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Summary

 

• Here we examined correlations between needle nitrogen concentration ([N]) and
photosynthetic responses of Douglas-fir (

 

Pseudotsuga menziesii

 

) seedlings to
growth in elevated temperatures and atmospheric carbon dioxide concentrations
([CO

 

2

 

]).
• Seedlings were grown in sunlit, climate-controlled chambers at ambient or ambient
+3.5

 

°

 

C and ambient or ambient +180 µmol mol

 

−

 

1

 

 CO

 

2

 

 in a full factorial design. Photo-
synthetic parameters and needle [N] were measured six times over a 21-month
period.
• Needle [N] varied seasonally, and accounted for 30–50% of the variation in photo-
synthetic parameters. Across measurement periods, elevated temperature increased
needle [N] by 26% and light-saturated net photosynthetic rates by 17%. Elevated
[CO

 

2

 

] decreased needle [N] by 12%, and reduced net photosynthetic rates meas-
ured at a common [CO

 

2

 

], maximum carboxylation activity (

 

V

 

c,max

 

) and electron
transport capacity (

 

J

 

max

 

), indicating photosynthetic acclimatization. Even so, elev-
ated [CO

 

2

 

] enhanced net photosynthesis, and this effect increased with needle [N].
• These results suggest that needle [N] may regulate photosynthetic responses of
Douglas-fir to climate change. Further, needle [N] may be altered by climate change.
However, effects of elevated [CO

 

2

 

] on photosynthesis may be similar across growth
temperatures.

 

Key words:

 

acclimatization, carbon dioxide, climate change, nitrogen, photosynthesis,

 

Pseudotsuga menziesii

 

 (Douglas-fir), seasonal variation, temperature.

© 

 

New Phytologist

 

 (2004) 

 

162

 

: 355–364

 

Author for correspondence:

 

 

 

James D. Lewis

 

 

 

Tel: +1 914 2733078 ext. 24

 

 

 

Fax: +1 914 2736346

 

 

 

Email: jdlewis@fordham.edu

 

Received: 

 

1 November 2003

 

 
Accepted: 

 

6 January 2004

 

doi: 10.1111/j.1469-8137.2004.01036.x

 

Introduction

 

Increasing atmospheric carbon dioxide concentrations ([CO

 

2

 

])
and increasing temperatures associated with climate change
are predicted to have profound impacts on terrestrial ecosys-
tems (Norby 

 

et al

 

., 1999; Ward & Strain, 1999). Considerable
attention has been devoted to plant physiological and growth
responses to elevated [CO

 

2

 

]. By contrast, despite the 2–5

 

°

 

C
increase in mean annual temperature predicted to accompany
increasing atmospheric [CO

 

2

 

] over the next century (IPCC,
2001), relatively few studies have examined the combined
long-term effects of elevated [CO

 

2

 

] and temperature. Further,
although plant responses to elevated [CO

 

2

 

] vary with the

availability of essential resources (Curtis & Wang, 1998; Saxe

 

et al

 

., 1998; Poorter & Pérez-Soba, 2001), little is known
about the roles of these factors in mediating the combined
effects of elevated [CO

 

2

 

] and temperature on plants. Clearly,
predictions of plant responses to climate change would benefit
from an understanding of the influences of essential resources
on these responses.

One of the key resources likely to regulate plant responses
to climate change is nitrogen (N). Nitrogen often is the
primary factor limiting plant growth under current climate
conditions (Bormann & Likens, 1967; Vitousek & Howarth,
1991). Plant responses to growth in elevated [CO

 

2

 

] generally
decline with decreasing nitrogen availability, as demonstrated
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under conditions ranging from growth chambers to free-rooted
trees (Stitt & Krapp, 1999; Harmens 

 

et al

 

., 2000; Oren 

 

et al

 

.,
2001; Poorter & Pérez-Soba, 2001; but see Lloyd & Farquhar,
1996). Characteristic photosynthetic responses of nitrogen-
limited plants to elevated [CO

 

2

 

] include reduced photosyn-
thetic capacity and reallocation of nitrogen from photosynthetic
to nonphotosynthetic components (Bowes, 1991; Gunderson
& Wullschleger, 1994; Sage, 1994; Drake 

 

et al

 

., 1997). The
extent of these responses varies considerably, reflecting differ-
ences among species, the duration of exposure to elevated
[CO

 

2

 

] and other factors (Poorter & Pérez-Soba, 2001). For
example, changes in leaf N concentration ([N]) associated with
leaf development and senescence are a major factor regulating
temporal variability in the magnitude of these responses
(Wang 

 

et al

 

., 1995; Wullschleger 

 

et al

 

., 1997; Turnbull 

 

et al

 

.,
1998; Jach & Ceulemans, 2000).

The effects of nitrogen availability on photosynthetic
responses to climate change may be mediated by effects of climate
change on soil nitrogen availability. For example, increasing
growth temperatures have been shown to increase soil N
mineralization rates, increasing soil N availability (van Cleve 

 

et al

 

.,
1990; van Breemen 

 

et al

 

., 1998). Increased soil N availability
often leads to increased leaf [N] because of increased N uptake
by plants (Kellomäki & Wang, 1997; Hobbie 

 

et al

 

., 2001).
Because of the central role N plays in photosynthesis, leaf [N]
is generally correlated with net photosynthetic rates (Field &
Mooney, 1986; Evans, 1989), suggesting that net photosyn-
thetic rates may increase if elevated growth temperatures increase
soil N mineralization rates (Norby 

 

et al

 

., 1999).
Douglas-fir (

 

Pseudotsuga menziesii

 

), a dominant tree species
in the Pacific north-west (Franklin & Dyrness, 1988; Hermann
& Lavender, 1990), often grows in low-N soils (Gessel 

 

et al

 

.,
1973). Needle [N] is correlated with net photosynthetic rates
of Douglas-fir (Bond 

 

et al

 

., 1999; Ripullone 

 

et al

 

., 2003), as
well as maximum carboxylation rate of Rubisco (

 

V

 

c,max

 

) and
electron transport capacity (

 

J

 

max

 

; Ripullone 

 

et al.

 

 2003). Net
photosynthetic rates in Douglas-fir seedlings are generally
increased by growth in elevated [CO

 

2

 

] (Hollinger, 1987; Lewis

 

et al

 

., 2001) and by elevated mean annual temperatures (Lewis

 

et al

 

., 2001). However, these responses show significant
seasonal variation (Lewis 

 

et al

 

., 1999) that is not explained
by seasonal changes in temperature (Lewis 

 

et al

 

., 2001) or
stomatal conductance (Lewis 

 

et al

 

., 2002b). Thus, because N
availability may influence photosynthetic responses to climate
change, and regulates growth responses of Douglas-fir to
climate change (Olszyk 

 

et al

 

., 2003), the primary objective of
this study was to examine relationships between needle [N]
and photosynthetic responses of Douglas-fir seedlings to
elevated [CO

 

2

 

] and mean annual temperature. In addition,
because needle [N] may vary seasonally, a related objective was
to determine whether seasonal variation in photosynthetic
responses to climate change paralleled seasonal changes in
needle [N]. To examine mechanisms through which needle
[N] may influence photosynthetic responses to climate

change, net photosynthetic rate vs intercellular [CO

 

2

 

] curves
were measured to monitor changes in 

 

V

 

c,max

 

 and 

 

J

 

max

 

 over a
21-month period.

 

Materials and Methods

 

Growth conditions

 

Douglas-fir (

 

P. menziesii

 

 (Mirb.) Franco) seed lots were collected
at five low-elevation seed zones (< 500 m) in the Coast Range,
Willamette Valley and the west slopes of the Cascade Mountains
around Corvallis, OR, USA. Seedlings were grown for 1 yr in
seed beds and 1 yr in nursery beds. In June 1993, 14 seedlings
were transplanted as bare-root, 2-yr-old stock into each (1 

 

×

 

 2 m
surface area) chamber at the US Environmental Protection
Agency’s ecological research division in Corvallis, OR, USA.
Each chamber consisted of a sun-lit upper compartment
(1.3–1.5 m high) where air temperature, [CO

 

2

 

] and vapor
pressure deficit were monitored and controlled, and a lower
soil lysimeter (0.9 m deep) filled with a native coarse-textured
sandy loam in which soil temperature and moisture were
monitored (Tingey 

 

et al

 

., 1996). Soil moisture content was
controlled to reflect seasonal changes in soil moisture typical
for the wet winter and dry summer climate in the Pacific
north-west (Griffiths & Caldwell, 1990; Griffiths 

 

et al

 

., 1991).
Weekly water additions to the ambient [CO

 

2

 

] and ambient
temperature treatment were calculated based on this predicted
pattern of soil moisture content. All treatments received the
same weekly water additions. Seedlings were grown under
ambient light, and without supplemental nutrients.

Ambient [CO

 

2

 

] and air temperature were monitored at an
adjacent meteorological station. The chambers were controlled
to continuously track ambient [CO

 

2

 

] or ambient +200 µmol
mol

 

−

 

1

 

 CO

 

2

 

 and ambient air temperature or ambient +4

 

°

 

C
(Tingey 

 

et al

 

., 1996). Target dew point depression was based
on ambient conditions and controlled to track equivalent
vapor pressure deficits across treatments. Actual chamber
conditions across the course of the experiment differed slightly
from targets. The elevated [CO

 

2

 

] treatment averaged
180 µmol mol

 

−

 

1

 

 CO

 

2

 

 above ambient, with a 6% coefficient of
variation for the differences in [CO

 

2

 

] across all days (Olszyk

 

et al

 

., 1998a). The elevated temperature treatment averaged
3.5

 

°

 

C above ambient, with a 12% coefficient of variation for
the temperature differences across all days, and the vapor pres-
sure deficit of chamber air in the elevated temperature treat-
ment averaged 0.10 kPa above ambient (Olszyk 

 

et al

 

., 1998a).
The experimental design was a full factorial with three

replicate chambers in each of the four treatment combinations:
ambient [CO

 

2

 

] and ambient temperature; ambient [CO

 

2

 

]
and elevated temperature; elevated [CO

 

2

 

] and ambient
temperature; and, elevated [CO

 

2

 

] and elevated temperature.
Treatments were applied 24 h per day beginning in August 1993
and continuing until the end of the study in July 1997. Mid-day
(10:00–14:00 hours Pacific Standard Time) [CO

 

2

 

] during the
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1996 growing season typically ranged between 360 µmol mol

 

−

 

1

 

and 400 µmol mol

 

−

 

1

 

 in the ambient [CO

 

2

 

] treatment.

 

Physiological measurements

 

Needle-level net photosynthetic rates were measured using an
infrared gas analyser built into a leaf cuvette in an open-flow
gas exchange system (LI-6400; Li-Cor, Lincoln, NE, USA).
Measurements began in November 1995, 27 months after
treatments were initiated. Additional measurements were
made in February, March and October 1996, and March and
July 1997. All measurements at a given measurement period
were completed within a 7-d period. All measurements were
made on intact fully expanded, unshaded needles from the
most recent fully expanded cohort. In 1996, the mean date at
which new needles reached full expansion was June 28 and
did not significantly vary between treatments (Olszyk 

 

et al

 

.,
1998b). As a result, needles from the 1995 cohort were used
for measurements made in November 1995 and February
and March 1996, while the 1996 cohort was used for the
remainder of the experiment.

Needles were arranged in the cuvette such that self-shading
was minimized and all needles were parallel to the plane of the
leaf chamber. Projected surface area of the measured needles
was estimated using measurements of needle length and width.
All measurements were made using ambient light. Photo-
synthetic photon flux densities (PPFD) at the upper needle
surface generally ranged between 1200 and 2000 µmol m

 

−

 

2

 

 s

 

−

 

1

 

.
No measurements were made at PPFD below 800 µmol m

 

−

 

2

 

 s

 

−

 

1

 

.
A PPFD above 800 µmol m

 

−

 

2

 

 s

 

−

 

1 has been shown to be satur-
ating for photosynthesis in Douglas-fir (Bond et al., 1999;
Lewis et al., 1999; Lewis et al., 2000).

The air-stream entering the cuvette was maintained at the
desired [CO2] using the LI-6400 computer-controlled CO2
mixing system. Needle, cuvette and air temperatures were
measured with thermocouples linked to the LI-6400 com-
puter. Needle temperature was maintained at the target temper-
ature using a computer-controlled Peltier module mounted
on the cuvette. Needle and cuvette air temperatures generally
were similar during measurements. The needle-to-air vapor
pressure deficit in the cuvette was maintained at the target
vapor pressure deficit by regulating the airflow rate, and by
using desiccant to scrub the incoming air-stream as necessary.
For a given measurement period, the target needle temper-
ature and vapor pressure deficit for the ambient temperature
treatment reflected average ambient conditions between 10:00
hours and 14:00 hours. Across CO2 treatments, target needle
temperatures for the elevated temperature treatment were
4.0°C higher than for the ambient treatment. The target vapor
pressure deficit was the same for all treatments. The actual
cuvette conditions deviated somewhat from actual chamber
conditions because cuvette conditions were regulated to match
the target chamber conditions, which themselves varied
somewhat from actual chamber conditions (see above). Further,

although average cuvette measurement [CO2] and needle
temperatures matched target conditions, actual vapor pres-
sure deficits were 0.3 kPa higher, on average, in the elevated
temperature treatment than in the ambient temperature
treatment. Although differences in vapor pressure deficit
may influence photosynthesis through effects on stomatal
conductance, across measurement periods neither stomatal
conductance nor vapor pressure deficit significantly affected net
photosynthetic rates in these seedlings (Lewis et al., 2002b).

Before each measurement, needles were equilibrated in the
cuvette at saturating PPFD, the growth [CO2], and the target
temperature and vapor pressure deficit. Photosynthetic vs
intercellular [CO2] (A–Ci) curves were measured at all dates
except the final harvest, when measurements were made
at only the growth [CO2]. At all dates, light-saturated net
photosynthetic rates at the growth [CO2] (Agrowth) were deter-
mined at 350 or 550 µmol mol−1 CO2 for the ambient and
elevated [CO2] treatments, respectively. For A–Ci curves,
measurements were made at cuvette chamber [CO2] of 80, 170,
260, 350, 450, 550, 700, 850, and 1000 µmol mol−1. Data
from A–Ci curves were used to compare treatment effects on
Agrowth, the maximum carboxylation rate of Rubisco (Vc,max)
and the capacity of electron transport mediated ribulose
bisphosphate (RuBP) regeneration (Jmax), as well as on light-
saturated net photosynthetic rates at a common [CO2] of
350 (A350) or 550 µmol mol−1 (A550). Measurements were
made once needles equilibrated at the target [CO2]. Needles
were considered equilibrated once the total coefficient of
variation for gas exchange parameters was less than 1% for one
minute. In general, the equilibration period lasted c. 5 min.
For a given measurement day, measurements were initiated at
c. 09:00 hours Pacific Standard Time, and typically were com-
pleted by 12:00 hours Pacific Standard Time.

A biochemical model of photosynthesis was used to calcu-
late Vc,max and Jmax from A–Ci curves using (Farquhar et al.,
1980; von Caemmerer & Farquhar, 1981):

A = min{Ac, Aq} − Rd

(A is the net photosynthetic rate, Ac and Aq are the photo-
synthetic rates limited by Rubisco activity and by electron
transport rate, respectively; min {} refers to the minimum of
the two rates; Rd is the daytime respiration rate resulting
from processes other than photorespiration). The model was
parameterized and run following Lewis et al. (1994) using
the nonlinear regression model function in  (SPSS,
Evanston, IL, USA).

Needle nitrogen concentration

The 1995 and 1996 needle cohorts were sampled for [N] ana-
lysis three times during the first year of growth of each cohort.
All collections were made within 2 wk of corresponding
gas exchange measurements. At all collections except
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the final harvest (July 1997), 30–35 first-year needles were
collected from around the crown of each tree in each chamber,
with needles from all trees pooled to obtain one sample per
chamber. At the final harvest, needles from the 1996 cohort
were collected from 20 branches from around the crown of
each of four trees per chamber, with all needles from a given
chamber pooled to obtain one sample per chamber. After
collection, needles were dried at 60°C and ground to pass
through a 40-mesh screen. Samples were analysed for [N]
using a Carlo Erba NC2500 elemental analyser (Finnigan
MAT, Bremen, Germany). The internal standard was pine
needles (NIST-SRM 1575; US National Institute of Standard
and Technology, Standard Reference Materials Program). The
coefficient of variation for quality control and duplicate samples
for needle N analyses was less than 2%.

Statistical analyses

Treatment effects on seasonal patterns in leaf biochemical
and physiological properties were analysed using repeated
measures analysis of variance with growth [CO2] and temper-
ature as the between-subjects factors and measurement
period as the within-subjects factor. Regression analyses were
conducted to examine relationships between needle [N] and
photosynthetic properties within and between CO2 and
temperature treatments. Analyses were performed using the

multivariate general linear model function (MGLH) in 
(SPSS). In general, needle gas exchange measurements were
performed on one seedling in each chamber per measurement
period. Individual branches were not repeatedly sampled over
time, and across the study period measurements were made
on several different seedlings from each chamber. Because the
chamber was the experimental unit, measurements on multiple
branches and seedlings from a chamber at a given measurement
period were combined and the mean value used in the analyses.
One chamber each in the ambient [CO2], elevated temperature
treatment and the elevated [CO2], ambient temperature
treatment were excluded from the analyses because of extensive
insect damage to seedlings in these chambers.

Results

Across the 21-month study period, growth in elevated temper-
ature was associated with significant increases in needle [N] in
first-year needles, compared with the ambient temperature
treatment (Fig. 1a; P = 0.021). By contrast, growth in elevated
[CO2] was associated with significant reductions in needle
[N] compared to the ambient [CO2] treatment (Fig. 2a;
P = 0.025). Across CO2 and temperature treatments, needle
[N] exhibited significant (P = 0.035) variation between measure-
ment periods (Figs 1a and 2a). Needle [N] generally was
highest in the winter and spring, and lowest during the summer.

Fig. 1 Effects of growth temperature on 
seasonal patterns of mean (± SE) needle 
nitrogen concentrations of Douglas-fir 
(Pseudotsuga menziesii) seedlings (a), light-
saturated net photosynthetic rates at the 
growth [CO2] (Agrowth) (b), light-saturated 
net photosynthetic rates at 350 µmol mol−1 
CO2 (A350) (c), light-saturated net 
photosynthetic rates at 550 µmol mol−1 CO2 
(A550) (d), Vc,max (e) and Jmax (f). Data are 
combined across CO2 treatments. The 
ambient temperature treatment tracked the 
ambient air temperature at an adjacent 
meteorological station. Across the study 
period, actual air temperatures in the 
elevated temperature treatment were 3.5°C 
higher on average compared with the 
ambient temperature treatment. 
Measurements between November 1995 
and July 1996 were made on the 1995 
needle cohort, while the 1996 needle cohort 
was measured between August 1996 and 
July 1997. For all measurement periods, 
n = 4 for the ambient treatment (open 
circles), n = 6 for the ambient +3.5°C 
treatment (closed circles).
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Elevated temperature (Fig. 1b–f) was associated with
significant (P = 0.089 in all cases) increases across the study
period in net photosynthetic rates at the growth [CO2]
(Agrowth), at 350 µmol mol−1 CO2 (A350) and at 550 µmol mol−1

CO2 (A550), maximum carboxylation activity of Rubisco
(Vc,max) and electron transport-mediated RuBP regeneration
capacity (Jmax). By contrast, there were significant interactions
(P = 0.060 in all cases) between CO2 treatment and measure-
ment period (Fig. 2b–f) on Agrowth, A350, A550, Vc,max, and Jmax.
Growth in elevated [CO2] generally increased Agrowth but
reduced A350, A550, Vc,max, and Jmax. For all parameters, values
generally peaked each spring in the elevated [CO2] treatment
but exhibited relatively less seasonal variation in the ambient
[CO2] treatment. As a result, the stimulatory effect of elevated
[CO2] on Agrowth generally increased from fall to spring, asso-
ciated with lessening of the inhibitory effect of elevated [CO2]
on A350, A550, Vc,max and Jmax. There were no other significant
interactions between CO2 treatment, temperature treatment,
and measurement period (P = 0.298 in all cases).

A significantly greater increase was seen in Agrowth with
increasing needle [N] in elevated compared with ambient
[CO2] (Fig. 3a; P < 0.001). A comparison of the slopes indic-
ates that a unit increase in needle [N] was associated with a
c. 70% greater increase in Agrowth at elevated compared with
ambient [CO2]. It significantly increased with increasing
needle [N] across temperature treatments (P < 0.001); however,

the slope of the relationship between Agrowth and needle [N]
did not significantly vary between temperature treatments
(Fig. 3b; P = 0.688). The relationships between needle [N]
and A350, A550, Vc,max or Jmax did not significantly vary
between CO2 or temperature treatments. Across CO2 and
temperature treatments, A350, A550, Vc,max, and Jmax signi-
ficantly increased with increasing needle [N] concentration
(Fig. 4a–d; P < 0.001 in all cases). Adjusted r2 values indic-
ated that needle [N] accounted for 27.1% of the variation in
A350, 31.8% of the variation in A550, 37.1% of the variation
in Vc,max, and 43.9% of the variation in Jmax. Consequently,
the observed differences in these parameters with temperature
(Fig. 1) likely are the result of changes in leaf [N] rather than
a direct effect of temperature treatment.

Discussion

Needle [N] significantly varied between seasons, generally
peaking in the winter and spring. Growth in elevated temper-
ature increased needle [N] 26% and net photosynthetic rates
17%, on average, across the 21-month study period compared
with the ambient temperature treatment. Increases in needle
[N] were associated with a significant increase in the response
of net photosynthetic rates to growth in elevated [CO2].
Variation in needle [N] accounted for approximately 50% of
the variation in net photosynthetic rates between CO2

Fig. 2 Effects of CO2 supply on seasonal 
patterns of mean (± SE) needle nitrogen 
concentrations of Douglas-fir (Pseudotsuga 
menziesii) seedlings (a), light-saturated net 
photosynthetic rates at the growth [CO2] 
(Agrowth) (b), light-saturated net 
photosynthetic rates at 350 µmol mol−1 CO2 
(A350) (c), light-saturated net photosynthetic 
rates at 550 µmol mol−1 CO2 (A550) (d), 
Vc,max (e) and Jmax (f). Data are combined 
across temperature treatments. The ambient 
CO2 treatment tracked ambient [CO2] at an 
adjacent meteorological station; actual 
[CO2] in the elevated CO2 treatment was c. 
180 µmol mol−1 higher on average across 
the study period. Measurements between 
November 1995 and July 1996 were made 
on the 1995 needle cohort, while the 1996 
needle cohort was measured between 
August 1996 and July 1997. Photosynthetic 
measurements in July 1997 were made at 
the growth [CO2] only. For all measurement 
periods, n = 5 for the ambient treatment 
(open squares) and for the 
ambient +180 µmol mol−1 CO2 treatment 
(closed squares).
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treatments over the study period. Increases in the response of
photosynthesis to elevated [CO2] with increasing needle [N],
coupled with increased needle [N] in the elevated temperature
treatment, suggest that the effects of elevated [CO2] on
photosynthesis increased with increasing growth temperature,
paralleling the effects of growth temperature on needle [N].
However, the interactive effects of elevated [CO2] and
temperature on photosynthesis were not statistically significant.
Thus, effects of elevated [CO2] on photosynthetic processes
were generally similar across temperature treatments in this study.

Increasing mean growth temperature has been shown to
increase the relative response of photosynthesis to elevated
[CO2] in other studies (Callaway et al., 1994; Kellomäki &

Wang, 1996; Koike et al., 1996; but see Teskey, 1997; Wayne
et al., 1998), as is predicted based on the relative effects of
increasing temperature and [CO2] on the carboxylation effi-
ciency of Rubisco (Long, 1991). Elevated growth temperature
has also been shown to enhance photosynthetic responses to
elevated [CO2] by increasing needle [N] (Kellomäki & Wang,
1997). While our results are partly consistent with these
findings in that photosynthetic responses to elevated [CO2]
increased with increasing needle [N], the lack of significant
interaction between elevated [CO2] and temperature on
photosynthesis indicates that other factors must also regulate
plant responses to climate change. Thus, in addition to the
potential effects of elevated [CO2] and temperature on the
carboxylation efficiency of Rubisco, the effects of climate
change on carbon uptake are likely to reflect complex interac-
tions with other factors, such as needle [N], that influence
photosynthesis and that may be altered by elevated [CO2] or
temperature.

The relationship between changes in needle [N] and
photosynthetic responses to elevated [CO2] also resulted in
substantial seasonality in the response of Agrowth to elevated
[CO2]. Peaks in needle [N] in the winter and spring were asso-
ciated with relatively large responses of Agrowth to elevated
[CO2], while comparatively low needle [N] in the summer
was associated with a relatively small response (Fig. 2a,b). The
observed relationship between seasonal changes in leaf [N]
and the response of net photosynthetic rates to elevated [CO2]
is consistent with other studies on trees, and indicate that
temporal changes in leaf [N] are a key factor regulating plant
responses to climate change (Curtis & Teeri, 1992; Jach &
Ceulemans, 2000).

The comparatively small response of Agrowth to elevated
[CO2] during the summer suggests that the stimulatory effect
of elevated [CO2] on annual carbon uptake by Douglas-fir
seedlings was relatively low during the summer. A limitation
to these results is that only first-year needles were examined.
Needle [N] of first-year needles has been shown to rise during
the winter and decline during the summer, as occurred in this
study, owing to seasonal patterns of allocation and remobil-
ization (Fife & Nambiar, 1984; Helmisaari, 1992; Millard &
Proe, 1992). By contrast, older cohorts show little N accumu-
lation in the winter, and thus may be expected to show less of
a wintertime enhancement of photosynthetic responses to
elevated [CO2]. Further, older needle cohorts in Douglas-fir
have lower needle [N] than younger cohorts (Hobbie et al.,
2001). These constraints on the effect of elevated [CO2] on
annual carbon uptake may partly account for the lack of signi-
ficant growth responses of these seedlings to elevated [CO2]
(Olszyk et al., 1998a; Olszyk et al., 2003).

Increases in the response of Agrowth to elevated [CO2] with
increasing needle [N] were primarily due to a shift in electron
transport capacity rather than Rubisco activity, as indicated by
greater changes in Jmax and A550 with increasing needle [N]
compared with the changes in Vc,max and A350. For example,

Fig. 3 Effects of CO2 supply (a) and temperature treatment 
(b) on the relationship between light-saturated net photosynthetic 
rate at the growth [CO2] (Agrowth) and needle [N] of Douglas-fir 
(Pseudotsuga menziesii) seedlings. There was a significant interaction 
between CO2 treatment and needle [N] on Agrowth (r

2 = 0.491 for
the combined model). Across temperature treatments, Agrowth was 
significantly correlated with needle [N] (r2 = 0.300), and the slope 
of the relationship did not significantly vary between temperature 
treatments. The corresponding equations for the ambient 
and elevated [CO2] treatments, respectively, are: 
Agrowth = 4.65 + 3.75 × needle [N]; and, Agrowth = 4.59 + 
6.46 × needle [N]. For the ambient and elevated temperature 
treatments, the corresponding equations, respectively, are: 
Agrowth = 6.49 + 2.92 × needle [N]; and, Agrowth = 8.08 + 
2.29 × needle [N]. (a) Open squares, ambient treatment; closed 
squares, ambient +180 µmol mol−1 CO2 treatment. (b) Open circles, 
ambient treatment; closed circles, ambient +3.5°C treatment.
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relative to A350, A550 increased 60% more rapidly with
increasing needle [N] (Fig. 4). Increasing [CO2] is predicted
to shift control of photosynthesis from Rubisco activity
towards electron-transport-mediated RuBP regeneration by
increasing substrate availability for carboxylation and reducing
the relative amount, and energetic cost, of photorespiration
(Jordan & Ogren, 1984; Sharkey, 1988; Woodrow & Berry,
1988; Hikosaka & Hirose, 1998). Indeed, the stimulatory effect
of elevated [CO2] on Rubisco carboxylation is large enough
that growth in elevated [CO2] may induce reductions in photo-
synthetic capacity, often referred to as photosynthetic
acclimatization, while still enhancing net photosynthetic rates
(Sage, 1994; Woodrow, 1994; Medlyn, 1996; Tissue et al., 1999).

Although growth in elevated [CO2] increased net photo-
synthetic rates 12% on average across the study, there was clear
evidence of photosynthetic acclimatization in the elevated
[CO2] treatment. Net photosynthetic rates measured at
a common [CO2], as well as Vc,max and Jmax, were reduced
approximately 10–15%, on average, in the elevated [CO2]
treatment (Fig. 1). Similar reductions were observed in chloro-
phyll concentrations in the seedlings grown in elevated [CO2]
compared with the seedlings in the ambient [CO2] treatment
(Ormrod et al., 1999). Studies on a range of other tree species
have also observed a reduction in photosynthetic capacity
despite a stimulation of net photosynthetic rates by growth in
elevated [CO2] (Norby et al., 1999). Thus, for Douglas-fir
and at least some other tree species, long-term photosynthetic
responses to elevated [CO2] may be substantially smaller than
predicted from short-term studies.

Photosynthetic acclimatization was observed even though
the seedlings in this study were grown in a large soil volume,
and the fine root distribution pattern in the chambers was
similar to that observed in same-age Douglas-fir seedling grown
in similar soils in the field (M. G. Johnson, pers. comm.). Photo-
synthetic acclimatization to elevated [CO2] has frequently been

observed in laboratory studies (Gunderson & Wullschleger,
1994; Curtis & Wang, 1998), and limited rooting volume has
been identified as a key factor leading to acclimatization
through effects on carbohydrate source–sink balance (Arp,
1991; Stitt, 1991; Thomas & Strain, 1991). However, acclimat-
ization to elevated [CO2] has also been demonstrated in
several field studies (Lewis et al., 1996; Rey & Jarvis, 1998;
Tissue et al., 1999; Griffin et al., 2000; Bernacchi et al.,
2003), indicating that this phenomenon is not simply an
artifact of limited rooting volume. Rather, acclimatization may
reflect a variety of factors that influence carbohydrate source–
sink balance, including low growth rates (Poorter, 1998) and
ontogeny (Coleman et al., 1994; Lewis et al., 2002a). Other
factors that have been shown to influence acclimation include
nutrient allocation (McConnaughay et al., 1993) and changes
in leaf morphology (Luo et al., 1994).

In the present study, changes in N allocation may have been
a key factor driving photosynthetic acclimatization to elevated
[CO2]. The 10–15% reduction in photosynthetic capacity
in elevated [CO2] across the study period was paralleled by a
12% reduction, on average, in needle [N]. Reductions in
leaf [N] are commonly seen during long-term exposure to
elevated [CO2] (Curtis & Wang, 1998), and generally reflect
reallocation of N from photosynthetic machinery to other
parts of the plant (Tissue et al., 1993; Sage, 1994; Griffin &
Seemann, 1996; Wolfe et al., 1998; Tingey et al., 2003) or a
dilution effect due to starch and sugar accumulation in leaves
(Field et al., 1992). Reductions in needle [N] were associated
with reallocation of N to nonphotosynthetic tissue in these
seedlings (Hobbie et al., 2001; Tingey et al., 2003). Further,
although needle carbon concentrations did not significantly
vary with CO2 treatment, needle carbohydrate concentrations
were significantly greater in the elevated CO2 treatment (Tingey
et al., 2003). Increased needle carbohydrate concentrations
without associated increases in needle carbon concentrations

Fig. 4 The relationships between needle 
[N] concentration and light-saturated 
net photosynthetic rates of Douglas-fir 
(Pseudotsuga menziesii) seedlings 
at 350 µmol mol−1 CO2 (A350) (a), 
light-saturated net photosynthetic rates at 
550 µmol mol−1 CO2 (A550) (b), Vc,max (c), 
and Jmax (d) across CO2 and temperature 
treatments. (a) A350 = 3.50 + 4.41 × needle 
[N], r2 = 0.271. (b) A550 = 4.17 + 
7.07 × needle [N], r2 = 0.318. (c) Vc,max = 
−6.45 + 25.78 × needle [N], r2 = 0.371. 
(d) Jmax = −1.28 + 70.02 × needle [N], 
r2 = 0.439.
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suggest that elevated [CO2] did not affect needle [N] through
a dilution effect but rather through reallocation in response to
sink limitation associated with the lack of growth response to
elevated [CO2].

By contrast to the reduction in photosynthetic capacity in
the elevated [CO2] treatment, growth in elevated temperature
was associated with increased photosynthetic capacity, in
conjunction with increased needle [N] (Fig. 1). Growth in
elevated temperature also significantly increased chlorophyll
concentrations (Ormrod et al., 1999), and significantly reduced
needle carbohydrate concentrations of these seedlings, although
needle carbon concentrations did not significantly vary
between temperature treatments (Tingey et al., 2003). Increased
needle [N] with increased growth temperature may result
from increased soil nitrogen availability due to increased soil
nitrogen mineralization rates (Rygiewicz et al., 2000; Hobbie
et al., 2001), as has been observed in other studies (van Cleve
et al., 1990; van Breemen et al., 1998). However, increased
N uptake was not observed in this study (Tingey et al., 2003).
Thus, these results suggest that, as with elevated [CO2],
changes in N allocation rather than dilution effects on needle
[N] or changes in nitrogen assimilation were a primary driver
of photosynthetic responses to elevated temperature.

In summary, photosynthetic responses of Douglas-fir
seedlings to growth in ambient +180 µmol mol−1 CO2 showed
similar trends across growth temperatures. In addition, these
results suggest that needle [N] may regulate photosynthetic
responses of Douglas-fir seedlings to climate change. Seasonal
increases in needle [N] were associated with a significant
increase in photosynthetic responses to growth in elevated
[CO2]. Further, changes in needle [N] accounted for nearly
50% of the variation between [CO2] treatments in net photo-
synthetic rates over the 21-month study period. Needle [N]
also accounted for c. 30% of the variation in A350 and A550,
and for c. 40% of the variation in Vc,max and Jmax. The link
between seasonal patterns in needle [N] and the response of
Agrowth to elevated [CO2] suggest that the effect of elevated
[CO2] on annual carbon uptake by Douglas-fir seedlings was
lowest during the summer. Seasonality in photosynthetic
responses of Douglas-fir to elevated [CO2] may also be influ-
enced by seasonal patterns in leaf temperature (Lewis et al., 2001)
and ontogeny (Lewis et al., 1999). These constraints may
partly account for the lack of significant growth responses of
these seedlings to elevated [CO2] (Olszyk et al., 1998a; Olszyk
et al., 2003). Thus, the effects of elevated [CO2] on carbon
uptake in Douglas-fir seedlings are likely to reflect complex
interactions with other factors, such as needle [N], that may
be altered by elevated [CO2] or temperature.
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