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Reversible Inactivation and Desiccation Tolerance of Silicified Viruses

James R. Laidler,a Jessica A. Shugart,b Sherry L. Cady,c Keith S. Bahjat,b Kenneth M. Stedmana

Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, Oregon, USAa; Robert W. Franz Cancer Research Center, Earle A. Chiles
Research Institute, Providence Cancer Center, Portland, Oregon, USAb; The William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National
Laboratory, Richland, Washington, USAc

Long-distance host-independent virus dispersal is poorly understood, especially for viruses found in isolated ecosystems. To
demonstrate a possible dispersal mechanism, we show that bacteriophage T4, archaeal virus Sulfolobus spindle-shaped virus
Kamchatka, and vaccinia virus are reversibly inactivated by mineralization in silica under conditions similar to volcanic hot
springs. In contrast, bacteriophage PRD1 is not silicified. Moreover, silicification provides viruses with remarkable desiccation
resistance, which could allow extensive aerial dispersal.

The mechanisms and extent of virus dispersal are often unclear.
Given the importance of viruses in maintaining microbial di-

versity and recycling nutrients on a global scale (1) and causing
disease (2), understanding virus distribution is essential. How-
ever, it is not clear whether virus species are cosmopolitan (3) or
display regional endemism (4–8). Interestingly, local hot spring
virus dispersal can result from aerosolization by fumaroles (8),
indicating at least one possible host-independent dispersal mech-
anism.

Stratospheric winds are capable of carrying bacteria and fungi
from the Sahara Desert as far as the Caribbean Sea (9, 10). How-
ever, a critically limiting factor for wind-borne virus spread is the
ability of the virus to resist drying; most viruses are highly sensitive
to desiccation (for examples, see references 11 to 13). However, if
viruses could be reversibly coated in a protective coat in addition
to their capsid, they could potentially spread very widely. Silica
coating is a particularly attractive possibility, since in hot spring
environments, viruses can be coated with silica (14, 15). However,
the effect of silicification on virus infectivity was not known.
Therefore, we tested both enveloped and unenveloped viruses
for their susceptibility and response to silicification. Viruses
tested included bacteriophage T4 (16), bacteriophage PRD1
(17), the archaeal virus Sulfolobus spindle-shaped virus Kam-
chatka (SSV-K) (18), and vaccinia virus (VACV) (19).

Bacteriophage T4, PRD1, SSV-K, and VACV were propagated
in host cell cultures using Escherichia coli B, Salmonella enterica
serovar Typhimurium LT2, Sulfolobus solfataricus strain G�, and
murine BSC-1 cells, respectively. After growth, cell debris was re-
moved. The resulting viruses were mixed with freshly prepared
pH 7.0 to 7.1 sodium metasilicate solution in either 10 mM so-
dium bicarbonate–5 mM magnesium chloride for bacteriophage
T4, PRD1, and SSV-K or Dulbecco’s phosphate-buffered saline
for VACV to final silica concentrations of 0, 5, and 10 mM (0, 300,
and 600 ppm). Solutions were placed in dialysis tubing in a reser-
voir of the same buffer and silica concentration. The bathing so-
lution was replaced daily. Samples were withdrawn immediately
and on days 1, 3, 8, and 10. The virus titer was determined in
triplicate by plaque assay. On day 10, aliquots were diluted 1:10
with a 0-ppm silica solution. Plaque assays were performed with
these diluted samples on days 12, 14, 16, and 20. On day 10, ali-
quots were also removed for desiccation tests. Initial drying (ex-
cept for VACV) was performed with a vacuum concentrator at
4°C and 13 mbar for 4 h. Samples were then desiccated at a pres-

sure of 250 to 300 mbar for 10, 30, and 90 days. Vaccinia virus was
air-dried in a biosafety cabinet. Desiccated virus samples were
rehydrated with a 0-ppm silica solution. Titers were determined at
1 h and at 10 days after rehydration.

Treatment of viruses in silica solutions had a variable effect on
virus infectivity (Fig. 1). Treatment of bacteriophage T4 with silica
at 600 ppm (10 mM) caused a loss of infectivity of up to three
orders of magnitude (Fig. 1). Effects were less in 300-ppm silica
solutions. In contrast, bacteriophage PRD1 was insensitive to sil-
ica treatment. The archaeal fusellovirus SSV-K, which is indige-
nous to high-silica hot spring environments, had an intermediate
degree of silica-induced inactivation (Fig. 1). Vaccinia virus re-
sponded similarly to bacteriophage T4 to silica treatment (Fig. 1).
In summary, bacteriophage T4, the archaeal virus SSV-K, and the
animal virus VACV can be inactivated at silica concentrations
similar to those found in terrestrial hot springs (20–22). Based on
previous silicification studies with bacteria, archaea (23, 24), and
viruses (14, 15), infectivity loss on silicification is not unexpected.
However, even in supersaturated silica solutions (600 ppm), dif-
ferent viruses were not equally affected (Fig. 1). These data
strongly suggest that virus surface characteristics significantly im-
pact silica deposition and thereby their susceptibility to inactiva-
tion. Bacteriophage T4, PRD1, and SSV-K have protein capsids
(16–18) but have quite different inactivation profiles (Fig. 1). In-
activation of the enveloped virus VACV by silica exposure was
similar in magnitude to that of bacteriophage T4, but more rapid
(Fig. 1). SSV-K, which is endemic to high silica environments,
may be resistant to silicification.

Viruses inactivated by silicification could be reactivated merely
by lowering the external silica concentration to below saturation.
Following 10 days of silica exposure, both bacteriophage T4 and
SSV-K regained infectivity to at least 10% of the initial titer (Fig.
1). Similarly, silicified VACV recovered slightly over 5% of its
original infectivity. However, when the 600-ppm silica treatment
is compared to the control, VACV demonstrated a nearly 400-fold
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increase in titer compared to that after 10 days of silica exposure.
Beyond showing that the effect of silicification on infectivity is at
least partially reversible, these results support the hypothesis that
the effect on infectivity was due to the silica coating rather than a
physical or chemical damage, which would have led to an irrevers-
ible loss of infectivity.

Silicified bacteriophage T4 and the archaeal virus SSV-K have
greatly enhanced resistance to desiccation compared to unsilici-
fied virus under conditions similar to stratospheric pressures and
dryness. Silicified bacteriophage T4 had detectable infectivity after
up to 30 days of desiccation (Fig. 2), whereas unsilicified viruses
lost more than seven orders of magnitude of infectivity. SSV-K
was similarly protected by silicification, but to a lesser extent than
bacteriophage T4 (Fig. 2). SSV-K, however, has a lower starting
titer than that of bacteriophage T4, limiting the ability to compare
their desiccation resistance levels at later times. Desiccation pro-
tection was not absolute, however, as bacteriophage T4 lost more
than seven orders of magnitude of titer after 90 days of desicca-

tion. Only VACV—well-known for its innate desiccation resis-
tance— had any infectivity after desiccation. The infectivity of un-
silicified VACV dropped three orders of magnitude after
desiccation (1.4 � 108 PFU/ml to 2.1 � 105 PFU/ml), consistent
with previous data (25), while the silicified VACV dropped four
orders of magnitude (1.4 � 108 PFU/ml to 1.6 � 104 PFU/ml).
The additional loss of infectivity for the silicified VACV may be the
result of damage during silicification. These desiccation results
indicate that, for at least some viruses, silicification may provide
protection from the effects of drying, thus allowing the viruses to
persist for days to weeks under stratospheric pressure and humid-
ity, which may in turn allow global dispersal (10). These data
potentially explain some of the conflicting results of virus distri-
bution (3–7). This is particularly true for silicified hot spring vi-
ruses that could be aerosolized by fumarole outgassing or dis-
persed by volcanic activity (6, 8). Responses of silicified viruses to
other conditions remain to be tested.
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