
Portland State University
PDXScholar
Computer Science Faculty Publications and
Presentations Computer Science

6-2000

Aspects of Information Flow
Andrew P. Black
Portland State University, black@cs.pdx.edu

Jonathan Walpole
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/compsci_fac

Part of the Computer and Systems Architecture Commons, and the OS and Networks Commons

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications
and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
"Aspects of Information Flow", Andrew Black and Jonathan Walpole, In Proceedings ECOOP Workshop on Aspect-Oriented
Programming, June 2000.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PDXScholar

https://core.ac.uk/display/37767577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/compsci_fac/22
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

18 May 2000

1

Aspects of Information Flow

Andrew P. Black Jonathan Walpole

black@cse.ogi.edu walpole@cse.ogi.edu

Department of Computer Science & Engineering
Oregon Graduate Institute of Science & Technology
Beaverton, Oregon, USA

A Position Paper submitted to the ECOOP’2000 Workshop on
Aspect-Oriented Programming

Introduction

Along with our colleagues at the Oregon Graduate Institute and Georgia Institute of
Technology, we have recently been experimenting with real-rate systems, that is,
systems that are required to move data from one place to another at defined rates,
such as 30 items per second. Audio conferencing or streaming video systems are typ-
ical: they are required to deliver video or audio frames from a source (a server or file
system) in one place to a sink (a display or a sound generator) in another; the frames
must arrive periodically, with constrained latency and jitter.

We have successfully built such systems (for example, see reference [Walpole 1997]),
but they are not simple to design or construct. Our current research seeks to capture
our knowledge of this domain into an information flow framework, called

InfoPipes

.
The goal of Infopipes is to make the task of building a system that moves data from
one part of the Internet to another as simple as connecting pre-defined components
such as buffers, pipes, filters and meters. The latency, jitter and data-rate properties
of the resulting pipeline should follow by calculation from the properties of the
components.

As we try to understand how Infopipes should be constructed, what interfaces they
should offer, and what properties they should have, some decisions seem to be easy
to make. The components can be modelled as objects: we have objects representing
bounded and unbounded buffers, straight pipes, sources, and sinks. Every
component has zero or more inputs and zero or more outputs; straight pipes have one
input and one output, sinks are defined as having at least one input but no outputs,
and conversely sources have no inputs but at least one output. Various kinds of Y
connectors have different numbers of inputs and outputs. In a properly constructed
pipeline, every input must be connected to the output of some other component, and
vice versa.

Other decisions seem harder, because several alternatives appear equally compelling.
One such decision is the activity model: should data be pulled through a pipeline, or
pushed? Another is the blocking behaviour of a component: what happens if I try to

Activity in InfoPipes

2

Aspects of Information Flow

pull an item from an empty pipe? Does my attempt block until an item is available,
return with a “bubble of air”, or raise some sort of exception?

We feel that it is desirable for such properties to be captured as aspects. One reason
for this is that we will probably want to make multiple variants available: pipes that
push and pipes that pull, pipes that block and pipes that return air. This is because we
are using InfoPipes to model existing components in real operating systems and net-
works, and these components actually exhibit all of these characteristics. Thus, we
expect to need variability in the activity model and blocking behaviour; it seems bet-
ter to obtain this by combining a base component with an appropriate selection of
aspects, than to have to build many versions of the components from scratch.

So, let us look a little more closely at activity and blocking behaviour, to see if it
becomes clear how to represent them as aspects.

Activity in InfoPipes

THE PULL MODEL

Imagine an InfoPipe component

P

 delivering data to another component

Q

. There
are two ways in which they can communicate. In the “Pull model”, illustrated in
Figure 1,

Q

 sends a

pull

 message to

P

, which (if

Q

 is fortunate) replies with an item.

THE PUSH MODEL

In contrast, Figure 2 shows the “Push” model of data flow. Here,

P

 sends a push
message to

Q

, accompanied by the data item. If all is well,

 Q

 accepts the item and
replies with a positive acknowledgement. In both cases, the data flow is the same, but
the components have different activity. In the terminology of reference [Black 1983],

Figure 1. The Pull model of data flow.

QP

pull

reply [item]

direction of information flow

Figure 2. The Push model of data flow.

QP

push [item]

reply [ack]

direction of information flow

Activity in InfoPipes

Aspects of Information Flow

3

in Figure 1

Q

 is doing active input, while

P

 is doing passive output, while in
Figure 2,

Q

 is doing passive input, while

P

 is doing active output.

Clearly, data flow can be achieved either by making all of the Infopipe components
understand pull, or by making them all understand push. But we will maximize the
opportunities for constructing pipelines with interesting activity models if every
component (other than sources and sinks) understands both

pull

 and

push

.

PASSIVE COMPONENTS

In addition, both of the figures imply that either

Q

(in Figure 1) or

P

 (in Figure 2)
contains a source of “motive power”, or at least some code that when “ignited” is
capable of sending the

pull

 or the

push

 message to the other component. An alterna-
tive configuration is possible in which this is not so; see Figure 3. Here, all of the

activity is contained in a third component, called

Pump.

 Both

P

 and

 Q

wait passively
for

Pump

 to send them messages; at this point (but not before) they respond.

ACTIVE COMPONENTS

By symmetry, one might expect a fourth configuration; this is shown in Figure 4.
Here, both

P

 and

Q

 are active.

P

 pushes items into

Buffer

, and

Q

 pulls items out of

Buffer

. If an active component wishes to pass data to another active component, it is
essential that there be a buffer (with a capacity of at least one item) between them. In
Unix, the

Buffer

 of Figure 4 is called a Pipe; when

P

 and

Q

 are processes, this is the
only activity model that is supported in Unix.

Figure 3. An external Pump extracts data from P and pushes it into Q

QP

pu
ll

re
ply

 [it
em

]

direction of information flow

push [item
]

reply [ack]

Pump

Figure 4. An external Buffer receives data from P and supplies it to Q

Q

re
ply

 [a
ck

]

direction of information flow

pullreply [item
]

pu
sh

 [it
em

]

P

Buffer

Activity in InfoPipes

4

Aspects of Information Flow

ACTIVITY AS AN ASPECT

In an InfoPipe system,

P

 and

Q

 might be various kinds of devices, or network or
operating system components. We no not want to have to provide multiple versions
of each, depending on the desired activity model. Instead, we would like activity to
be an aspect, which could be “added” to any object where it makes sense. It seems
reasonable to define one set of InfoPipe components that are always passive, and
then selectively add activity to them.

The alternative would be to make all components active, but to selectively “turn off”
activity when it is not wanted. This is probably easier to program, but it has the
major disadvantage that the complexity of a active process is already present in
every component, whether or not it is required. Building active components from the
composition of activity and components seems to be pedagogically much more
desirable.

But

how

 passive should passive components really be? Clearly, a passive component

P

 understand

pull

 and

push[item]

. But what should

P

 do when an item is pushed into
it by an InfoPipe

Q

? If

P

 has no storage, there are three options.

1.

P

 could invoke

push[item]

 on the InfoPipe

O

 connected its output. This is proba-
bly the simplest option. But from the point of view of

O

, when

P

 does this it is
behaving like an

active

 Infopipe.

2.

P

 could block

Q

, (more precisely, block the thread that is invoking

push)

, until
such time as someone invokes

pull

 on

P

. This is certainly passive. But it presup-
poses that

P

 is allowed to exhibit blocking behaviour. Whether this should be
permitted is the subject of the next section, but we would in fact like to make an
InfoPipe’s blocking behaviour a separately selectable aspect.

3.

The final option is as passive as we can imagine:

P

 does

 nothing at all!

In other
words, it ignores the item that was pushed into it, effectively dropping it “onto
the floor”. A possible variation is that if a

pull

 invocation arrives from

O

 simulta-
neously with the

push

 invocation from

Q

, then the item is passed to

O

, otherwise
it is dropped.

Note that the choices that we make here affect two other aspects: reliability and
blocking behaviour. We might have hoped that these aspects would be orthogonal to
the activity model, but that does not seem to be the case,

Our first attempt to selectively add activity to an InfoPipe component was by intro-
ducing two new methods,

startPumping[speed]

 and

stopPumping,

 into the compo-
nent. But the implementation of these methods depends on the nature of the
component. For example, pumping a straight pipe pulls from its input pipe and
pushes onto its output pipe, whereas pumping a source simply pushes items onto its
output. To provide a uniform “socket” to which a pump could be attached, we added
the method

stroke

 to every component: it captured the behaviour of the component
corresponding to a single “stroke” of the pump.

startPumping[speed]

 was then
implemented by attaching to the component a process that stroked at the appropriate
speed.

Subsequently, we realized that the same behaviour could be achieved by object com-
position, without the use of aspects at all. Look again at Figure 3 on page 3; if we
focus on the relationship between

P

 and

Pump

, we see that their

composition

 is a
compound InfoPipe that has exactly the properties of an active version of

P

; this is
shown by the grey box in Figure 5. So, ordinary object composition through the push
and pull interface seems to be adequate to express what we though was an aspect!
This is a little disconcerting.

Blocking Behaviour

Aspects of Information Flow

5

The one drawback with the compositional approach is that in most OO languages,
the composition of two objects is not itself an object: “P+Pump” has no object iden-
tity and cannot be sent messages.

The open questions here are:

1.

Can activity be represented as an Aspect?

2.

What are the advantages and disadvantages of doing so, compared to represent-
ing activity as a component that can be connected to other components (as in
Figure 5) to make a composite component?

Blocking Behaviour

As with activity, we can imagine a family of infopipe components that offer the same
basic behaviour but which differ only in their blocking characteristics.

Suppose that

P

 is an Infopipe whose storage is full, or which has no storage. What
should

P

 do when an item is pushed into it? Once again, there seem to be several
options:

1.

Silently drop the item “on the floor”. This is the simplest behaviour, and is the
behaviour actually exhibited by real-world networking components such as rout-
ers.

2.

Apologetically drop the item, that is, return a status code or exception to the
caller indicating that the proffered item has, regretfully, been refused.

3.

If

P

 has storage, for example,

P

 is a buffer, then a wider range of dropping behav-
iours are possible.

P

 might drop the oldest or least urgent item already in its
buffer storage, in order to make room for the newly arrived item.

4.

Block the thread that invoked

push

, until such time as another thread makes
enough space in

P

 to accommodate the new item.

A similar range of options are available if an Infopipe attempts to

pull an item from
an empty Infopipe, i.e., one that has no storage or whose storage is empty.

1. The simplest action is to introduce a “bubble of air” into the pipeline, and to pass
it to the invoker. (In our prototype implementation, we use nil for this purpose.)

2. A more polite (but sometimes less convenient) alternative is to return a status
code or exception to the invoker indicating that, regretfully, no item is available.

Figure 5. P and Pump can be composed to create an active version of P

QP

pull

direction of information flow

push [item]

Pump

P+Pump

Time as an Aspect

6 Aspects of Information Flow

3. It is sometimes appropriate to fabricate a new item and return it. For example, in
an audio pipeline, it might be appropriate to fabricate a packet of white noise; in
a video pipeline, it is common to re-transmit the previous frame.

4. The final option is to block the thread that invoked pull, until such time as another
thread makes an item available.

The problems that must be solved in order to add blocking as an aspect are similar to
those involved with synchronization [Matsuoka 1993]. First, we must choose some
base behaviour for InfoPipes in the absence of blocking. Pragmatically, this would
seem to be one of the first two options described above. It it easy to add an aspect
that intercepts the bubble of air or the exception and blocks the calling thread. It is
less clear how to ensure that this thread is unblocked whenever a new item becomes
available. For example, as new methods are added to subclasses of the basic compo-
nent, the number of ways in which a new item could arrive in the buffer might
increase. How can we guaranteed to unblock the waiting thread in all of the right sit-
uations? One possibility is to check a predicate (callerBlocked and buffer nonempty)
after the execution of every method on the Infopipe.

Time as an Aspect

In the introduction we mentioned that Infopipes are intended as an abstraction for
real-rate systems, which guarantee to move data from one place to another with cer-
tain timing properties. An intriguing question is whether time itself can be treated as
an aspect. That is, can we write “timeless” Infopipe components, and then add vari-
ous sorts of timing properties as aspects?

Our initial opinion is that this is not in fact possible, at least not so long as we are
thinking in terms of an aspect weaver working with a conventional base program-
ming language. The reason is simple: all the conventional programming languages
developed in the second half of the 20th Century are timeless. Like all high-level
abstractions, programming languages choose to hide some details of the machines
on which they are implemented, and emphasize others. Without exception, they all
choose to hide the notion of time!

Timelessness is an empowering choice: without abstracting away from time it
would, for example, be impossible to prove that two program fragments are
equivalent. This is because, even if the fragments can be proved to effect the same
transformation on the state, they are very unlikely to have the same execution time. It
would also be impossible to implement the same language on more than one
hardware base. But timelessness is also a limiting choice: if a language is essentially
timeless, how can it be used to build a system in which timeliness is a critical
property? The answer has been to depend on a Real-Time Operating System to
provide timing-related operations.

Of course, there are some “unconventional” programming languages, notably
Esterel [Berry 1998] and Lustre [Caspi 1987], which are specifically intended for
programming real-time systems. However, even these languages do not include a
conventional notion of time. Instead, they depend on the so-called “Synchrony
Hypothesis”, which states that computing activity takes no time at all, that is,
computation is instantaneous. Neither do synchronous programming languages like
Esterel have a notion of time built into them. Instead, they rely on a sequence of

Orthogonality of Aspects

Aspects of Information Flow 7

periodic events from an external sensor. From these the program must synthesize
some kind of clock.

The Synchrony Hypothesis allows real-time programmers to build systems that
perform adequately, because the time taken to perform simple sensor computations,
although not actually zero, is much smaller than the time between the external events
to which the system must react. However, this way of dealing with time, or, rather, of
avoiding dealing with time, is clearly not compositional. Even if the computation
associated with one reaction is negligible, can we say the same of 10, 100 or 1000
similar computations? Eventually, the time that these computations take must
become similar to the reaction times that the system is required to exhibit.

For these reasons, another branch of our research is directed towards designing a
new programming language in which time is a central property. We came to this
position reluctantly; if a way of adding a time aspect to a conventional language can
be found, we would eagerly adopt it.

TIMING PROPERTIES FOR
INFOPIPES

What are the timing properties that we need to express for real-rate Infopipes? Here
are some examples that we have considered.

1. Interfacing to real-rate devices, such as audio or video capture devices, that push
items into a pipeline at a determined rate, or audio or video output devices, that
need to be supplied with items at a determined rate. Processing, such as compres-
sion, must be integrated into the pipeline.

2. Add to the above the complexity of multiple active components. So long as only
one of the active components is real-rate (e.g., has its own real-time clock), it is a
relatively simple matter to “phase lock” all of the components, active and passive,
to that real-rate. The active components may be thought of as “virtual-rate”; their
time base can be stretched or compressed to correspond to the needs of the real-
rate component. Passive components are executed by the active ones in lock-step.

3. However, if the pipeline contains multiple real-rate active components, e.g., a
real-rate source and a real-rate sink, something has to give! The rates will not be
exactly matched. Even two crystal clocks with the same nominal rate will be
found to diverge over time. Some data dropping or synthesis will be necessary.

4. Add between the source and sink above an active network, whose latency and
throughput vary over a wide range.

5. Now add some data processing steps, such as MPEG encoding, decoding or
transcoding, that most definitely take more than negligible time.

Orthogonality of Aspects

Naively, we had hoped that activity, blocking behaviour and time, when treated as
aspects, would be orthogonal. This would guarantee that they could be added in
many combinations. However, it seems that this is not the case. We have already seen
that it is hard to talk about the semantics of activity without also taking about when
that activity is blocked. Similarly, a component that must satisfy timing constraints
needs to understand the blocking characteristics of all of the methods that it invokes.
If it does not, there is a risk that a thread will be blocked and will be unable to carry
out a time-critical task. And the implementation of activity (by a process scheduler)
is responsible for the ability of a component to offer timing guarantees.

Summary

8 Aspects of Information Flow

Indeed, we might argue that aspect-oriented Programming becomes an interesting
and powerful tool exactly when the aspects are not orthogonal, but interfere
constructively. How can we promote such constructive interference, and avoid
destructive interference?

Summary

We have briefly described an interesting application domain, Infopipes, in which
aspects would seem to provide an appropriate way of limiting code complexity,
reducing duplication, and improving maintainability. But it is not clear to us, yet,
how to apply them. It is also unclear if timing properties can be “added” to timeless
objects as aspects. The idea is attractive, but the problems seem daunting.

We believe that these problems are worthy of discussion at the ECOOP’2000
Workshop on Aspect-Oriented Programming.

Acknowledgements

We would like to acknowledge Calton Pu’s rôle as the co-developer of the Infopipe
concept, and as a valued continuing collaborator.

References

[Berry 1998] Berry, G. The Foundations of Esterel. In Proof, Language and Interaction:
Essays in Honour of Robin Milner. G. Plotkin, C. Stirling and M. Tofte. MIT Press, 1998.

[Black 1983] Black, A. P. An Asymmetric Stream Communication System. Proceedings 9th
SOSP. ACM, 1983

[Caspi 1987] Caspi, P., D. Pilaud, et al. (1987). LUSTRE: a declarative language for program-
ming synchronous systems. Conference Record of the Fourteenth ACM Symposium on
Principles of Programming Languages, Munich, West Germany, ACM Press, 1987.

[Matsuoka 1993] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly
in object-oriented concurrent programming languages. In Gul Agha, Peter Wegner, and
Akinori Yonezawa, editors, Research Directions in Concurrent Object-Oriented Program-
ming, pages 107–150. MIT Press, 1993.

[Walpole 1997]Jonathan Walpole, Rainer Koster, Shanwei Cen, Crispin Cowan, David Maier,
Dylan McNamee, Calton Pu, David Steere and Liujin Yu. A Player for Adaptive MPEG
Video Streaming Over The Internet. Proceedings 26th Applied Imagery Pattern
Recognition Workshop AIPR-97, SPIE, Washington DC, October 15-17, 1997.
http://www.cse.ogi.edu/DISC/projects/quasar/papers/aipr.ps.

	Portland State University
	PDXScholar
	6-2000

	Aspects of Information Flow
	Andrew P. Black
	Jonathan Walpole
	Let us know how access to this document benefits you.
	Citation Details

	Introduction
	Activity in InfoPipes
	The Pull Model
	The Push Model
	Passive Components
	Active Components
	Activity as an Aspect

	Blocking Behaviour
	Time as an Aspect
	Timing Properties for Infopipes

	Orthogonality of Aspects
	Summary
	Acknowledgements
	References

