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Selection ratios on community aggregated traits estimate ecological 
filters imposed on species by sites 

NATHANAEL I. LlCHTI1 AND MlCHAEL T. MURPHY 

Department of Biology, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751 USA 

Abstract. Variation in community structure is mediated by interactions between species 
traits and a site's environmental characteristics. Previously, data on community composition 
at sites has been employed to correlate trait and environmental variables (e.g., RLQ analysis) 
and to predict community-level expression of quantitative traits (i.e., community aggregated 

traits). Here, we demonstrate that the selection ratio, a method originating in animal resource 

selection studies, can estimate the ecological filters that site conditions impose on species traits 
by combining observed community aggregated traits with null models of species availability. 
This flexible, nonparametric approach expresses the filter at each site as a probability density 
function for the selection of individuals possessing a given trait value. By doing so, it 
generalizes the community aggregated trait concept to include categorical as well as 
continuous traits and allows for both intraspecific variation in trait expression and differences 

in species availability among sites. The resulting site-level filter functions can be related to 
environmental covariates by standard statistical approaches (e.g., regression). The method 

complements existing techniques for analyzing trait-environment interactions in community 

ecology. 

Key words: assembly theory; community aggregated trait; community ecology; ecological filter; fourth 
corner problem; selection ratio; trait-environment interaction. 

Introduction 

Natural selection (Darwin 1859) and niche theory 
(Hutchinson 1957) both depend on the interaction 
between environmental conditions and organisms' mor 

phologic, physiologic, behavioral, and life-history char 
acteristics. Until recently, however, ecologists have 

possessed few tools to quantify or test for relationships 
between specific environmental variables and species 
traits (Legendre and Legendre 1998). Legendre et al. 

(1997) labeled this apparent paradox as the fourth 
corner problem: although a trait of interest (for 

example, drought tolerance in plants) may be shared 
to varying degrees by many species in a community, 
connections between environmental variables and traits 

may be obscured by other factors that affect species 
abundances at sites, such as competition. 

To solve the fourth-corner problem, data on species 
abundances or occurrences and their traits must be 

combined into a site-level index of trait expression 

(Legendre et al. 1997). In quantitative community 
ecology, RLQ analysis links traits and sites in a three 

way ordination by performing a double inertia analysis 
of two arrays, R (a site-environment table) and Q (a 
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species-trait table), with a link expressed by a contin 
gency table, L, of species abundances at sites (Doledec et 
al. 1996). The analysis yields correlation coefficients for 
traits and environmental variables (Dray and Legendre 

2008). A simpler approach has arisen in ecosystem 
ecology, where interest often lies in predicting the 

aggregated value of specific traits for a community, 
rather than estimating trait-environment correlations 

per se. The community aggregated trait (CAT) for a site 
is the mean value of a continuous trait expressed by each 

species at the site, weighted by the species' relative 
abundances (Gamier et al. 2004). CAT scores are 

straightforward to calculate and to model, but do not 

currently accommodate categorical traits or intraspecific 
variation in expression (Gamier et al. 2004, Shipley et al. 

2006) . 

Community assembly theory posits that composition 
at a given time and place results from the application of 
a series of ecological filters to a larger, regional species 

pool (Weiher and Keddy 1995, Poff 1997, Diaz et al. 

2007) . These filters can be conceived of as functions for 
the probability that a given species will be found at a 

site, conditioned on the site's and species' respective 
characteristics. Community aggregated traits give a 

point estimate of the filter at a site, and a trait 
environment correlation describes the filter's mean 

change along an environmental gradient. An estimate 

of the entire filter function for a trait therefore provides 
the information needed to evaluate both trait-environ 

ment interactions and CAT values. However, correct 

5? 
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filter estimation requires that we know which species 
were available to colonize a site as well as the species 
found at the site. As typically implemented, both RLQ 
analysis and CAT assume that local communities all 

arise from the same regional pool. This assumption may 
not always be appropriate. For instance, the distribution 

of source populations may affect propagule availability. 
We propose that differences among species pools can 

be accounted for by converting raw CAT scores into 
selection ratios. To do so, we generalize the CAT 

concept to include the distribution of trait expression at 
a site, instead of simply the mean. This allows for both 

categorical trait variables and intraspecific variation in 
trait expression. We then combine the CAT distribution 
with a null model that describes species pool effects (e.g., 
Kelt et al. 1995). The resulting distributions quantify the 
selective filters acting on a trait as site-specific proba 

bility functions which can be related to environmental 
covariates by linear regression, generalized linear 

modeling, quantile regression, or other standard meth 

ods depending on the researcher's analytical goals and 

distributional assumptions. 

Background 

Selection ratios have been used for decades to study 
resource selection by animals and are covered author 

itatively by Manly et al. (2002). To our knowledge, they 
have never been used to quantify trait-environment 

interactions. Additional discussions of the resource 

selection literature, including more advanced methods 

and areas of current development, are available in 

Manly et al. (2002) and in a special section of The 
Journal of Wildlife Management (Strickland and Mc 
Donald 2006). They may also be of interest in the 
context of community ecology. 

Savage (1931) introduced selection ratios as the 

proportion of a resource used by an individual or a 

population divided by the proportion available in the 
environment. For example, if captive squirrels in an 

experiment on habitat preference are presented with 

equal quantities of four cover types, the estimated 

selection ratio for squirrel i and cover type j (w,y) 
compares the proportion of time the squirrel spends in 
habitat j (py) to the proportion of the enclosure made up 
of habitat j and thus available for use (n+J, which equals 
0.25 in this Gase): 

ij =Pij/n+j= pij/0.25. (1) 

If the squirrel uses cover j in proportion to its 

availability, the ratio equals 1. Values significantly >1 
indicate a preference, and values < 1 indicate avoidance. 

To determine whether any particular n>,y deviates 

significantly from 1, we require a predictive distribution 
for wy under the assumption that E(w+7) 

= 1. This 

distribution can be estimated by bootstrap simulation 
from a null model of availability (see Appendix). 

Since the upper bound on wy is undetermined (it 
depends on n+j and therefore on the specific data set in 

question), Manly (1993) suggests using the standardized 
selection index (By) instead: 

B^4^. (2) 

7=1 

The standardized indices can be interpreted as the 

probability that any item selected by / will belong to 

category j. The set Bt: (Bn,..., Bin) is a probability mass 

function for resource selection conditioned on individual 

identity. 

Manly et al. (2002) present numerous specialized 
variations on these themes, including formulations for 

estimated available proportions (i.e., nj), separate 

availability estimates for individuals (ftfy), and popula 
tion-level selection ratios. These variations provide ways 
to fine-tune calculations to specific sampling scenarios 

and objectives, and may be applicable in many studies of 
trait-environment interaction. 

Trait Selection by Sites 

To motivate the application of selection ratios to 
trait-environment interactions, we reverse the idea that 

organisms choose their environments and instead 

consider selection from an evolutionary perspective. 

Following the species-pool-ecological-filter model, we 

assume that the species occurring at any point in space 
are drawn from a regional pool with expected relative 

frequencies (n^) equal to their proportional abundance 
in that pool (Kelt et al. 1995). The species pool can be 
the same for all points (hereafter sites), but this is not 

required. Nonrandom variation among local communi 

ties within a pool arises when the environment at 
different sites filters out some species and favors others 
on the basis of specific species traits. For example, sites 

on xeric, exposed slopes generally contain more drought 
tolerant plants than do mesic sites. The species traits 

may be phenotypic (e.g., drought tolerance), but they 
may also be biogeographic (e.g., native vs. nonnative), 

taxonomic, or ecological (e.g., trophic position). Even 

when beta diversity or competition are high and few sites 
share species, we expect the traits expressed at sites to be 

consistent with their environments. 

Just as individuals represent alleles in a population, 
species represent their traits within a community. For n 

species occupying m sites and possessing a alternative 

levels of a categorical trait (hereafter states), we can 

construct an m X n matrix, S, of species abundances (or 

occurrence, biomass, importance, etc.) at sites and an n 

X a matrix, W, of state expression by species. The 

columns in W represent the alternative states associated 

with a single trait, rather than several separate traits as 

in RLQ analysis. Where species may show more than 

one state, the values in W correspond to the probability 
that any given individual of species k will express state j 
(Chevenet et al. 1994). For instance, if the seeds of a 
certain tree species are usually dispersed by the wind but 
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are occasionally dispersed by birds, the species might 
receive a score of 0.8 for wind dispersal and a score of 

0.2 for bird dispersal. Because the rows in W represent 

probability density functions for trait expression by 
species, their values must be nonnegative and must sum 

to one. 

To calculate the trait selection ratios, we must (1) 
translate species abundances at sites into CAT scores for 

the sites, and (2) quantify the availability of each state to 
each site. For a categorical trait, the expression of state j 

at site i can be estimated as the proportional abundance 
of species that posses j and occur at /, py. The set py : (pn, 

..., pia) represents the proportional abundances for the 

alternative states at /; it is the equivalent to the CAT 
score for a discrete trait. To calculate py-, we can sum the 

species abundances at /, weighting each species by its 

probability of expressing j: 

G = SW. (3) 

The rows of the grouped matrix, G, are then standard 

ized by the total abundance of all species at site / (i.e.,. 
the row sums of S). 

The availability of state j at site / (ny) equals the 

pooled, proportional abundance of the state's carrier 

species in the site's regional species pool, i.e., S'W, 

where S' is a matrix of proportional species abundances 

in the site-specific species pools. The specification of S' is 
critical and depends on a null model appropriate to the 

specific system being analyzed (see Discussion). The null 
model can be as complex as necessary for the study 

system. For the sake of simplicity, we assume here that 

all sites draw from the same pool. In this case, ny can be 

estimated by standardizing the column sums of S to the 

grand total of S and multiplying the resulting vector by 
W. We refer to this estimation as the site pooling model. 

Ideally, the values of fty should be estimated separately 
from the data used to calculate py; availabilities 
calculated by site pooling will almost certainly contain 
biases. However, site pooling may be useful if S contains 

the only available data on the study system and the 

assumption of a single species pool is not unreasonable. 

Once py and fty have been calculated, Eqs. 1 and 2 
estimate the filters at site / as the probability that / selects 
for state j, By. 

Selection ratios may also be calculated for continuous 

traits. Using the definition of matrix W as a set of 
conditional probability functions for trait expression by 
species, the CAT score of Gamier et al. (2004) can be 
obtained by assigning a density of 1 to each species' 
mean trait score in W and then calculating the row 
means of G. In general, if the kth row in W represents 
the probability fk(t) that species k expresses trait value t, 
then G becomes a mixture model for the community 
aggregated trait distribution at site /, fit): 

p, a G,. = /,(,) = 
g (f^)/*M- 

(4) 

This formulation allows the analysis to make use of 
whatever information is available on trait expression by 
species, with the caveat that a poorly defined fk(t) will 

yield less precise (and possibly biased) estimates of ft{t) 
(see Appendix). As in the discrete case, the denominator 

of the selection ratio is found by recalculating G with 
relative abundances expected under an appropriate null 

model of species availability. 
Selection (sel) and availability (avl) are assumed to be 

independent and to be the only processes that affect the 

probability of observing (obs) an aggregated trait value 
of t at / (i.e., Pr[/obs] = Pr[favL| X Pr[^sd]). If availability 
has been correctly described by the null model, the 
selection ratio for/XO therefore estimates the selective 
filter in operation at site / as a probability distribution 
on t. Thus, fi(t) is the equivalent of By for a continuous 
trait. In practice, ft{t) can be approximated by dividing 
the range of t into a large number of discrete bins and 

calculating By (Appendix). This approach is nonpara 
metric. If fi(t) is assumed to follow a specific distribu 

tion, parameters can be estimated by applying the 
method of moments to a bootstrap sample of t following 
BV. 

Differences among the estimated filters at different 
sites do not necessarily indicate selection, as some 

variation must occur due to random sampling. To test 

for significant deviations from the null model, a 

predictive envelope for By can be obtained by estimating 
a bootstrap sample of the filter, Bl}, from several (>200) 
simulated samples of community composition under the 
null model. To do this, we fix the total abundance at 
each site (row sums in S) and randomly assign 
individuals to species by inverse distribution sampling 
from the species pool proportions (column sums in So 
under the site pooling model, species membership at site 
i is governed by the following function: 

m q 

*(*<m) = ?f?i (5) 

where Ft(k) is the probability of encountering the kih 

species in the pool at site i and Ft{0) = 0. To assign a 

species to an individual, a uniform random number, U 

(between 0 and 1), is compared to F^k), and k is selected 
so that Ft{k 

? 
1) < U.< Fi(k). Repeating the process for 

Si+ individuals produces a simulated sample from the 

community at i under the null model. There is evidence 

for significant selection by an individual site if the 
difference between the observed filter (/L) and the 

a* j 

bootstrap filters (B-) is significantly greater than the 

pairwise differences among the bootstrap replicates. 
This can be tested by a bootstrap Kolmogorov-Smirnov 
test (Appendix). In general, the null model can be 

rejected if a significant number of sites (i.e., >5%) show 
selection. In this case, the filter means can be modeled by 

regression. If filters are assumed to take a non-normal 

parametric form, a GLM approach may be more 

appropriate. Alternatively, quantile regression might 
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Fig. 1. (A, B) Species abundances and (C, D) standardized selection ratios at five sites (simulated data). Seven species (different 
line styles and shades in panels A and B) each express one of three trait states (gray, black, and bold lines in upper panels). In the 
lower panels, points indicate the standardized selection index, B, for the third state at each site. Dashed and dotted lines indicate the 

expected value (=1/3) and the Bonferroni-corrected 95% bootstrap prediction interval for the null model of no selection, 
respectively (n = 200 replicates). Marginal species abundances are equal for both cases. 

be used for a completely non-parametric approach 

(Cade and Noon 2003). R code to calculate selection 
ratios and to perform bootstrap tests is available in 

Supplement 1. 

Examples 

A numerical example 

This example uses a hypothetical data set with 
abundances of seven species at five sites. Each species 
exhibits one of three states of a discrete trait. We first 
consider a case in which no selection occurs (Fig. 1A), 
and then a case in which sites differ in selection for state 
3, but not for states 1 and 2. In both cases, species have 

known expected proportions (njj) of 0.8, 0.13, 0.09, 0.21, 
0.26, 0.15, and 0.08, respectively. Data and calculations 

for this example can be found in the Appendix, along 
with a similar example for a continuous trait. 

A chi-squared test (Manly et al. 2002:65; Appendix) 
on S reveals that sites differ significantly in species 
composition (Manly's %] 

= 38.98, df = 24, P < 0.001), 
but a similar test performed on G shows no differences 

among sites for trait selection (%] 
= 5.62, df = 8, P = 

0.696). This is confirmed by plotting the individual site 
filters (i.e., By) and prediction intervals for Btj (Fig. 1C). 
All of the standardized selection indices fall within the 
95% confidence band. 

In the second case, the marginal values for S remain 

unchanged, but species composition is rearranged so 

that expression of state 3 responds to a gradient running 
from Site A to Site E (compare Fig. 1A, B). On average, 
states occur in proportion to their regional availability 
(Manly's xl 

= 0.29, df = 2, P = 0.864), but individual 
sites differ significantly in their selection for or against 
state 3 (%2i 

= 51.25, df = 8, P < 0.001; Fig. ID). 
Specifically, sites A and B select against state 3, while D 
and E select for it. Subsequent analysis would attempt to 
relate the observed increase in selection from A to E to 

changes in environmental conditions across the five sites. 

Example 2: selection for nonnative plants 

Our second example illustrates the use of standardized 

selection ratios and linear regression to relate selection 
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Fig. 2. Examples of the use of selection ratios on community aggregated traits to estimate ecological niters. (A) Greater human 

population density adjacent to urban natural areas increases selection for nonnative herbs in Portland, Oregon (5 
= 0.138 + 0.026 x 

POPDENS; R2 = 0.301, ^,45 
= 19.33, P < 0.001, bold line). Points show estimates of B for nonnative vs. native herbaceous plants, 

relative to population density in a 100-m buffer around study sites. A value of 0.5 (dashed line) indicates neutral selection. Values 
outside the 95% bootstrap confidence envelope (dotted lines) indicate significant selection for (above the envelope) or against 
(below) nonnative species. Bootstrap intervals were based on 200 independent random communities simulated from the empirical 
distribution function of species abundance pooled across sites, assuming no selection. (B, C) Estimated selection functions for body 
size in a community of 81 Cerambycid beetle species appears to vary among 23 forest sites in Indiana (panel B; curves show 
estimates for individual sites assuming normal filters), but the observed set of filters (panel C, black lines) are consistent with the set 

produced by the null model (C, gray lines, n = 200 bootstrap replicates). In bootstrap Kolmogorov-Smirnov tests, the difference 
between null model and observed filters was greater than the difference between pairs of null model realizations for only one site 

(bootstrap /> = 0.037, n = 199 null pairs; all other sites P > 0.24). 

for a specific state to an environmental variable. We ask 

how selection for nonnative vs. native herbs relates to 

adjacent human population density in 47 green spaces in 
the Portland, Oregon, USA metropolitan area. Herbs 

were sampled during the summers of 2001-2002 and 

species importance values were calculated for each site. 

We estimated the human population density in a 100-m 
buffer around each site using 2000 U.S. Census tract 
data in ArcGIS 8.2 (ESRI, Redlands, California, USA). 

Species were classified as native or nonnative to 

western Oregon, and selection ratios, confidence inter 

vals, and Manly's first chi-squared statistic were 

estimated using the functions in Supplement 1, run in 
R version 2.6.2 (R Development Core Team 2007). The 
data for this example appear in Supplement 2. We use 
the site pooling model to define availability. Because this 
case involves only two states, their standardized 

selection indices are complementary (i.e., #(native) 
= 1 
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Plate 1. Mallodon dasystomus (Say), an example of a longhorn beetle (Coleoptera: Cerambycidae) from Mississippi, USA. 
Variation in body size among longhorn beetle communities in Indiana (USA) forest fragments is analyzed (see Examples: Example 
3). Illustration: Annie Elizabeth Spikes. 

- 
?(non-native)). This would not be the case for a more 

complex set of characteristics. Fig. 2 shows the 

standardized selection indices for nonnative species in 

relation to population density, together with a boot 

strapped prediction envelope for the null model. More 
than 63% of the observed communities fall outside of 
this envelope, clearly indicating that selection has 
occurred. Linear regression on population density 

explains 30% of the variation in B among sites (B = 

0.138+ 0.026 XPOPDENS, R2 = 0.301, FM5= 19.33, P 
< 0.001); a more appropriate model that treats B as a 

beta random variable would improve the fit consider 

ably. Interestingly, selection is not reflected by the 
richness or diversity of nonnative herbs in this case. 

Regressions of these indices produced R2 values of only 
-0.5% (richness, FMs 

= 2.184, P = 
0.146; Shannon's //, 

FlA5= 1.444, P = 
0.236; Simpson's D, FM5 

= 0.233, P = 

0.622). 

Example 3: a continuous trait with no evidence 

of selection 

For this example, we use data on longhorned beetle 

(Coleoptera: Cerambycidae) (see Plate 1) assemblages at 
23 study sites in Indiana, USA. Depending on species, 
longhorned beetles lay their eggs in live or dead wood; 
larvae feed on the host log or tree. After pupating, the 

adult beetles disperse in search of mates and appropriate 

oviposition sites of their own. We hypothesized that if 

dispersal ability is proportional to body size within the 

Cerambycidae (measured as length), selection for larger 
beetles might correlate negatively with forest density in 
the landscape surrounding capture sites. The data set, 

sites, and sampling methods are presented in Holland 

(2006). Beetle size data, in the form of species' length 
ranges, were obtained from Yanega (1996). This analysis 
follows the procedure for continuous traits outlined in 

the Appendix, and uses the R functions from Supple 
ment 1. The estimated filter functions vary widely 
among sites, with some sites apparently favoring small 

beetles while others favored larger ones (Fig. 2B). 
However, the observed pattern of filters fell entirely 
within the cloud generated by bootstrap sampling under 
the site pooling model (Fig. 2C, bootstrap Kolmogorov 
Smirnov P values >0.24 for 22 of 23 sites, n = 199 null 
model replicates). We therefore failed to reject the 

hypothesis that the observed distributions of beetle sizes 
were derived by random sampling from the regional 

community. 

Discussion 

As a solution to the central problem of fourth-corner 

analyses, selection ratios on community aggregated 
traits (SRCAT) are easy to calculate and may be 

adapted to accommodate different levels of information 

on species traits. They also provide a useful conceptual 
link to the theory of ecological filters. Most existing 
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fourth-corner approaches implicitly assume that ob 

served trait-environment correlations or aggregated 
trait values do not arise from confounding spatial or 

temporal differences in the species' availability to 
colonize sites. However, unequal propagule pressure is 

often the rule rather than the exception. SRC AT 

requires that assumptions about species availability be 

explicitly described in a null model, and then accounts 
for differential availability in the filter estimates. 
Because the filters are probability distributions, they 
are also directly comparable among different regional 
communities (Manly 1993). 

RLQ analysis (Doledec et al. 1996, Dray and 

Legendre 2008), of which the original fourth-corner 

analysis (Legendre et al. 1997) is a special case, possesses 
distinct advantages over SRCAT for some applications. 
RLQ simultaneously estimates the correlations among 
multiple environmental covariates and species traits, 
each of which may include continuous or categorical 
variables (or both). Its results may be visualized as 
ordinations of species and traits onto environmental 

gradients (Doledec et al. 1996), and permutation tests 
are available for various ecological hypotheses (Dray 
and Legendre 2008). Similar results might be obtained 

through a two-step process of SRCAT analysis on 

several traits followed by constrained ordination, but 

this approach decouples species from the second stage of 
the analysis. On the other hand, site-level SRCAT 
functions can be analyzed by standard statistical 

approaches, and therefore provide greater flexibility 
from a modeling or prediction perspective. Ultimately, it 

would be advantageous to combine these approaches 
into a single analysis that allows simultaneous, general 
ized modeling while accounting for variation in species 
availability among sites. 

Both RLQ and SRCAT can incorporate intraspecific 
variation through fuzzy coding. This practice assumes 

that variation within species is not related to environ 

mental differences among sites, which is rarely true. 

Environmentally induced trait plasticity is relatively 
common, so intraspecific trait expression should vary 

systematically among sites if strong filters exist (Agrawal 

2001). To obtain the best possible filter estimates, the 
rows in S and columns in W should ideally represent 
individual populations, rather than species, and the trait 

should be measured at each site. As the quality of trait 

data declines from population-level to species-level 

distributions, and finally to species-level trait ranges or 

means, the power to detect significant filters is also 
expected to decline. In general, we expect that analyses 
based on species-level trait data will overestimate the 

variance in site's ecological filters. 

Filter estimation by SRCAT depends heavily on the 
null model that defines the sites' regional species pools. 
As with any null model approach, practitioners should 
be careful to select an appropriate model for their study 
system and questions (Harvey et al. 1983). Studies that 
cover large geographic regions, multiple habitat types, 

or long time spans will generally require more complex 
null models to account for confounding species-pool 
effects, unless the factors that determine availability 
(e.g., distance from source populations) are themselves 

treated as environmental covariates driving selection. 

Where uncertainty exists, it may be beneficial to 

compare results under a range of models for availability 
(Kelt et al. 1995). In some cases, it also may be sufficient 
to know the direction in which any biases lie. For 

example, the estimated availability of exotic plants in 
our second example is probably too low, since these 

species are more abundant in the urban matrix than in 

the sampled reserves. Any apparent selection against 
non-natives therefore represents a worst-case scenario 

with regard to exotic invasion. 

Conclusions 

Shipley and colleagues (2006) demonstrate that 

analyses based on CAT scores can use data on species' 
traits and environmental covariates to correctly predict 

species' site-specific relative abundances. Our general 
ization of the CAT index and addition of a null model 
for species availability to sites increases the flexibility of 
this approach by allowing for qualitative traits and by 
relaxing two main assumptions: that intraspecific 
variation is negligible compared to differences among 
species (Gamier et al. 2004, Shipley et al. 2006), and that 
sites draw colonists from a panmictic community. 

Modeling changes in the filter function rather than the 
CAT value should improve predictive power and allows 
analysis of extreme values as well as mean trends (Cade 
and Noon 2003). In addition, we hope that generaliza 
tion to discrete variables will also facilitate analysis of 
continuous traits. Community ecologists often collect 

data on species composition and environmental vari 

ables, but only rarely measure species traits as part of 

community-level surveys. This approach allows re 

searchers to draw trait information from the literature 
or from independent databases where quantitative traits 

may appear as ordinal values. 
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APPENDIX 

Estimating ecological niters with selection ratios and community aggregated traits (Ecological Archives E091-026-A1). 

SUPPLEMENT 1 
R source code for functions and examples of selection ratio analysis on community aggregated traits (SRCAT) (Ecological 

Archives E091-026-S1). 

SUPPLEMENT 2 

Data for examples of selection ratio analysis on community aggregated traits (SRCAT) (Ecological Archives E091-026-S2). 
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