contains no derivatives of metric coefficients. Third term 
in the right side contains space derivatives of GIJ , I, J = 1,2,3 but does not 
contain time derivatives. The first two terms in the left side on the contrary, 
contain only derivatives in time but no space derivatives. This equation is of 
the second order in time. In the case where the term with the constant a 
dominate one with the constant {3 (for example, if (3 = 0) this equation can 
be easily transformed to the normal form 

a:~:J + F(G, ~~, ;~, ;;, V4J) = o. 

Below we consider 3 special cases. 

1) HOMOGENEOUS MEDIA In a case of a homogeneous media tensor 
EIJ(g) is identically zero. As a result, (3.11) becomes a system of quasilinear 
ordinary differential equations of the second order for G I J. Cauchy problem 
for this system is correct if a > > {3. 



GEOMETRICAL MODELING OF MATERIAL AGING 31 

In a case, where Ric(gt} ~ 0, a good approximation of the general system 
(3.5-6) can be proposed. If the total deformation <p is approximated by the 
ground deformation ¢ in evaluation of EMT TlJ in the right side of (3.6), 
the latter becomes decoupled from equilibrium equation (3.5). This allows 
to study aging equations separately and, after obtaining solution G of these 
equations, substitute them into elastic equilibrium equation (3.5) and solve it 
as the usual elasticity equation with variable elastic moduli. 

2} STATIC CASE If G does not depend on time. K = 0, p(K} = ° and 
(3.10) reduces to the "energy balance equation" (with scalar curvature R3(g) 
plaing the role of metric energy} while (3.11) becomes the second equilibrium 
equation describing the stress produced by the curvature of the metric g and 
"frozen" into the media (comp. [9],[11]). 

3} HOMOGENEOUS ROD (l-D CASE) In a case of a 1D media (rod) 
the curvature of g is identically zero. Then the equations (3.6) reduces to a 
nonlinear dynamical system for Goo and Gll (see [2], Example 2). 

IV. BALANCE EQUATIONS 

As it is usual for a Lagrangian field theory, action of anyone-parameter 
group of transformations of the space P x M commuting with the projecton 
to the first factor leads to the corresponding balance law (see [11]). In partic­
ularly, translations in the "laboratory space-time" M lead to the equations of 
motion (3.5) (including zeroth one that is trivially valid here), rotations in the 
"laboratory space" lead to the angular momentum balance law (conservation 
law in isotropic case). Respectivelly, translations in the "material space-time" 
P lead to the energy balance law (translations along Taxis) and to the 
material momentum balance law (called also "pseudomomentum") , ro­
tations in the material space B lead to the "material angular momentum" 
balance law (see [7],[8],[13]). In terms of the 4D Eshelby tensor 

material energy-momentum conservation law has the form (see [2]) 

( 4.1) 
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Relations between the space and material balance (conservation) laws are 
given by the deformation gradient: 

( ~~) = 0 <p\ ... <P~3 ( ~~) • ( 
1 <pIa ... <P30) 

1/4 ... ... ... "4 
o ... ... <p~ 

Similar to the relativistic elasticity ([9]) system of material momentum balance 
laws "11 = 0, I = 1,2,3 is equivalent to the elasticity equations Vm = 0 while 
energy balance law "10 = 0 (which is the material law) follows from any of these 
two systems: "10 = L!~~ ViVi' This reflects the fact that the deformations 
we consider are not really 4-dimensional, and that we restrict the class of 
deformations to sinchronized ones. 

Energy balance law plays special role in our considerations. If the elastic 
Lagrangian Le = Le(Eel) depends only on the strain tensor Eel and if Lm is 
function of JC only, energy balance law takes the following form 

(4.2) 

Here [tot is the total inner energy density, P/ is the first Piola-Kirchoff stress 
tensor. That equation has the standard form "rate of change of inner energy 
equals to the 3D flow of energy". The total inner energy [tot is composed 
of the usual elastic strain energy (first term) and the "metric energy" (sum 
of the second and third terms). For the external "observer" all three terms 
represent the total energy while from the point of view of "internal observer" 
this total interior energy comprises three terms corresponding to the different 
processes going in the media. In the next section this balance will be presented 
in the more specific terms in the case of an aging rod. The sum in the right 
side represents the flow of the traction forces power. In more general case an 
additiomil flows related to the change of the inner metric G ("material forces 
power") appear (comp. [3],[12],[13]). In the case of the conventional elasticity 
intrinsic metric G does not depend on time and the energy balance takes its 
classical form. 

First term in the left side of (4.2) is the elastic strain energy, second and 
third together represent a "cohesive" energy i.e. a part of the total energy 
density associated with the integrity of the media. Reduction of the cohesive 
energy due to the aging can be related to an increase of brittleness. This 
relation is a subject of different article. 
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V. LINEARIZED PROBLEM 

Minkowski metric G~J = vI 8IJ , where VI = -1 for I = 0 and = +1 for 
I = 1,2,3 and the equilibrium embedding 1i(T, X) = Xi are solutions of 
system (3.5)-(3.6) for I = O. Here we consider the linearization of the system 
(3.5-3.6) for small total deformation, that implies a small decline of a material 
metric from the Minkowski metric as well as small components of elastic strain. 

We decompose ¢i(XI) = Xi + u i, U O = 0 and consider the gradients of 
deviations u i to be small. 

We also decompose the block-diagonal metric G in a similar fasion: G IJ = 
G~J + f.~J. Here f.P is the small deviation of matherial metric G from the 
Minkowski metric GO. Denote by f.~ the spacial part of tensor f.p. We consider 
E~J to be of the same magnitude as U i I • 

We have (using eucledian metric t~ rise and lower the indices) ¢iI = 8}+UiI, 
C ( ¢) IJ = 8 IJ + (u ~J + u"j ). For the elastic strain tensor we have ' , 

(5.1) 

where Etot = ~(u5 + uf) is the total strain. 
Notice that in this approximation space components of strain tensors co­

incide with the coresponding components of material strain tensors. We also 
have Eir = ~ln(h-lgd ~ E~, so E~ is the linearized tensor of inelastic deforma­
tion. 

For the determinant of the material metric G and for the tensor of ex­
trinistic curvature we have the following approximate expressions: IGI ~ 
-1 + Ego - tr(E~), J-IGI ~ 1 - ~(Ego - tr(E~)), trace is taken with respect 
to the eucledian 3D metric, K = gt EP• For the reference density we have 

Po ~ Po(O, X)(1 _ tr~E~)). 

Lagrangian of this linearized problem is (in the absence of the body forces) 

( ~ ~(~)) ~ 
Llin = b + K;tr(En) 1 - 200 + T + e ~Otr(E~),o + 

atr((E~ ,0)2) + ,B(tr(E~,0))2 + ~tr(Eel)2 + ~ (tr(Eel ))2, (5.2) 

Hooke's law has the conventional form P = /-lEel + ~tr(Eel)I, I being the 
3D unit tensor, and, in this approximation, Cauchy tensor a coins ide with the 
Piola-Kirchoff tensor P. 
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Linearized equations have the form 
Equilibrium equation: 

div(o-) = O. (5.3) 

This equation is similar to the usual linear equilibrium equation with the force 
div(E~). 

Metric Equations (linearized equations (3.6)) 

P) . ( P) , "'tr(E3 + ~tr E3 ,0 = 2' (5.4) 

and 

(~+",(1- E~O) + I\:tr(En) I - ~tr(E~)Ego ,0I - 2 (a€~ ,00 + .BI(tr(E~)),oo) = 0-. 

(5.5) 
Here , is considered to be a small parameter. 

Equation (5.4) gives (we take EP(t = 0) = 0) 

tr(E~) = 2: (1 ~ e- ft'). (5.6) 

Equations (5.5) are equations of the second order in time for the five free 
components of the tensor E~ and one of the first order in time for EgO' 

Consider a 1D case (rod). Here we have only components Ego and Ell' We 
put .B = O. Young module E is, in this approximation, constant. Then, (5.6) 
gives 

P '(1 -!>.t) Ell = - - e e • 
21\: 

Equation (5.6) for constant stress 0- has the solution 

P -!>.t (",+2,-20-) 2a",-e -!>.t 
Eoo = ce e + I\: + ~3 te e . 

Adding the condition that at t = 0 Ego = 0 we get 

, c+ 1 0-
-=---+-. 
'" 2 '" 

If, in addition, we require that Eil = 0 if the load is zero (0- = 0), then c = -1 
and we have 

(5.7) 
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and for the irreversible deformation 

p _ a ( -!!.t) 
Ell - - 1 - e ( . 

K, 
(5.8) 

This represents the well known creep behavior of a material with fading mem­
ory ([6]). 

VI. CONCLUSION 

A variational approach is proposed to formulate constitutive equations for 
aging media. The approach is based on the assumption that the metric tensor 
of the inner (material) space-time geometry together with an elastic strain 
tensor constitute a complete set of parameters of state. This assumption com­
bined with classical Hamilton's principle provides a framework for derivation 
the constitutive and balance equations modeling material behaviour. Selection 
of a particular form of the Lagrangian, as it is usual in a variational formula­
tion, leads to a particular constitutive equations. Thus, for one of the simplest 
linearized case the approach leads to a model of well studied creep behavior 
of a material with fading memory. Analysis of various forms of Lagrangian, 
the resulting models of material behavior, comparison with the experimental 
data as well as with conventional thermodynamic restrictions is the subject of 
our next work. 
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