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ABSTRACT	35 

This paper describes research undertaken to establish plausible fuel-speed curves (FSC) for 36 
hypothetical advanced powertrain vehicles. These FSC are needed to account for the effects of 37 
congestion in long-term transportation scenario analysis considering fuel consumption and 38 
emissions. We use the PERE fuel consumption model with real-world driving schedules and a 39 
range of vehicle characteristics to estimate fuel economy (FE) in varying traffic conditions for 40 
light-duty internal combustion engine (ICE) vehicles, hybrid gas-electric vehicles (HEV), fully 41 
electric vehicles (EV), and fuel cell vehicles (FCV). FSC are fit to model results for each of 145 42 
hypothetical vehicles. Analysis of the FSC shows that advanced powertrain vehicles are expected 43 
to perform proportionally better in congestion than ICE vehicles (when compared to their 44 
performance in free-flow conditions). HEV are less sensitive to average speed than ICE vehicles, 45 
and tend to maintain their free-flow FE down to 20 mph. FE increases for EV and FCV from 46 
free-flow conditions down to about 20-30 mph. Beyond powertrain type differences, relative FE 47 
in congestion is expected to improve for vehicles with less weight, smaller engines, higher 48 
hybrid thresholds, and lower accessory loads (such as air conditioning usage). Relative FE in 49 
congestion also improves for vehicle characteristics that disproportionately reduce efficiency at 50 
higher speeds, such as higher aerodynamic drag and rolling resistance. In order to implement 51 
these FSC for scenario analysis, we propose a bounded approach based on a qualitative 52 
characterization of the future vehicle fleet. The results presented in this paper will assist analysis 53 
of the roles that vehicle technology and congestion mitigation can play in reducing fuel 54 
consumption and emissions from roadway travel. 55 

 56 

1 Introduction	57 

Traffic congestion has been steadily increasing in the U.S. for decades [1]. Increasing levels of 58 
congestion lead to longer travel times, lower average speeds, and increased vehicle speed 59 
variability. These affect engine/motor operating loads and operating duration, which in turn 60 
affect fuel efficiency. At the same time, the U.S. vehicle fleet continues to evolve, with new 61 
powertrain types such as Hybrid Electric Vehicles (HEV), Fuel Cell Vehicles (FCV), and fully 62 
Electric Vehicles (EV) [2]. This paper addresses how these new vehicle technologies will 63 
respond to congestion, in terms of fuel efficiency.  The Oregon Department of Transportation 64 
(ODOT) has developed a model to forecast transportation-related greenhouse gas emissions, 65 
called the Greenhouse gas Statewide Transportation Emissions Planning model or GreenSTEP 66 
[3]. GreenSTEP is a modeling tool that can be used to assess the impact of a range of policies 67 
and other factors on transportation-related greenhouse gas emissions. It is designed to operate 68 
within the context of the large uncertainties of long-term transportation planning. One of the 69 
improvements needed in the model is the ability to account for the impact of future technological 70 
changes on vehicle fuel efficiency in congestion.   71 

Vehicle fuel efficiency can be expressed as Fuel Economy (FE), in travel distance per 72 
unit volume of fuel – in the U.S. as miles per gallon (mpg). Fuel-Speed Curves (FSC) summarize 73 
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the relationship between vehicle fuel economy and congestion level (indicated by travel speed) 74 
for average, aggregate conditions. Thus FSC can serve to estimate fuel consumption in 75 
congestion for macroscopic traffic and transportation models.  76 

In the GreenSTEP model, normalized FSC are used to adjust average fuel efficiencies for 77 
varying levels of metropolitan congestion. While FSC for conventional, Internal Combustion 78 
Engine (ICE) vehicles have been previously studied (and adopted in GreenSTEP), FSC for 79 
advanced powertrain vehicles have received less attention. In order to enable incorporation of the 80 
impacts of congestion on advanced vehicles in GreenSTEP, this research develops FSC for HEV, 81 
FCV, and EV. Fuel economy at varying average travel speeds is estimated using an advanced-82 
vehicle fuel consumption model with archetypal speed profiles. Then, representative FSC are 83 
estimated for each vehicle type, based on a range of vehicle characteristics. The next section 84 
describes relevant background information and literature, and is followed by a presentation of the 85 
modeling methodology. Then, results for FSC calculation are show, followed by a section 86 
discussing of the application of these FSC for transportation scenario analysis. 87 

2 Background	and	Literature	88 

2.1 Congestion	and	Fuel	Economy	89 
Traffic congestion affects vehicle fuel economy through lower average travel speed and 90 

increased vehicle speed variability (accelerations and decelerations). These influence 91 
engine/motor operating loads and operating duration, which in turn impact fuel consumption per 92 
mile of travel [4]. FSC show these aggregate relationships as the expected average FE at a given 93 
average travel speed, including typical acceleration and deceleration activity (often for specific 94 
vehicle and roadway types). In this way the speed variable in FSC is a proxy for congestion 95 
level, indicative of both average speed and speed variability for archetypal conditions.  96 

FSC are the fuel equivalent of Emissions-Speed Curves (ESC), which are used to 97 
estimate the aggregate impact of congestion on vehicle pollution emissions rates [5–7]. The ESC 98 
approach has been shown to adequately represent congestion effects (related to both average 99 
speed and speed variability) if the curves are based on representative, real-world driving patterns 100 
[8], [9]. The EPA has created a set of realistic driving schedules (driving patterns) for inclusion 101 
in their MOVES 2010 mobile-source emissions model [10], [11]. Existing research on FSC for 102 
ICE vehicles indicates that increasing levels of congestion – with lower average speeds – 103 
generally lead to increased fuel consumption rates [6]. At very high speeds, however, fuel 104 
consumption rates increase as well, and there is an optimal average speed for fuel economy 105 
which depends on the vehicle fleet – typically between 45 and 65 mph [12].  106 

2.2 Fuel	Economy	of	Advanced	Vehicles	107 
Given concerns about energy consumption and climate impacts of the U.S. vehicle fleet, 108 

there has been considerable attention paid to the potential fuel economy of advanced powertrain 109 
vehicles [2], [4], [13], [14]. Fuel economy estimates for advanced vehicles are challenging 110 
because few, if any, dynamometer test data are available. Thus, vehicle fuel consumption 111 
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modeling is often undertaken to estimate or predict the performance of these vehicles. Various 112 
studies have demonstrated or predicted substantial fuel consumption or greenhouse gas 113 
emissions savings from the substitution of advanced powertrain vehicles for conventional 114 
Internal Combustion Engine (ICE) vehicles in the fleet [2], [15–17].  115 

Fuel consumption modeling for advanced vehicles has focused on average overall fuel 116 
economy. But speed-based or congestion-based FE estimates are needed to predict the effects of 117 
varying congestion levels on the performance of these vehicles. Delorme, Karbowski, & Sharer 118 
[18] modeled the speed-dependent fuel consumption rates of select medium and heavy-duty 119 
vehicles, including several hybrid versions. They point out the importance of using realistic 120 
driving patterns and the challenge of a lack of a standard set of vehicle technical specifications 121 
for advanced vehicle modeling. Fontaras, Pistikopoulos, and Samaras [19] modeled two hybrid 122 
passenger cars and found lower optimal speeds with respect to fuel consumption for the hybrid 123 
cars than for conventional cars (and lower overall fuel consumption rates). While modeling such 124 
as this suggests different FSC for advanced vehicles than for ICE vehicles, these studies do not 125 
provide the array of FSC needed for scenario testing of a variety of potential advanced vehicles 126 
in congestion.  127 

Beyond the unique mechanical performance of advanced vehicles, some studies have 128 
suggested that advanced vehicles are driven differently. An empirical study by the EPA in 129 
Kansas City showed less aggressive driving for HEV than for ICE vehicles [11]. The report 130 
acknowledges, however, that there are several other possible explanations besides driver 131 
behavior change in response to HEV/ICE vehicle differences. Other possibilities include less 132 
power available in the test hybrid vehicles and self-selection of fuel-conscious drivers for hybrid 133 
ownership. Alessandrini & Orecchini [20] studied EV operating in Rome and also found less 134 
aggressive driving – presumably owing to the limited power of the vehicles.  135 

2.3 Modeling	Congestion	in	GreenSTEP	136 
In order to motivate the study methodology, we here describe the role of FSC within 137 

GreenSTEP. Average fleet fuel economy by vehicle type and model year is input to each model 138 
run. GreenSTEP accounts for congestion effects by adjusting the fleet-average fuel economy (for 139 
ICE vehicles only). For each metropolitan area, the Daily Vehicle Miles Traveled (DVMT) are 140 
distributed by average speed (average speed ranges are 25-60 mph on freeways and 21-30 mph 141 
on arterials). Then, normalized FSC are used to scale the average fleet fuel economy based on 142 
the estimated speed distribution of DVMT. Details can be found in the GreenSTEP 143 
documentation [3]. The next section describes the modeling methodology of this study, which 144 
attempts to develop realistic FE adjustment curves at the GreenSTEP scope of modeling.  145 

3 Methodology	146 

In order to estimate the impacts of congestion on advanced technology vehicles, this 147 
research develops FSC for light-duty ICE vehicles, HEV, FCV, and EV. An overview of the 148 
modeling procedure is illustrated in Figure 1. First, a large set of real-world driving schedules (a) 149 
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and a test set of 145 hypothetical vehicles with a variety of characteristics (b) are used as inputs 150 
to the PERE model (c) to estimate fuel consumption rates by Vehicle Specific Power (VSP) bin 151 
(e) for each vehicle. Next, the same set of driving schedules (a) and vehicle characteristics (b) are 152 
used to calculate (d) VSP bin distributions of operating time for each driving schedule, for each 153 
vehicle (f). The driving schedules represent a variety of congestion levels on freeway and arterial 154 
facilities. Combining (e) and (f) generates estimates of average FE for each driving schedule, for 155 
each vehicle (g). We fit these FE estimates to a curve as a function of the average speed for each 156 
driving schedule, producing a FSC for each vehicle on each facility type (h). Finally, the freeway 157 
and arterial FSC for each vehicle are normalized to the average speeds implied by EPA test 158 
driving schedules (i). Section 5 describes a proposed method for implementation of these 159 
normalized FSC in a long-range scenario analysis tool. We next describe components of the 160 
modeling methodology in more detail. 161 

 162 

Figure 1. Overview of Modeling Methodology to Generate Normalized FSC 163 
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3.1 Fuel	Consumption	Model	164 
Based on an investigation of potential fuel consumption models, the Physical Emissions 165 

Rate Estimator (PERE) is selected as the most appropriate model for this research [4]. PERE is a 166 
physical vehicle fuel consumption model developed by the EPA to supplement the MOVES 167 
mobile-source emissions model for untested vehicles. PERE adopts a physical approach (similar 168 
to the well-known Comprehensive Modal Emissions Model [21]) that is ideal for advanced 169 
vehicle technologies without vehicle test data. It also utilizes parameters that are aligned with the 170 
scope of vehicle-class modeling performed here. PERE models vehicles in less detail than 171 
individual vehicle models such as ADVISOR [13] – which is a limitation in some contexts but 172 
appropriate for macroscopic scenario analysis where vehicle characteristics are uncertain.  173 

The primary vehicle input parameters for PERE (in general order of importance as 174 
indicated in the PERE documentation) are: 175 

1. Vehicle type  176 
2. Engine indicated (thermal) efficiency 177 
3. Vehicle model year 178 
4. Road load power (method and coefficients) 179 
5. Vehicle weight 180 
6. Engine size (displacement) 181 
7. Motor peak power (HEV/EV only) 182 
8. Fuel cell power rating (FCV only) 183 
9. Hybrid threshold (HEV only) 184 
10. Powertrain type (ICE, HEV, EV, FCV) 185 
11. Fuel type (gas or diesel for ICE – representing spark-ignition or compression-ignition 186 

engines) 187 
12. Transmission type (automatic or manual) 188 

The details and model sensitivity for these parameters are discussed in the PERE 189 
documentation [4]. In addition to the vehicle parameters, PERE modeling requires an input 190 
driving schedule. The driving schedule is a time series of second-by-second vehicle speeds. 191 
Vehicle acceleration is differentiated from the speeds, and VSP is calculated using a Road Load 192 
Power method, described in the documentation. VSP is a proxy for engine loading, widely used 193 
in vehicle emissions and fuel consumption modeling [22], [23]. 194 

There are two primary caveats of the PERE modeling approach: 1) PERE only models 195 
parallel-configuration HEV, not series-configuration, and 2) the application of PERE for EV has 196 
not yet been validated. The first is not major concern, since not all possible advanced-vehicle 197 
powertrain configurations can be included at this scale of analysis. The second is more of a 198 
concern, but a reasonable limitation given the lack of available validation data at the time of 199 
development. There are still few data available on the real-world fuel consumption performance 200 
of EV, and PERE is considered the best available tool for this study. It lends confidence to the 201 
modeling of EV in PERE that EV are modeled as modified HEV (with the ICE removed), and 202 
the HEV model in PERE has been well validated [4].  203 
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3.2 Strategy	for	Implementing	PERE	204 
The PERE documentation describes a method for using PERE to derive advanced vehicle 205 

fuel consumption rates for MOVES modeling [4]. By this method, the vehicles of interest are 206 
modeled over a combination of transient driving schedules, and the average fuel consumption 207 
rates binned by the 17 VSP bins used in MOVES [11]. With fuel rates tabulated by VSP bin for 208 
each vehicle, total fuel consumption can be quickly computed from the VSP-distribution of 209 
second-by-second vehicle activity.  210 

Vehicle activity distribution by VSP can be computed from speed profiles – such as 211 
embodied in driving schedules [24]. Using coastdown coefficients A, B, and C (also known as 212 
Road Load Coefficients - RLC) from the dynamometer load equation, VSP is calculated as 213 

 214 

  ܸܵܲ ൌ A ௩

௠
൅ B ௩మ

௠
൅ C ௩య

௠
൅ ሺܽݒ1.1 ൅ ݃ ∗ gradeሻ (1) 215 

 216 
from [4], where VSP is in kW/Mg, ݒ  is speed in m/s, ܽ  is acceleration in m/s2, ݃  is the 217 
acceleration due to gravity in m/s2, and ݉ is vehicle mass in Mg. The three RLC correspond to 218 
rolling, rotating, and aerodynamic resistive factors, respectively [4]. 219 

The RLC, if not provided as a vehicle parameter, can be estimated from the vehicle mass 220 
or the Track Road Load HorsePower (TRLHP) [4], [25]. This approach of using many driving 221 
schedules to estimate fuel rates by VSP bin then distributing activity by VSP bin provides more 222 
fuel consumption data in each VSP bin and more vehicle activity flexibility than simply using a 223 
single driving schedule to model fuel rate at an average speed. 224 

The adopted strategy for advanced vehicle modeling in this research mirrors the PERE-225 
MOVES approach. The additional benefit of this approach is that vehicle activity distributions by 226 
VSP bin can be adjusted based on projected changes in roadway operations, vehicle 227 
performance, or driver behavior. In this way fuel-speed curves can be sensitive to changing 228 
traffic operations and driving behaviors without repeating the engine/fuel modeling process.  229 

3.3 Driving	Schedules		230 
The EPA has generated facility-specific driving schedules (included in the MOVES 231 

model) for different levels of congestion based on real-world measurements. The MOVES 232 
driving schedules are designed to reflect actual on-road vehicle activity (in contrast to the 233 
standardized dynamometer test schedules), and so represent actual congestion effects [9], [10]. 234 
The MOVES database includes 18 relevant Light-Duty (LD) driving schedules on freeways and 235 
arterials with average speeds from 3 to 76 mph. Concatenating the relevant MOVES driving 236 
schedules for modeling in PERE leads to a long (3.7 hour) composite driving schedule for binned 237 
fuel rate estimates. As discussed above, it is possible that new engine/powertrain technologies 238 
could influence driving patterns for certain speed-facility combinations. Given the uncertainty 239 
that this is a real effect – and if it is real, what exactly the effect would be – we use the same 240 
driving schedules for all vehicles modeled.  241 
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In addition to the MOVES driving schedules, we apply real-world vehicle speed data 242 
collected on an urban freeway in Portland, Oregon. Vehicle speed data were gathered on OR-217 243 
in the summer and fall of 2010 using second-by-second Global Positioning System (GPS) data in 244 
a probe vehicle (passenger car). This freeway had average daily traffic of about 100,000 vehicles 245 
in 2009 [26], with regular peak-period congestion in both directions. In total, 59 probe vehicle 246 
runs of 6.4 miles each were collected before, during, and after the PM peak period. This 247 
produced over ten hours of data, with average speeds on each run from 18 to 54 mph. Lastly, fuel 248 
economy is also estimated for the set of EPA test driving schedules used for fuel economy 249 
labeling [11].  250 

3.4 Vehicle	Characteristics	251 
FSC are generated for the following light-duty vehicle types: conventional ICE (spark-252 

ignition and compression-ignition), HEV, EV, and FCV. Vehicle parameter assumptions as 253 
required by PERE are based on a variety of sources. Many representative characteristics are 254 
included as defaults within the PERE model (transmission shift points, mechanical efficiency, 255 
etc.). Other vehicle characteristics are based on the literature – vehicle projection studies and 256 
similar research on future vehicle performance [2], [4], [11], [12], [14], [18], [27], [28]. Some 257 
vehicle characteristics (such as RLC) are based on EPA inventory data and modeling guidance 258 
for the U.S. vehicle fleet [27].  259 

Additionally, some vehicles’ characteristics are based on manufacturers’ specifications. 260 
We include in the vehicle test matrix vehicles of known attributes (for the 2010 model year), 261 
including: 262 

 HEV: Toyota Prius, Toyota Camry Hybrid, Toyota Highlander Hybrid, Honda Civic 263 
Hybrid, Honda CR-Z Sport Hybrid, Honda Insight, Ford Escape Hybrid, and Ford 264 
Fusion Hybrid 265 

 EV: Nissan Leaf, Tesla Roadster, Coda, and Mitsubishi MiEV 266 

 FCV: Toyota FCHV, Ford Focus, GM HydroGen3, and Honda FCX 267 
Because of the intended use of FSC for long-range scenario analysis with uncertain fleets, 268 

the vehicle generation strategy is not to constrain the modeling to existing or even prototype 269 
vehicles. The selected vehicle attributes thus include not only the probable but also the possible 270 
range of characteristics. In other words, we set the bounds wide enough to capture an uncertain 271 
future fleet. Note that in some cases, that means widening the original range of attributes tested 272 
in the PERE model (such as for hybrid thresholds).  273 
 The key parameters varied over vehicles for FSC shape sensitivity testing are:  274 

1. Vehicle weight 275 
2. Combustion engine size (displacement) 276 
3. Engine indicated efficiency (the thermodynamic efficiency limit of the engine) 277 
4. Electric motor peak power 278 
5. Fuel cell power rating 279 
6. Hybrid threshold (the power demand at which the engine or fuel cell is required in 280 

addition to the motor in an HEV or FCV) 281 
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7. Transmission type (automatic or manual)  282 
8. Fuel type (gasoline or diesel – also indicates spark-ignition or compression-ignition) 283 
9. Power accessory load (such as air conditioning) 284 
10.  Road Load Coefficients (also used in VSP calculation) 285 
11. Model year (which impacts engine and torque parameters through assumed trends) 286 
Other parameters included in the PERE model are not varied due to low model sensitivity 287 

[4] or no published information on expected changes to the value. Some combustion engine 288 
characteristics are adjusted within PERE based on the vehicle model year (engine friction, 289 
enrichment threshold, peak torque, and peak power). The RLC coefficients for VSP calculation 290 
(see Equation 1) are based on EPA documentation [27] or estimated from the vehicle weight as 291 
described in the PERE documentation [4]. For fuel types other than gasoline or diesel (such as 292 
electricity), PERE converts consumed energy to gasoline equivalent units using an assumed 293 
energy density for gasoline of 32.7 MJ/L.  294 

The ranges of tested values of vehicle parameters are: 295 

 Model year: 2005 to 2040 296 

 Fuel type: gasoline, diesel 297 

 Transmission type: manual, automatic 298 

 Powertrain type: conventional ICE, hybrid, electric, fuel cell 299 

 Engine size: 1.0 to 4.5 liters 300 

 Vehicle curb weight: 2,000 to 5,000 lbs 301 

 Road load method: weight-based and RLC 302 

 Hybrid threshold: 1 to 6 kW 303 

 Motor peak power: 10 to 215 kW 304 

 Fuel cell power rating: 60 to 155 kW 305 

 Accessory load: 0.75 to 4 kW 306 

 Engine indicated efficiency: 0.4 to 0.6 gasoline, 0.45 to 0.6 diesel 307 
 308 
The range of vehicle characteristics is tested over a set of 145 vehicles (not every 309 

possible combination of characteristics is modeled). The vehicles represent a range from very 310 
small neighborhood electric vehicles to large pickup trucks and Sports Utility Vehicles. Note that 311 
these parameters are modeled over their range of values, not simply at the extremes. While the 312 
ranges are wide compared to probable vehicle attributes, they also include the set of expected 313 
vehicles. Space constraints prevent inclusion of the full table of modeled vehicle attributes. 314 
However, vehicles of key interest are included below in Table 1. 315 

3.5 Fuel‐Speed	Curve	Calculation	316 
The fuel speed curves are calculated from the model output as follows. Let ௕݂  be the 317 

PERE-modeled fuel consumption rate (in kg/second) in VSP bin ܾ, where ܾ ∈  is the set 318 ܤ and ܤ
of 17 VSP bins. This is (e) in Figure 1. For EV and FCV, note that ௕݂ is presented in gasoline-319 
equivalent units. Let ݐ௕ be the amount of driving time (in seconds) spent in VSP bin ܾ for a given 320 



Bigazzi, Clifton, and Gregor   10 

driving schedule – (f) in Figure 1. Then the modeled fuel consumption (in kg) for that driving 321 
schedule is calculated 322 
 323 
 ݂ ൌ ∑ ሺݐ௕ ∙ ௕݂ሻ௕∈஻  .  (2) 324 
 325 
For a given fuel density of ݀௙ in kg/gallon and a driving schedule distance of ܦ in miles, the fuel 326 

economy ܧܨ (in gasoline-equivalent miles per gallon – mpg) for that driving schedule is then 327 
calculated 328 
 329 

ܧܨ  ൌ
஽∙ௗ೑
௙

 .  (3) 330 

 331 
This is (g) in Figure 1. We use ݀௙ ൌ 0.744	kg/L for gasoline and ݀௙ ൌ 0.811	kg/L for diesel 332 

from the PERE model, which converts to ݀௙ ൌ 2.82	kg/gallon  and ݀௙ ൌ 3.07	kg/gallon , 333 

respectively. The average speed for the driving schedule, ݒ, is simply ݒ ൌ ଷ଺଴଴∙஽

∑ ௧್್∈ಳ
. Note that the 334 

driving schedule is indicative of both average speed and speed variability at varying levels of 335 
congestion for typical conditions (see Section 2.1). 336 

This fuel modeling approach creates discrete FE–speed data points, so a curve fit is 337 
applied to establish a full FSC – (h) in Figure 1. We fit the FSC to an exponentiated 4th-order 338 
polynomial functional form, following previous emissions modeling research [5], [7], [29]. The 339 
functional form is 340 

 341 

ܧܨ  ൌ exp൫∑ ௜ݒ௜ߙ
ସ
௜ୀ଴ ൯ ,  (4) 342 

 343 
where ݒ is the average travel speed in mph and ߙ௜ are fitted parameters. The FSC are fit to this 344 
functional form using an iteratively reweighted least squares method. Separate fits are made for 345 
freeway and arterial driving schedules. Freeway driving schedules include MOVES and OR-217 346 
sources. Arterial driving schedules are sourced from MOVES only. 347 

Since average fuel economy is an input to the GreenSTEP model, the FSC are only used 348 
to adjust fuel economy for varying congestion levels (see Section 2.3). Therefore, we need not 349 
calculate absolute fuel economy, but simply how the fuel economy varies with average speed. To 350 
do this, we scale the freeway FSC to the modeled FE at the average speed of the “highway” EPA 351 
test driving schedule (HFET) – 48.2 mph [11]. For arterials we take a similar approach, using a 352 
reference speed 24.4 mph. For FSC normalization to a reference speed ݒ௥௘௙, the normalized fuel 353 

economy, ܧܨ௡௢௥௠, is calculated 354 
 355 

௡௢௥௠ܧܨ   ൌ exp൫∑ ௜ݒ௜൫ߙ െ ௥௘௙௜൯ݒ
ସ
௜ୀଵ ൯ .  (5) 356 

 357 
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4 Results	358 

4.1 Fuel	Economy	and	Average	Speed	359 
Figure 2 shows the FE-speed data points for all vehicles using all driving schedules. The 360 

figure is segmented by powertrain type, with different symbols to represent the different driving 361 
schedule sources and FE in gasoline-equivalent units. From Figure 2, we see that EV have the 362 
highest fuel economy and ICE the lowest. EV also have the widest range of fuel economies for 363 
the modeled vehicles (particularly at lower speeds). For each powertrain type the fuel economy 364 
values are fairly steady across the range of average speeds, with the exception of EV.  365 

 366 

Figure 2. Fuel Economy vs. Average Speed by Powertrain Type for All Driving Schedules 367 

Figure 3 presents the same data, but normalized to the freeway reference speed and 368 
excluding MOVES arterial driving schedules. Higher values of normalized FE indicate improved 369 
efficiency with respect to the reference speed conditions. These results are similar to Figure 2, 370 
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but with some of the inter-vehicle overall fuel economy differences removed – thus illuminating 371 
the impacts of average speed. ICE vehicle FE is generally flat from free-flow speed down to 372 
around 35 mph, at which point FE begins to decrease. For HEV the FE is nearly flat for all 373 
except the lowest-speed MOVES driving schedule. EV fuel economy increases with decreasing 374 
speed from free-flow conditions, down to around 20-30 mph. FCV fuel economy also increases 375 
somewhat as speed decreases.  376 

 377 

Figure 3. Fuel Economy (Normalized to Reference Speed) vs. Average Speed by Powertrain 378 
Type for Freeways  379 

4.2 Fuel‐Speed	Curves	380 
This section presents the fitted FSC from Equation 4. Two example fits for freeway FSC 381 

are shown in Figure 4. Here, two fitted FSC are shown along with the base data (using the 382 
MOVES and OR-217 driving schedules). The example low-congestion-efficiency ICE vehicle is 383 
a heavy, high-powered gasoline-fueled passenger car. The fit has an approximate R-squared 384 
value of 0.96 (calculated as Nagelkerke’s generalized R-squared). The example high-congestion-385 
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efficiency ICE vehicle is a diesel-fueled passenger truck with moderate power and weight. This 386 
fit has a generalized R-squared value of 0.86. 387 

  388 

Figure 4. Example Freeway FSC Fits  389 

Figure 5 shows fitted freeway FSC for all modeled vehicles, segmented by powertrain 390 
type (again in gasoline-equivalent mpg). There is a wide variety of FE values and FSC shapes, as 391 
expected from Figure 2 (note the different vertical scales). Generally, ICE vehicles have varying 392 
relationships with speed (positive or negative) for speeds above 30 mph, and decreasing FE at 393 
lower speeds below 30 mph. HEV are less sensitive to congestion, with some vehicles’ FE not 394 
decreasing until below 20 mph. Some HEV have about the same FE performance as ICE vehicles 395 
– particularly those with low hybrid thresholds. EV and FCV both show increasing FE with 396 
decreasing speed in Figure 5, down to a speed in the range of 20-40 mph. 397 
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 398 

Figure 5. Modeled Individual Freeway FSC by Powertrain Type 399 

4.3 Sensitivity	of	Fuel	Economy	in	Congestion	to	Vehicle	Characteristics	400 
Fuel economy can vary widely among vehicles for any one driving schedule, as 401 

illustrated in Figure 2. This is due to variability in both fuel rates and VSP distributions of 402 
operating time. In this section we examine how vehicle characteristics influence the Fuel-Speed 403 
data points. Of particular interest is which vehicle characteristics impact the shape of the FSC – 404 
i.e., which characteristics most affect relative vehicle performance in congestion. This is 405 
different from which vehicle characteristics impact overall fuel economy, and sometimes shows 406 
opposite effects. For example, vehicle parameters that mostly improve FE at higher speeds 407 
(decreased drag coefficients, for example) will result in poorer relative FE in congestion.  408 

Sensitivity analyses show that vehicle weight, engine displacement/fuel cell power, RLC, 409 
hybrid threshold, and accessory load are the vehicle characteristics that have the most impact on 410 
the fuel economy effects of congestion. Higher vehicle weight, engine size, and accessory load 411 
all decrease relative performance in congestion for ICE vehicles, while higher RLC increase 412 
relative performance. Compared to cars, passenger trucks and SUV’s tend to have more weight 413 
and engine power (which both reduce performance in congestion), but also higher RLC (which 414 
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improves relative performance in congestion by disproportionately decreasing efficiency at high 415 
speeds). Higher motor peak power slightly increases relative congestion performance for EV, but 416 
higher fuel cell power rating decreases relative congestion performance for FCV. 417 

HEV performance in congestion increases with hybrid threshold (since more low-power 418 
driving is powered by recovered energy). For HEV the motor and battery characteristics 419 
combined with the driving patterns will determine the true hybrid threshold. Assuming HEV 420 
improve over time to allow higher hybrid thresholds, the relative HEV performance in 421 
congestion will improve as well. Unlike ICE vehicles, HEV can improve their relative FE in 422 
congestion with larger engine sizes, because they can utilize the larger ICE nearer optimum 423 
efficiency for high power loads but turn off the combustion engine during low-power driving 424 
events in congestion. In this study, motor peak power was not a limiting factor in relative 425 
efficiency for HEV. High accessory power loads notably degrade the relative efficiency in 426 
congestion for fuel efficient vehicles, since a greater portion of total energy demand in 427 
congestion is from the static accessory load. Since much of the expected accessory load is from 428 
air conditioning usage, improvements over time such as advanced window glazings and cabin 429 
ventilation [28] can increase the relative FE in congestion for advanced vehicles.  430 

Power demands vary due to external vehicle forces only (mass and RLC inputs), while 431 
fuel rates are influenced by all vehicle attributes. From Equation 1, the RLC and vehicle mass 432 
have larger impacts at higher speeds (the impact of RLC “C” increases with the cube of speed). 433 
The impact of acceleration, however, is independent of mass or RLC. Thus, the VSP distribution 434 
of high-speed freeway driving schedules (with higher speeds and fewer accelerations) is more 435 
impacted by vehicle characteristics (mass and RLC) than the VSP distribution of arterial driving 436 
schedules (with more accelerations and lower speeds). More generally, the VSP distribution of 437 
vehicle activity in uncongested driving conditions is more impacted by vehicle characteristics 438 
than in congested driving conditions. The same holds for arterial versus freeway driving, with 439 
freeway driving more impacted by vehicle characteristics.  440 

As demonstrated in Figure 5, there is a range of potential FSC shapes for each vehicle 441 
type, depending on the specific vehicle characteristics. Projecting this array of characteristics for 442 
future vehicle fleets in scenario analysis is impractical. The next section describes a suggested 443 
approach for incorporating these FSC into scenario analysis. 444 

5 Applying	Fuel‐Speed	Curves	for	Scenario	Analysis	445 

This section describes a recommended method for applying advanced-vehicle FSC for 446 
scenario analysis, considering the range of plausible curve shapes shown in Section 4. The 447 
recommended approach is to use minimum/maximum sensitivity normalized FSC as the bounds 448 
of congestion effects. Interpolating between these extreme curves provides speed-based FE 449 
adjustment factors to calculate congestion effects on overall fuel economy.  450 

The interpolation distance between the bound FSC is based on a new model input, 451 
“Congestion Efficiency”, which describes the projected performance of each vehicle type in 452 
congestion, with respect to “extreme case” vehicles. Congestion Efficiency ranges from 0 for 453 
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poorest performance to 1 for maximum relative efficiency performance. Using Congestion 454 
Efficiency ܧܥ and upper and lower bound normalized FSC with curve fit parameters ߙ௎,௜ and 455 

 ௅,௜, respectively, the interpolated normalized FSC curve is calculated  456ߙ

 457 

ܧܨ ൌ ܧܥ ∙ exp൫∑ ௜ݒ௎,௜ߙ
ସ
௜ୀ଴ ൯ ൅ ሺ1 െ ∑ሻexp൫ܧܥ ௜ݒ௅,௜ߙ

ସ
௜ୀ଴ ൯  . (6) 458 

 459 
The determination of ܧܥ in scenario analysis is based on the sensitivities described in Section 460 
4.3. This approach avoids introducing numerous new vehicle parameters to the scenario analysis, 461 
while still allowing some assumptions about the future vehicle fleet to inform the congestion 462 
adjustment values.  463 

We selected extreme-case vehicles for FSC bounds based on comparison of the FSC 464 
shapes and vehicle attributes. Those vehicles selected are the modeled vehicles of each vehicle 465 
type with the highest and lowest relative FE in heavy congestion as compared to FE at free-flow 466 
speed (for each facility type). The vehicle characteristics and FSC fit parameters for the selected 467 
vehicles are shown in Table 1. The corresponding upper-bound and lower-bound FSC are shown 468 
in Figure 6. The selected bounding vehicles in Table 1 are not the most extreme combinations of 469 
attributes possible. Rather, they are modeled mixes of vehicle attributes considered possible (if 470 
not probable) based on the literature.  471 
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Table	1.	Extreme‐Case	Vehicles:	Characteristics	and	FSC	Fit	Parameters	472 
Freeways 

ICE* HEV* EV** FCV** 
Congestion Efficiency Low High Low High Low High Low High 

Passenger Car/Truck Car Truck Car Car Car Car Car Car 
Curb Weight (lbs)    5,000  2,500 2,504 2,000 3,800 2,000  3,000 2,000 
Engine Displ. (L) 4.5 2.0 1.1 2.0 NA NA NA NA 
RLC: A 156.46 235.01 156.46 156.46 156.46 156.46 156.46 156.46 
RLC: B 2.002 3.039 2.002 2.002 2.002 2.002 2.002 2.002 
RLC: C 0.493 0.748 0.493 0.493 0.493 0.493 0.493 0.493 
Motor Peak Power/ 

Fuel Cell Rating (kW) 
NA NA 68 10 80 100 140 40 

Hybrid Threshold (kW) NA NA 2 4 NA NA NA NA 
Accessory Power (kW) 0.75 0.75 4 0.75 4 0.75 4 0.75 
Total Peak Power (kW) 220 98 123 108 80 100 140 40 

Specific Power (W/kg) 97 86 108 119 46 110 103 44 
α0 1.514 2.331 1.892 3.122 2.911 4.236 1.984 3.048 
α1 0.1112 0.0809 0.1321 0.0667 0.1132 0.0511 0.1324 0.0955 
α2 -0.0029 -0.0025 -0.0041 -0.0025 -0.0034 -0.0019 -0.0037 -0.0032 
α3 3.63E-5 2.94E-5 5.78E-5 3.44E-5 4.55E-5 2.41E-5 4.60E-5 4.27E-5 
α4 -1.73E-7 -1.15E-7 -2.90E-7 -1.63E-7 -2.27E-7 -1.04E-7 -2.18E-7 -2.00E-7 

Arterial 
ICE* HEV* EV** FCV** 

Congestion Efficiency Low High Low High Low High Low High 

Passenger Car/Truck Car Truck Car Car Car Car Car Car 
Curb Weight (lbs) 3,750  2,500 3,000 3,020 3,800 2,000  3,000 2,000 
Engine Displ. (L) 4.5 2.0 1.8 1.3 NA NA NA NA 
RLC: A 156.46 235.01 156.46 154.69 156.46 156.46 156.46 156.46 
RLC: B 2.002 3.039 2.002 1.977 2.002 2.002 2.002 2.002 
RLC: C 0.493 0.748 0.493 0.487 0.493 0.493 0.493 0.493 
Motor Peak Power/ 

Fuel Cell Rating (kW) 
NA NA 60 10 80 100 140 40 

Hybrid Threshold (kW) NA NA 2 2 NA NA NA NA 
Accessory Power (kW) 4 0.75 4 0.75 4 0.75 4 0.75 
Total Peak Power (kW) 220 98 148 76 80 100 140 40 

Specific Power (W/kg) 129 86 109 55 46 110 103 44 
α0 1.392 2.331 1.803 2.71 2.911 4.236 1.984 3.048 
α1 0.1145 0.0809 0.1204 0.0765 0.1132 0.0511 0.1324 0.0955 
α2 -0.0029 -0.0025 -0.0034 -0.0031 -0.0034 -0.0019 -0.0037 -0.0032 
α3 3.45E-5 2.94E-5 4.36E-5 4.77E-5 4.55E-5 2.41E-5 4.60E-5 4.27E-5 
α4 -1.55E-7 -1.15E-7 -2.06E-7 -2.42E-7 -2.27E-7 -1.04E-7 -2.18E-7 -2.00E-7 

* Gasoline-fueled, automatic transmission, engine indicated efficiency of 0.4, model year 2010 
** EV and FCV are the same vehicles for arterials and freeways, model year 2010 
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 473 

 474 

Figure 6. Upper and Lower Bound Normalized FSC  475 
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Table 2 lists the vehicle characteristics that are expected to impact the relative efficiency 476 
in congestion (ܧܥ) for each vehicle powertrain type. This table is based on sensitivity analysis of 477 
the modeled vehicle attributes and FSC. Qualitative projection of these attributes can be used to 478 
set the new model input, Congestion Efficiency, between 0 and 1. The median Congestion 479 
Efficiency value is 0.5, which puts the FE adjustment curve midway between the extreme curves 480 
shown in Figure 6. If we expect, for example, average HEV to get lighter over time, we can set 481 
the Congestion Efficiency to trend upward for future model years. Note again that ܧܥ  is 482 
increased both by attributes that improve FE in congestion and by attributes that 483 
disproportionately decrease FE at higher speeds. 484 

Table	2.	Vehicle	Characterisitcs	Influencing	Relative	Congestion	Efficiency	485 
Powertrain type  Low Relative Congestion Efficiency  High Relative Congestion Efficiency 

ICE  heavier weight, larger engine, lower RLC, 
gasoline fuel, higher accessory loads, 

earlier model year 

lighter weight, smaller engine, higher 
RLC, diesel fuel, lower accessory loads, 

later model year 

HEV  heavier weight, smaller ICE, lower RLC, 
lower hybrid threshold, gasoline fuel, 

higher accessory loads, earlier model year 

lighter weight, larger ICE, higher RLC, 
higher hybrid threshold, diesel fuel, 

lower accessory loads, later model year 

EV  heavier weight, lower RLC, higher 
accessory loads 

lighter weight, higher RLC, lower 
accessory loads 

FCV  heavier weight, higher fuel cell power 
rating, lower RLC, higher accessory loads 

lighter weight, lower fuel cell power 
rating, higher RLC, lower accessory loads 

 486 
As a final consideration, we examine the potential impacts of these FSC on overall FE. 487 

Using a Congestion Efficiency of 0.5, at 25 mph the freeway ICE FE adjustment factor is 0.94 488 
and all three advanced powertrain vehicle types have FE adjustments over 1 (i.e. efficiency 489 
benefits). On arterials, the minimum adjustment factor at 20 mph (for ICE) is 0.92. Thus, the 490 
potential adjustments to FE for typical congestion are small. With evolving vehicle fleets 491 
containing more advanced vehicles, it is unlikely that the net effect of congestion on FE will be 492 
substantially detrimental – and the net effect could be beneficial.  493 

6 Conclusions	494 

This paper describes research undertaken to establish plausible fuel-speed curves (FSC) 495 
for advanced vehicles, to be used in long-term transportation scenario analysis. We use the PERE 496 
fuel consumption model with real-world driving schedules and a range of advanced vehicle 497 
characteristics to estimate vehicle fuel economy in varying traffic conditions. The fuel-speed 498 
data points are then used to generate normalized fuel economy versus average speed curves for 499 
each of 145 modeled vehicles.  500 

Analysis of the FSC shows that advanced powertrain vehicles are expected to perform 501 
better in congestion than ICE vehicles (with respect to FE at free-flow speeds). Many ICE 502 
vehicles do not lose fuel efficiency until traffic slows to about 30 mph. HEV are less sensitive to 503 
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average speed changes than ICE vehicles, and tend to maintain their fuel efficiency down to 20 504 
mph, due to recaptured braking energy. Fuel efficiency increases for EV down to about 20-30 505 
mph, below which it degrades. FCV have similar FE effects to EV, though with less sensitivity 506 
to speed.  507 

Besides powertrain type, congestion effects vary with other vehicle characteristics as 508 
well. Relative fuel efficiency at lower speeds improves for vehicles with lighter weight, smaller 509 
engines, higher hybrid thresholds, and lower accessory loads (such as air conditioning). Relative 510 
performance in congestion can also improve with attributes that disproportionately decrease FE 511 
at higher speeds, such as higher aerodynamic drag and rolling resistance factors.  512 

Considering the normalized FSC sensitivity to multiple attributes, we propose a bounded 513 
approach for applying the modeled FSC in scenario analysis. In the proposed method, FE 514 
adjustments are an interpolation between extreme-case FSC, based on projection of relative 515 
congestion efficiency. This allows adjustment for vehicle trends over time without requiring 516 
specificity in the vehicle fleet characteristics.  517 

In conclusion, the modeled FSC show that advanced powertrain vehicles can reduce or 518 
reverse the fuel efficiency losses associated with typical roadway congestion. On the other hand, 519 
advanced vehicles with certain characteristics (heavy and with high accessory power loads, for 520 
example) can still have poor relative performance in congestion. The results of this research can 521 
assist with broader analysis of the role these differences will play in total fuel consumption and 522 
emissions from roadway travel. 523 
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