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Introduction

 

Along with our colleagues at the Oregon Graduate Institute and Georgia Institute of 
Technology, we have recently been experimenting with real-rate systems, that is, 
systems that are required to move data from one place to another at defined rates, 
such as 30 items per second. Audio conferencing or streaming video systems are typ-
ical: they are required to deliver video or audio frames from a source (a server or file 
system) in one place to a sink (a display or a sound generator) in another; the frames 
must arrive periodically, with constrained latency and jitter.

We have successfully built such systems (for example, see reference [Walpole 1997]), 
but they are not simple to design or construct. Our current research seeks to capture 
our knowledge of this domain into an information flow framework, called 

 

InfoPipes

 

. 
The goal of Infopipes is to make the task of building a system that moves data from 
one part of the Internet to another as simple as connecting pre-defined components 
such as buffers, pipes, filters and meters. The latency, jitter and data-rate properties 
of the resulting pipeline should follow by calculation from the properties of the 
components.

As we try to understand how Infopipes should be constructed, what interfaces they 
should offer, and what properties they should have, some decisions seem to be easy 
to make. The components can be modelled as objects: we have objects representing 
bounded and unbounded buffers, straight pipes, sources, and sinks.   Every 
component has zero or more inputs and zero or more outputs; straight pipes have one 
input and one output, sinks are defined as having at least one input but no outputs, 
and conversely sources have no inputs but at least one output. Various kinds of Y 
connectors have different numbers of inputs and outputs. In a properly constructed 
pipeline, every input must be connected to the output of some other component, and 
vice versa. 

Other decisions seem harder, because several alternatives appear equally compelling. 
One such decision is the activity model: should data be pulled through a pipeline, or 
pushed? Another is the blocking behaviour of a component: what happens if I try to 
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pull an item from an empty pipe? Does my attempt block until an item is available, 
return with a “bubble of air”, or raise some sort of exception? 

We feel that it is desirable for such properties to be captured as aspects. One reason 
for this is that we will probably want to make multiple variants available: pipes that 
push and pipes that pull, pipes that block and pipes that return air. This is because we 
are using InfoPipes to model existing components in real operating systems and net-
works, and these components actually exhibit all of these characteristics. Thus, we 
expect to need variability in the activity model and blocking behaviour; it seems bet-
ter to obtain this by combining a base component with an appropriate selection of 
aspects, than to have to build many versions of the components from scratch.

So, let us look a little more closely at activity and blocking behaviour, to see if it 
becomes clear how to represent them as aspects.

 

Activity in InfoPipes

 

THE PULL MODEL

 

Imagine an InfoPipe component 

 

P

 

 delivering data to another component 

 

Q

 

. There 
are two ways in which they can communicate. In the “Pull model”, illustrated in 
Figure 1, 

 

Q

 

 sends a 

 

pull

 

 message to 

 

P

 

, which (if 

 

Q

 

 is fortunate) replies with an item.

 

THE PUSH MODEL

 

In contrast, Figure 2 shows the “Push” model of data flow. Here, 

 

P

 

 sends a push 
message to 

 

Q

 

, accompanied by the data item. If all is well,

 

 Q

 

 accepts the item and 
replies with a positive acknowledgement. In both cases, the data flow is the same, but 
the components have different activity. In the terminology of reference [Black 1983], 

Figure 1. The Pull model of data flow.
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Figure 2. The Push model of data flow.
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in Figure 1 

 

Q

 

 is doing active input, while 

 

P

 

 is doing passive output, while in 
Figure 2, 

 

Q

 

 is doing passive input, while 

 

P

 

 is doing active output.

Clearly, data flow can be achieved either by making all of the Infopipe components 
understand pull, or by making them all understand push. But we will maximize the 
opportunities for constructing pipelines with interesting activity models if every 
component (other than sources and sinks) understands both 

 

pull

 

 and 

 

push

 

. 

 

PASSIVE COMPONENTS

 

In addition, both of the figures imply that either 

 

Q 

 

(in Figure 1) or 

 

P

 

 (in Figure 2) 
contains a source of “motive power”, or at least some code that when “ignited” is 
capable of sending the 

 

pull

 

 or the 

 

push

 

 message to the other component. An alterna-
tive configuration is possible in which this is not so; see Figure 3. Here, all of the 

activity is contained in a third component, called 

 

Pump.

 

 Both 

 

P

 

 and

 

 Q 

 

wait passively 
for 

 

Pump

 

 to send them messages; at this point (but not before) they respond.

 

ACTIVE COMPONENTS

 

By symmetry, one might expect a fourth configuration; this is shown in Figure 4. 
Here, both 

 

P

 

 and 

 

Q

 

 are active. 

 

P

 

 pushes items into 

 

Buffer

 

, and 

 

Q

 

 pulls items out of 

 

Buffer

 

. If an active component wishes to pass data to another active component, it is 
essential that there be a buffer (with a capacity of at least one item) between them. In 
Unix, the 

 

Buffer

 

 of Figure 4 is called a Pipe; when 

 

P

 

 and 

 

Q

 

 are processes, this is the 
only activity model that is supported in Unix.

Figure 3. An external Pump extracts data from P and pushes it into Q
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Figure 4. An external Buffer receives data from P and supplies it to Q

Q

re
ply

 [a
ck

]

direction of information flow

pullreply [item
]

pu
sh

 [it
em

]

P

Buffer



 

Activity in InfoPipes

 

4

 

Aspects of Information Flow

 

ACTIVITY AS AN ASPECT

 

In an InfoPipe system, 

 

P

 

 and 

 

Q

 

 might be various kinds of devices, or network or 
operating system components. We no not want to have to provide multiple versions 
of each, depending on the desired activity model. Instead, we would like activity to 
be an aspect, which could be “added” to any object where it makes sense. It seems 
reasonable to define one set of InfoPipe components that are always passive, and 
then selectively add activity to them. 

The alternative would be to make all components active, but to selectively “turn off” 
activity when it is not wanted. This is probably easier to program, but it has the 
major disadvantage that the complexity of a active process is already present in 
every component, whether or not it is required. Building active components from the 
composition of activity and components seems to be pedagogically much more 
desirable.

But 

 

how

 

 passive should passive components really be? Clearly, a passive component 

 

P

 

 understand 

 

pull

 

 and 

 

push[item]

 

. But what should 

 

P

 

 do when an item is pushed into 
it by an InfoPipe 

 

Q

 

? If 

 

P

 

 has no storage, there are three options.

 

1.

 

P

 

 could invoke 

 

push[item]

 

 on the InfoPipe 

 

O

 

 connected its output. This is proba-
bly the simplest option. But from the point of view of 

 

O

 

, when 

 

P

 

 does this it is 
behaving like an 

 

active

 

 Infopipe.

 

2.

 

P

 

 could block 

 

Q

 

, (more precisely, block the thread that is invoking 

 

push)

 

, until 
such time as someone invokes 

 

pull

 

 on 

 

P

 

. This is certainly passive. But it presup-
poses that 

 

P

 

 is allowed to exhibit blocking behaviour. Whether this should be 
permitted is the subject of the next section, but we would in fact like to make an 
InfoPipe’s blocking behaviour a separately selectable aspect. 

 

3.

 

The final option is as passive as we can imagine: 

 

P

 

 does

 

 nothing at all! 

 

In other 
words, it ignores the item that was pushed into it, effectively dropping it “onto 
the floor”. A possible variation is that if a 

 

pull

 

 invocation arrives from 

 

O

 

 simulta-
neously with the 

 

push

 

 invocation from 

 

Q

 

, then the item is passed to 

 

O

 

, otherwise 
it is dropped.

Note that the choices that we make here affect two other aspects: reliability and 
blocking behaviour. We might have hoped that these aspects would be orthogonal to 
the activity model, but that does not seem to be the case,

Our first attempt to selectively add activity to an InfoPipe component was by intro-
ducing two new methods, 

 

startPumping[speed]

 

 and 

 

stopPumping,

 

 into the compo-
nent. But the implementation of these methods depends on the nature of the 
component. For example, pumping a straight pipe pulls from its input pipe and 
pushes onto its output pipe, whereas pumping a source simply pushes items onto its 
output. To provide a uniform “socket” to which a pump could be attached, we added 
the method 

 

stroke

 

 to every component: it captured the behaviour of the component 
corresponding to a single “stroke” of the pump. 

 

startPumping[speed]

 

 was then 
implemented by attaching to the component a process that stroked at the appropriate 
speed.

Subsequently, we realized that the same behaviour could be achieved by object com-
position, without the use of aspects at all. Look again at Figure 3 on page 3; if we 
focus on the relationship between 

 

P

 

 and 

 

Pump

 

, we see that their 

 

composition

 

 is a 
compound InfoPipe that has exactly the properties of an active version of 

 

P

 

; this is 
shown by the grey box in Figure 5. So, ordinary object composition through the push 
and pull interface seems to be adequate to express what we though was an aspect! 
This is a little disconcerting.
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The one drawback with the compositional approach is that in most OO languages, 
the composition of two objects is not itself an object: “P+Pump” has no object iden-
tity and cannot be sent messages. 

The open questions here are:

 

1.

 

Can activity be represented as an Aspect? 

 

2.

 

What are the advantages and disadvantages of doing so, compared to represent-
ing activity as a component that can be connected to other components (as in 
Figure 5) to make a composite component?

 

Blocking Behaviour

 

As with activity, we can imagine a family of infopipe components that offer the same 
basic behaviour but which differ only in their blocking characteristics.

Suppose that 

 

P

 

 is an Infopipe whose storage is full, or which has no storage. What 
should 

 

P

 

 do when an item is pushed into it? Once again, there seem to be several 
options:

 

1.

 

Silently drop the item “on the floor”. This is the simplest behaviour, and is the 
behaviour actually exhibited by real-world networking components such as rout-
ers.

 

2.

 

Apologetically drop the item, that is, return a status code or exception to the 
caller indicating that the proffered item has, regretfully, been refused.

 

3.

 

If 

 

P

 

 has storage, for example, 

 

P

 

 is a buffer, then a wider range of dropping behav-
iours are possible. 

 

P

 

 might drop the oldest or least urgent item already in its 
buffer storage, in order to make room for the newly arrived item.

 

4.

 

Block the thread that invoked 

 

push

 

, until such time as another thread makes 
enough space in 

 

P

 

 to accommodate the new item.

A similar range of options are available if an Infopipe attempts to 

 

pull an item from 
an empty Infopipe, i.e., one that has no storage or whose storage is empty. 

1. The simplest action is to introduce a “bubble of air” into the pipeline, and to pass 
it to the invoker. (In our prototype implementation, we use nil for this purpose.)

2. A more polite (but sometimes less convenient) alternative is to return a status 
code or exception to the invoker indicating that, regretfully, no item is available.

Figure 5. P and Pump can be composed to create an active version of P
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3. It is sometimes appropriate to fabricate a new item and return it. For example, in 
an audio pipeline, it might be appropriate to fabricate a packet of white noise; in 
a video pipeline, it is common to re-transmit the previous frame.

4. The final option is to block the thread that invoked pull, until such time as another 
thread makes an item available.

The problems that must be solved in order to add blocking as an aspect are similar to 
those involved with synchronization [Matsuoka 1993]. First, we must choose some 
base behaviour for InfoPipes in the absence of blocking. Pragmatically, this would 
seem to be one of the first two options described above. It it easy to add an aspect 
that intercepts the bubble of air or the exception and blocks the calling thread. It is 
less clear how to ensure that this thread is unblocked whenever a new item becomes 
available. For example, as new methods are added to subclasses of the basic compo-
nent, the number of ways in which a new item could arrive in the buffer might 
increase. How can we guaranteed to unblock the waiting thread in all of the right sit-
uations? One possibility is to check a predicate (callerBlocked and buffer nonempty ) 
after the execution of every method on the Infopipe.

Time as an Aspect

In the introduction we mentioned that Infopipes are intended as an abstraction for 
real-rate systems, which guarantee to move data from one place to another with cer-
tain timing properties. An intriguing question is whether time itself can be treated as 
an aspect. That is, can we write “timeless” Infopipe components, and then add vari-
ous sorts of timing properties as aspects?

Our initial opinion is that this is not in fact possible, at least not so long as we are 
thinking in terms of an aspect weaver working with a conventional base program-
ming language. The reason is simple: all the conventional programming languages 
developed in the second half of the 20th Century are timeless. Like all high-level 
abstractions, programming languages choose to hide some details of the machines 
on which they are implemented, and emphasize others. Without exception, they all 
choose to hide the notion of time!

Timelessness is an empowering choice: without abstracting away from time it 
would, for example, be impossible to prove that two program fragments are 
equivalent. This is because, even if the fragments can be proved to effect the same 
transformation on the state, they are very unlikely to have the same execution time. It 
would also be impossible to implement the same language on more than one 
hardware base. But timelessness is also a limiting choice: if a language is essentially 
timeless, how can it be used to build a system in which timeliness is a critical 
property? The answer has been to depend on a Real-Time Operating System to 
provide timing-related operations.

Of course, there are some “unconventional” programming languages, notably 
Esterel [Berry 1998] and Lustre [Caspi 1987], which are specifically intended for 
programming real-time systems. However, even these languages do not include a 
conventional notion of time. Instead, they depend on the so-called “Synchrony 
Hypothesis”, which states that computing activity takes no time at all, that is, 
computation is instantaneous. Neither do synchronous programming languages like 
Esterel have a notion of time built into them. Instead, they rely on a sequence of 
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periodic events from an external sensor. From these the program must synthesize 
some kind of clock.

The Synchrony Hypothesis allows real-time programmers to build systems that 
perform adequately, because the time taken to perform simple sensor computations, 
although not actually zero, is much smaller than the time between the external events 
to which the system must react. However, this way of dealing with time, or, rather, of 
avoiding dealing with time, is clearly not compositional. Even if the computation 
associated with one reaction is negligible, can we say the same of 10, 100 or 1000 
similar computations? Eventually, the time that these computations take must 
become similar to the reaction times that the system is required to exhibit. 

For these reasons, another branch of our research is directed towards designing a 
new programming language in which time is a central property. We came to this 
position reluctantly; if a way of adding a time aspect to a conventional language can 
be found, we would eagerly adopt it.

TIMING PROPERTIES FOR 
INFOPIPES

What are the timing properties that we need to express for real-rate Infopipes? Here 
are some examples that we have considered.

1. Interfacing to real-rate devices, such as audio or video capture devices, that push 
items into a pipeline at a determined rate, or audio or video output devices, that 
need to be supplied with items at a determined rate. Processing, such as compres-
sion, must be integrated into the pipeline. 

2. Add to the above the complexity of multiple active components. So long as only 
one of the active components is real-rate (e.g., has its own real-time clock), it is a 
relatively simple matter to “phase lock” all of the components, active and passive, 
to that real-rate. The active components may be thought of as “virtual-rate”; their 
time base can be stretched or compressed to correspond to the needs of the real-
rate component. Passive components are executed by the active ones in lock-step.

3. However, if the pipeline contains multiple real-rate active components, e.g., a 
real-rate source and a real-rate sink, something has to give! The rates will not be 
exactly matched. Even two crystal clocks with the same nominal rate will be 
found to diverge over time. Some data dropping or synthesis will be necessary.

4. Add between the source and sink above an active network, whose latency and 
throughput vary over a wide range.

5. Now add some data processing steps, such as MPEG encoding, decoding or 
transcoding, that most definitely take more than negligible time.

Orthogonality of Aspects

Naively, we had hoped that activity, blocking behaviour and time, when treated as 
aspects, would be orthogonal. This would guarantee that they could be added in 
many combinations. However, it seems that this is not the case. We have already seen 
that it is hard to talk about the semantics of activity without also taking about when 
that activity is blocked. Similarly, a component that must satisfy timing constraints 
needs to understand the blocking characteristics of all of the methods that it invokes. 
If it does not, there is a risk that a thread will be blocked and will be unable to carry 
out a time-critical task. And the implementation of activity (by a process scheduler) 
is responsible for the ability of a component to offer timing guarantees.
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Indeed, we might argue that aspect-oriented Programming becomes an interesting 
and powerful tool exactly when the aspects are not orthogonal, but interfere 
constructively. How can we promote such constructive interference, and avoid 
destructive interference?

Summary

We have briefly described an interesting application domain, Infopipes, in which 
aspects would seem to provide an appropriate way of limiting code complexity, 
reducing duplication, and improving maintainability. But it is not clear to us, yet, 
how to apply them. It is also unclear if timing properties can be “added” to timeless 
objects as aspects. The idea is attractive, but the problems seem daunting.

We believe that these problems are worthy of discussion at the ECOOP’2000 
Workshop on Aspect-Oriented Programming.
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