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A series of simplifications and approximations is introduced into a recently described model for spontaneous
pulsations in standing-wave laser oscillators. To the extent that these simplifications are valid they can lead to
significant reductions in computation time and sometimes also to a better understanding of the relative impor-
tance of various physical effects. Of special interest is the number of spatial harmonics required to represent
adequately the effects of longitudinal spatial hole burning. Other approximations investigated include neglect
of spectral cross relaxation, neglect of multiple-energy-level equations, neglect of electric-field derivatives, andneglect of polarization derivatives. In addition, a detailed discussion is included that concerns the most effi-
cient numerical implementation of the model.

1. INTRODUCTION

Under a variety of conditions xenon lasers operating at
3.51 ,zm are observed to produce their output in the form
of an infinite train of periodic or chaotic pulses, and simi-
lar behavior is observed with other laser types. In the
case of xenon lasers the pulsations are understood to result
from a fundamental instability in the semiclassical laser
equations,' and related effects may be important in other
lasers.2 5 Recently a more rigorous Maxwell-Schrodinger
semiclassical model was developed to describe the behav-
ior of standing-wave Doppler-broadened lasers.6 7 That
model provides good agreement with experimental pulsa-
tion data and with Lamb-dip power curves.

While there are obvious advantages to having an insta-
bility model that is quantitatively accurate, there are also
important reasons for studying simplified versions of such
quantitative models. Unlike in the mathematical models
for many other physical systems, the accuracy that one
wishes to achieve controls the number of differential equa-
tions that constitute the model. For higher accuracy
more equations are needed to represent more spatial har-
monics or more velocity classes of atoms. Since computer
requirements for integrating the semiclassical equations
are quite substantial, it is important that the number of
governing equations be kept to the minimum consistent
with the desired accuracy. Further simplifications occur
when one is interested only in the qualitative effects
of certain terms in the model rather than quantitative
accuracy. The purpose of this study is to start from the
general standing-wave laser model that was recently de-
veloped6 and, through a series of approximations, to re-
duce that model to the simplest form that still retains the
basic features of the semiclassical standing-wave laser
instability.

The general theoretical model for a standing-wave laser
is briefly summarized in Section 2 together with some
transformations that are useful for maximizing the effi-
ciency of the brute-force numerical solutions. Section 3

includes a detailed derivation of the threshold parameter.
A rigorous relationship between the pump rates and the
threshold parameter is especially important, since this
parameter is easily determined experimentally. Initial
values of the laser variables are discussed in Section 4
together with a few representative solutions. The effects
of varying the number of longitudinal spatial harmonics
of the populations and polarizations are discussed in Sec-
tion 5. For the xenon lasers of interest here, it is found
that only the lowest harmonics are needed to obtain rea-
sonable accuracy. Section 6 presents a sequence of fur-
ther simplifications that include the neglect of spectral
cross relaxation, neglect of multiple-energy-level equa-
tions, and neglect of electric-field derivatives. None of
these approximations has a major qualitative effect on the
instability. On the other hand, the rate-equation approxi-
mation discussed in Section 7 eliminates the instability.

2. GENERAL MODEL

The theoretical model on which this study is based was
discussed in Ref. 6. In its normalized single-isotope gas-
laser form, the model is represented by Eqs. (88)-(93) of
Ref. 6, and these equations are

aP ,2i(V, t) _

at -Y{[ + (2j + l)iV]Pr,2 j+1(V, t)

+ yPin,2 +,(V, t) + iAi(t)

X [D2j(V, t) - D 2j+2(V, t)]},

aPi,2+l(V, t) _

at

(1)

-y{[l + (2j + l)iV]Pi,2j+1(Vt)

- yP,,2j+,(Vt) - iAr(t)

x [D2j(V, t) - D2j+2(V, t)]},
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aD2j(V, t) = [A(V, t) - Ab(V, t)] j

- [hi + (2j)iyV]D2j(V, t) - h2M(V, t)

- iyi{[Ar(t)Pi,2ji(Vt) - Ai(t)Pr,2j-i(Vt)]
- Ar(t)Pi,2j+i(Vt) - Ai(t)Pr,2j+i(V, 

+ r/2 exp(-_2 V2 ) [MX2 (V', t)

+ D2j(V' t)]dV'

rb exp(-_2 V2 ) |[M(V t)

- D2 (V, t)]dV',

aM2 (V, t)

at = [Aa(V, t) + Ab(V, t)] 5j0

- [h3 + (2j)iyV]M2j(V, t) - h4D2j(V, t)

+ Era exp(-E 2 V 2 ) [M(V, t)

+ D2j(V, t)]dV'

/ - exp(_ V2) J [M2 (V, t)

- D2j(V, t)]dV,

dAr(t) _ 1[
dt 2tC[Ar(t) + (y - yo)Ai(t)

Pi, i(Vt)dVj,

dAi(t)_ 
dt 2 tc [A(t) -(y - y)Ar(t)

+ f Pr ii(V, t)dvl.

The dependent variables in Eqs. (1)-(6) include
2j + 1 spatial harmonic of the real part Pr,2j+(Vt)
the imaginary part Pi,2j+,(V, t) of the polarization, th
harmonic of the difference between the populations of
upper and lower laser levels D2j(V, t) and of their E

M2j(V, t), and the real part Ar(t) and the imaginary I
Ai(t) of the electric field. The spatially independ
pumping rates of the upper and lower levels are Aa(
and Ab(V, t), respectively, and the basic decay rates inci
the total decay rate for the upper laser level ya, the t
decay rate for the lower laser level yb, the rate of dii
decay from the upper level to the lower level Yab, the pa
ization decay rate A, and the electric-field decay 
(2t)-', where t, is the cavity lifetime.

Equations (1)-(6) also include the possibility of str
velocity-changing collisions in which the final veloci
are distributed randomly across the Doppler prol
Thus the coefficient Va represents the total rate at wl
atoms in level a undergo strong velocity-changing c
sions, and Vb is the corresponding total rate for levc
The velocity integrals in Eqs. (3) and (4) represent the
lision-caused addition of atoms to each velocity class,
the collision-caused loss from each class is accounted
by replacing the total spontaneous emission decay rate

and yb with the new values ya' = ya + Fa and b' = b + Fb-

These decay rates are represented in the model by the
hybrid decay rates

h = (Ya' + Yab + Yb')! 2 ,

h2 = (a' + yab - yb')/ 2 ,

h3 = (Ya' - Yab + Yb')/ 2 ,

h4 = (Ya' - Yab - Yb')/2 ,

y = 2 'YbA(Ya' - Yab + Yb')-

(7)

(8)

(9)

(10)

(11)

The parameter y = ( - wo)/y in Eqs. (1) and (6) repre-
(3) sents the normalized difference between a selected lasing

reference frequency co and the line-center frequency oo,
and yo represents the corresponding parameter value
when dispersion effects are neglected. The normalized
axial component of velocity is V. The natural damping
ratio E = (AvhA vd) (In 2)1/2 measures the relative magni-
tudes of the homogeneous and inhomogeneous linewidths,
and the parameter 8 = 2 ytc measures the ratio of the po-
larization and electric-field decay rates. Equations (1)-
(4) follow from the semiclassical equations that govern the
four elements of the density matrix for the two active lev-
els of the laser transition in the presence of a standing-

(4) wave electric field. Equations (5) and (6) follow from
Maxwell's equations for the field amplitude in the pres-
ence of an atomic or molecular laser medium.6

In Ref. 6, Eqs. (1)-(6) were solved to obtain the time
characteristics of the spontaneous coherent pulsations

(5) that often occur in high-gain xenon lasers, and the corre-
sponding frequency characteristics were discussed in
Ref. 7. Various simplifications of these equations are
introduced here to reduce programming complexity, speed
up computation rates, or provide greater insight into

(6) underlying physical mechanisms. As with our earlier
ring laser model, it is helpful initially to separate the popu-

the lations into a broad Gaussian part that represents the
and pump distribution and a narrow part that reflects the lo-

2j calized distortion caused by the laser fields. Thus the
the spatial harmonics of the population difference and sum

are written as8

)art
ent
V, t)
ude
otal
rect
'lar-
rate

ong
ties
file.

ich
olli-
el b.
col-
and
for

S Ya

D2j(V, t) = 'E2 exp(-_EV 2 ) + D2j'(V, t),

M2j(V, t) = 2 ) exp(-e 2 V2) + M2j(V, t),

(12)

(13)

and the pumping rates are written as

Aa(V,t) = 12) exp(_E2V2),

Ab(V, t) = 1/2 exp(_E2V2),

(14)

(15)

where La(t) and Lb(t) represent the total rates of pump-
ing into the upper and lower laser levels, respectively.
When these definitions are substituted into Eqs. (3) and
(4), one can arbitrarily define E2j(t) and F2j(t) to obtain the
separation
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= [La(t) - Lb(t)]6jO - hE2,(t) - h2 F2 (t)

+ 2 F2 (t) + E2j(t) + f [M2j'(V t)

+ Da,'(V t)]dV' - 2 F*(t) - E2j(t)

- O[MV'(V, t) - D'(V t)]dV'

= [La(t) + Lb(t)]6jo - h3 F!2 (t) - h4 E2j(t)

+ 2 F,(t) + E2j(t) + f [M2j'(V t)

+ D2 (V, t)] dV'} + 2 F2i(t) - E2j(t)

+ f [M'(V, t) - D2j'(V;t)]dV'

= -[hi + (2j)iyV]D2j'(Vt) - h2M2 '(Vt)

With these transformations the velocity integrations need
extend only across the saturated range of velocities, and
all our numerical solutions involving the cross-relaxation
integrals incorporate this separation.

It has also proved to be convenient to introduce a new
numbering of the spatial harmonics that takes advantage
of the fact that only odd polarization harmonics are im-
portant. Thus the same subscript k can replace 2j + 1 in

(16) the polarization terms and 2j in the population terms; the
governing equations, Eqs. (1), (2), (5), (6), and (18)-(21),
reduce to

aPdkVMt) = [1 + (2k - 1)iV]Prk(V t) + YPik(V, t)
at

+iAi(t)[eEk(t) exp(___ 2 V 2 )
exp 1/2 2)

(17)

_(2j)iyVE 21(t)-- _22
7 1/2 exp(-s 2V2 )

- iYj{IAr(t)Pi,2j-i(Vt) - Ai(t)Pr,2j-i(Vt)]
- [A(t)Pj,j+i(V, t) - Ai(t)Pr,2j+i(V, t)]}, (18)

aMa,(V, t) = -[h3 + (2j)iyV]M2 '(V, t) - h4Dq'(V, t)
at

(2j)iyVFq,(t) 82V 2). (19)
1/2

With the introduction of new decay rates, Eq. (16) and
(17) can be further reduced to

dE2 (t) - [L(t) - Lb(t)]3J - h5Ev(t) - h6F2v(t)dt

+ 2a | [MV'(Vt) + D2j'(Vt)]dV'

- 2 J [M2j'(V t) - D,,'(V t)]dV, (20)

d F2 (t) _

dt [La(t) + Lb(t)]jo - h7F2j(t) - h8E2j(t)

+ a [M,'(V',t) + D2j'(V t)]dV'

r - D+ [Mtt(Vst) - D'(V,t)]dV,
_co.

- SEk+l(t) 1p(E2V2)

+ Dk'(V, t) -D+1 (V, t)]) (26)

aPk(V, t) y[1 + (2k - 1)iV]Pi,k(V, t) - YPrk(V t)

- iAr(t)[8Ek(t) exp( £V22 )

- Ek+l(t) exp(£ 2V22 )
1/2

+ Dk'(V, t) - Dk +'(V, t)jI (27)

ad(t = -[hi + (2k - 2 )iyV]Dk'(V,t) - h2Mk'(V,t)

- (2k - 2)i-yVEk(t) 8 exp( 2 V2 )

- iYl[Ar(t)Pi,k-l(V, t) - Ai(t)Pfk.-l(V t)
-Ar(t)Pik(V, t) + Aj(t)Prk(V, t)],

aMk'(V, t)
at

(28)

-[h3 + (2k - 2)iyV]Mk'(Vt) - h4Dk'(Vt)

- (2k - 2)iyVFk(t) p( /V2 I

dEk(t) _

dt

(29)

[La(t) - Lb(t)] 8kl - hEk(t) - h6Fk(t)

+ a_ f [Mk '(V, t) + Dk'(V' t)]dV'

- 2 | [Mk'(V, t) - Dk'(V, t)]dV',
(21)

where the new rates are defined by

h = h - a/2 - rb/2 = (a + yab + yb)/2,

h6 = h2 - a/2 + rb/2 = (Ya + Yab - Yb)!2,

h7 = h3 - a/2 - b!2 = (a - ab + yb)/2,

h8 = h4 - Va/2 + rb/2 = (a - ab - yb)/2.

(22)

(23)

(24)

(25)

dFk(t) _

dt

(30)

[La(t) + Lb(t)] kl - h7Fk(t) - h8E(t)

ra -+ a [Mk'(V, t) + Dk'(V't)]dV'

+ -|[Mk'(V, t) -Dk'(V, t)]dV,2 f. I
(31)

aEz(t)
at

aF,(t)
at

2D2 '(V, t)
at

L. W Casperson and M. R H. Tarroja



Vol. 8, No. 2/February 1991/J. Opt. Soc. Am. B 253

d~r~t) = - . [Ar(t) + 3(y - yo)Ai(t)

- JPiii(V,t)dV (32)

dA~(t)- 2ti[A(t) - 8 (y - yo)A(t)

+ Pr, ii(V, t)dV] (33)

It is not actually necessary to carry out computations
for negative values of the integer k. Equations (26)-(33)
are valid as written for values of k that are larger than
unity, and values of k that are smaller than unity can be
eliminated by means of the following relationships6 :

Pr j(V, t) = Pr-j *(V, t), (34)

Pi j(Vt) = Pi, j*(Vt), (35)

Dj(V, t) = D-j*(V, t), (36)

Mj(V, t) = M j*(V, t) . (37)

However, for k = 1 Eq. (28) couples to a more negative
value of k. In this case Eq. (28) can be replaced by its
equivalent form,

aD1't) h D1'(Vt) - h2 M'(Vt)
at

-2,yi[Ar(t)Pjilj(V, t) - Ai(t)Prii(V, t)]. (38)

With this modification, Eqs. (26)-(33) form a complete set
that uses k values of unity and larger. It is in this form
that the equations have been programmed and numeri-
cally solved for our studies of spontaneous pulsations in
standing-wave xenon lasers.

3. THRESHOLD PARAMETER

In order to obtain useful solutions to the equations de-
scribed above, it is necessary to establish simple and real-
istic values for the various quantities involved. It is
especially helpful if these quantities can be expressed in
terms of a threshold parameter that relates the laser
pump rates to their values when the laser is exactly at the
lasing threshold. This threshold parameter provides a
simple and direct link between laboratory experiments
and computations.

Several simplifications of Eqs. (1)-(6) occur for opera-
tion at the lasing threshold. At threshold the fields and
polarizations are infinitesimal, so that the saturation
terms in Eq. (3) may be deleted, leaving

a t) = [Aa(V) - b(V)] j.
at

- [hi + (2j)iyV]D2j(V, t) - h2 M2j(V, t)

+ E2 exp(-_2V2 ) [Mj(Vt) + Dj(V, t)]dV'
7r 1/2

_ b2exp(_E2V2)J [Mtj(V, t) - Dvj(V, t)]dV', (39)
2Tr' -x

where it is assumed that the pump rates are independent
of time. In the absence of saturation the rate at which
atoms are removed from any velocity class by strong
velocity-changing collisions is the same as the rate at
which they are added. Therefore, for purposes of the
threshold calculation, the Gaussian cross-relaxation in-
tegrals in Eqs. (4) and (39) may be performed, and the
results may be combined with the other population dif-
ference and sum terms. This results in the simpler
equations

aD2j(V t)
at___ = [Aa(V) -Ab(V)]8joat

- [h5 + (2j)iyV]Dj(V, t) - h6 M2j(V, t), (40)

am" (V, t)
= [Aa(V) + Ab(V)]3jo

at bV] 0

- [h7 + (2j)iyV]Mj(V, t) - h8D2j(V, t), (41)

where the population decay rates are defined in Eqs. (22)-
(25). It is now apparent from Eqs. (40) and (41) that at
threshold only thej = 0 spatial harmonic will be excited.
Also, the threshold condition can be obtained from a
steady-state calculation, and from Eqs. (1), (2), (5), (6),
(40), and (41) the set of governing equations is simply

0 = (1 + iV)Pri(V) + yPis,(V) + iAiDO(V),

0 = (1 + iV)Pi,l(V) - YPr,i(V) - iArDo(V),

0 = A(V) - Ab(V) - h5Do(V) - h6M(V),

0 = Aa(V) + Ab(V) - h7 M0 (V)- h8Do(V)

0 = Ar + 3(y - yo)A- f. PiEli(V)dV,

0 = Ai - 5(y - y)Ar + J Prlii(V)dV.

(42)

(43)

(44)

(45)

(46)

(47)

Equations (42)-(47) can be solved by means of straight-
forward substitutions. Thus Eqs. (42) and (43) can be
combined to obtain

f () =-1 + iv (l + iVAAr )

x D0(V) 1 + [y!(l + iV)]2

= -iao(Vy)[,3o(Vy)Ar + Ai]Do(V),

PisV) + i l + A i - A)

1
x Do(V)1 + [(l + iV)]2

= -iao(V, y) [130(V, y)Ai - Ar]D(V),

(48)

(49)

where we use the standing-wave laser notation9

aj~(V, y) = ~ 1!2 + 1!2 I
1 + (2j + 1)iV + iy 1 + (2j + 1)iV - iy

(50)

L. W Casperson and M. R H. Tarroja



254 J. Opt. Soc. Am. B/Vol. 8, No. 2/February 1991

y
1 + (2j + 1)iV

Also, Eqs. (44) and (45) may be combined to obtain

D'(V) = (h7 - h6)A(V) - (h7 + h6)Ab(V)
hh 7 - h6h8

= (1 _ yab) A(V) Ab(V)
Yb Ya dYb

(51) Equation (58) can be understood as a definition of the
threshold pump Lath. The threshold parameter is usually
defined as the ratio of the actual pump rate La to the
threshold pump rate Lath. With Eq. (58) the threshold
parameter r is given by the formula

(52)

where the decay-rate relationships from Eqs. (22)-(25) are
employed.

When Eqs. (48) and (49) are substituted into Eqs. (46)
and (47), one obtains

0 = Ar + (y - yo)Ai

+ Ai f Re[ao(V, y),3 o(V, y)]Do(V)dV

- Ar Re[ao(V, y)]Do(V)dV, (53)

0 = Ai - (y - yo)Ar

- Ar f Re[Iao(V, y)1B (V, y)]Do(V)dV

- Ai L Re[ao(V, y)]Do(V)dV. (54)

This is a homogeneous set of equations for the real and
imaginary parts of the complex field amplitude. By set-
ting the determinant of the coefficients of the field am-
plitudes to zero, one finds that nontrivial solutions are
obtained only when subject to the constraints

1 = L Re[ao(V, y)]Do(V)dV, (55)

(y- yo) = f Re[Iao(V, y),3o(V, y)]Do(V)dV. (56)

Equations (55) and (56) define the conditions under
which a laser operating at the normalized frequency y will
have exactly zero intensity. The threshold pumping con-
dition is defined here by the zero-intensity constraint for
a laser tuned to line center. At line center one finds
yo = 0, y = 0, and from Eq. (51) 13o(V,y) = 0. Thus
Eq. (56) is automatically satisfied. Using Eqs. (50) and
(52), we find that Eq. (55) becomes

1= Rei 1 V [1 Yab\ Aa(V) Ab(V)]V.
. + Ev . Yb Ya Yb

(57)

From Eqs. (14) and (15), the pump rates are Gaussian
functions, and Eq. (57) reduces further to

yab La

Yb Ya

_ b i exp( 2V 2 )Y b JJ- 1 + d V

= -/-La[(1 - q ] exp( 2V2) dV,~.1 / 2 a [\ Y b Y a Y b -- c 1 V(58)

where the proportionality constant q between the pump
rates La and Lb has now been introduced.

La = rLath

= r |/[(1 _ ab) 1 q ]F|exp(- 2V2) 1-1
EIL Yb Ya YbJ-x 1 + V2 J

(59)

Our numerical results are generally expressed in terms of
the threshold parameter r, and Eq. (59) is used at the out-
set to express the pump rate in terms of r.

4. INITIAL CONDITIONS
Before computing the time-dependent solutions of
Eqs. (26)-(33), it is necessary to choose initial values for
certain dependent variables. A useful approach is based
on the idea of loss switching (Q switching). This approach
is widely used experimentally to obtain short pulses, and
it also encourages the initiation of instabilities. The ma-
terial is assumed to be pumped to some initial distribution
of population, which corresponds to a particular value of
the threshold parameter, while the field is held at zero.
Then a small field is injected to begin the computations.
Thus at the outset the only nonzero dependent variables
are the coefficients of the Gaussian population distribu-
tion in Eqs. (12) and (13).

With saturation effects set to zero, the steady-state
forms of Eqs. (30) and (31) are

= La - Lb Ya + ab + b El a + Yab Yb F (60)
2 2

= La + Lb Ya Yab YbE - Ya Yab + YbF (61)
O~~a+Lb ~ 2 2 (1

These equations may be solved for E and F, and the re-
sults are

E = ( _ ab)La _ Lb (62)
Yb Ya Yb

F = (1 + Yab L + Lb. (63)
zYb a Yb

These are the population coefficients for a prepumped
laser, and they are used at the start of our computations.
Typically the other dependent variables in Eqs. (26)-(33)
are initially set to zero except for a small initial value of
the electric-field amplitude.

The model described here was developed especially for
low-pressure standing-wave xenon lasers, although its form
is general enough to provide a reasonable description of
many other standing-wave laser systems. The coefficient
values for our xenon laser calculations were summarized
in Ref. 6, and these values include a = a- = 1200 nsec,
Tb Yb_1 = 35 nsec, yab = ya, y = 16.3 106 sec-1 , a
Fb = 1 x 10 sec', 0.039, and t = 1.0 nsec.

Before beginning a discussion of the effects of various
approximations, it is perhaps worthwhile again to indicate

L. W Casperson and M. H. Tarroja
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Fig. 1. Experimental power spectra of the output from a low-
pressure xenon laser at discharge currents of (a) 50 mA (r - 2.1)
and (b) 40 mA (r - 1.7) (from Ref. 7).

briefly the agreement between experimental results and
predictions of the general model. Since our emphasis
has usually been on time-domain results, we present here
experimental and theoretical power spectra for a low-
pressure xenon laser. Figure 1(a) shows a typical experi-
mental intensity-power spectrum for a laser operated with
a threshold parameter of r = 2.1, and the corresponding
theoretical plot is given in Fig. 2(a). The experimental
data, the calculation procedure, and the normalization are
discussed further in Ref. 7. The frequency detuning was
not measured in our experiments and is the only adjustable
parameter in obtaining the corresponding theoretical
spectrum. For the example in Fig. 2(a), the detuning
yo = 2.0 was used. The small peak at -2 MHz in the ex-
perimental and theoretical spectra is an indication that
for these conditions the output pulsation burists are alter-
nating in form. Figure 1(b) shows an experimental power
spectrum for a laser operated with a threshold parameter
of r = 1.7, and the corresponding theoretical spectrum
with yo = 15.0 is shown in Fig. 2(b). The xenon laser is
well characterized, and over a wide range of operating
conditions no significant discrepancies between theory
and experiment were observed in either the time or the
frequency domain.

5. SIMPLIFICATION OF
SPATIAL HARMONICS

The principal complication of rigorous standing-wave
laser models in comparison with ring laser models is the
necessary inclusion in the standing-wave models of multi-
ple spatial harmonics of the atomic populations and polar-
izations. These harmonics are needed to account for

z-dependent interaction effects such as longitudinal spa-
tial hole burning. The inclusion of many spatial harmon-
ics leads to a dramatic increase in computation time, in
part because it increases the number of equations repre-
sented by Eqs. (26)-(33). More significantly, however,
the increasing complexity of the model necessitates much
smaller time steps in the integration algorithm if one is
to obtain satisfactory convergence of the numerical solu-
tions. Accordingly, it is important to be able to estimate
the number of harmonics that are required for an applica-
tion of the model.

One would expect that more spatial harmonics would be
needed for larger values of the threshold parameter. Far-
ther above threshold the stronger spatial hole burning
makes the atomic populations increasingly nonuniform.
Close to threshold, on the other hand, little saturation
occurs, and the populations are almost constant in space.
Figure 3 shows theoretical plots of the normalized inten-
sity I = A2 for a standing-wave laser that is tuned to
line center (yo = 0) and is operated far above threshold
(r = 2.0). In Fig. 3(a) the numerical model has been
truncated to a maximum number of spatial harmonics
corresponding to kmax = 8. The corresponding results for
the same initial conditions and decreasing values of kmax
are shown in Figs. 3(b)-3(e). It is apparent from these
figures that essentially exact results are obtained with
kmax = 6 [Fig. 3(b)] out to a time of greater than 3.2 ,usec
(9 pulsation bursts). Similar agreement is obtained with
kmax = 4 [Fig. 3(c)] out to a time of -2.7 Asec (8 bursts).
Agreement with km. = 2 [Fig. 3(d)] lasts until -1.3 ALsec
(4 bursts). Agreement with kmax = 1 [Fig. 3(e)] lasts until
-0.5 jusec (1 burst). Thus for rigorous long-term accu-
racy it would seem that many spatial harmonics would be
required. However, such extreme numerical accuracy is
probably not needed in view of other approximations that
are intrinsic in our best model and inevitable uncertain-

Power Spectrum
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Fig. 2. Theoretical power spectra corresponding to threshold
parameters and detunings of (a) r = 2.1, yo = 2.0 and (b) r = 1.7,
yo = 15.0.
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applications even the k,, = 1 [Fig. 4(e)] approximation
would seem to be entirely adequate. Truncated spatial
harmonic expansions have also been used in rate-equation
modeling of laser dynamics.' 0"'1

In the limit kmax = 1 the equations governing the
standing-wave laser are substantially simplified. In par-
ticular, Eqs. (1)-(6) reduce to

aP (V, t)
at = -(l + iV)P.,(V t) + yPi,,(V't)

+ iAi(t)Do(V, t)],

aPi ,(V, t)
at

aDo(V, t) _

at

(64)

= -[(l + iV)Pi 1(V, t) - yPr i(Vt)

- iA,(t)Do(V, t)], (65)

A.(V) - Ab(V) - hDo (Vt) - h2MO(Vt)

- 2y,[Ar(t)Pi, i(V, t) - Ai(t)Pr,,i(V, t)]

+ Er'12 exp(-E2 V2 )

x f [Mo(Vt) + Do(Vt)]dV'

- 22 exp(-s V')

x [M(V, t) - D0(V, t)]dV', (66)

Fig. 3. Theoretical spontaneous pulsation intensity waveforms
for a standing-wave laser with threshold parameter r = 2.0,
line-center tuning (yo = 0), and number of spatial harmonics cor-
responding to (a) kmax = 8, (b) kmax = 6, (c) kma = 4, (d) kma = 2,
(e) kmax = 1. The time period for which accurate predictions can
be made becomes shorter for smaller values of kmax.

ties in some of the parameters and initial conditions for
any experiment that one might wish to model.

The waveforms in Figs. 3(a)-3(d) are actually quite
similar qualitatively, and for r = 2.0 it is probably never
necessary to use a k value larger than km. = 2. This is
also true for other values of r, especially those that corre-
spond to chaotic pulsations. The sensitive dependence on
the initial conditions of such behavior would result in
slightly different irregular pulsations for a slight change
of initial conditions. With kma = 1 the pulsations are ap-
parently more regular than for larger numbers of spatial
harmonics. However, even this apparent discrepancy
may be deceptive, since pulsation burst regularity is also
sensitively dependent on the value of the threshold
parameter. In many practical situations the initial con-
ditions and other parameters would not be known well
enough to permit a meaningful distinction between pulsa-
tion waveforms like those shown in Figs. 3(d) and 3(e).

As one would expect, fewer spatial harmonics are
required when a laser is operated closer to threshold.
Figure 4 shows theoretical plots of the intensity for a
xenon laser that is tuned to line center and operated at a
threshold parameter value of r = 1.1. It is evident that
the pulse shapes are much simpler for operation close to
threshold. The waveforms are now indistinguishable for
kmax > 4 [Fig. 4(c)], and errors with km, = 2 [Fig. 4(d)]
are barely perceptible at 5 sec (6 bursts). For typical

Intensity vs. Time
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I I

(e)

0 ;0.0 1.000 1.0I I 
2.0 3.0

TIME (microsec)

I 1 -
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Fig. 4. Theoretical intensity waveforms for a laser with r = 1.1
and yo = 0 and the number of spatial harmonics corresponding to
(a) kmax = 8, (b) kmax = 6, (c) km- = 4, (d) kmax = 2, (e) kmax = 1.
As the threshold parameter is reduced, fewer spatial harmonics
are required for accurate results.
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Fig. 5. Theoretical intensity waveforms for a laser with line-center tuning, kmax = 1, and threshold parameter values (a) r = 2.0, (b) r =

1.8, (c) r = 1.6, (d) r = 1.4, (e) r = 1.2, (f) r = 1.1. Generally the pulsation amplitude, frequency, and waveform complexity decrease with

decreasing values of r.

MO(V, t) _

at
Aa(V) + Ab(V) - h3Mo(Vt) - h4 Do(Vt)

+ 1/2 exp(-s 2 V2 )

2r

x [Mo(V, t) + D,(V, t)]dV'

+ 1/2 exp(-E'V 2)

x J [Mo(Vt) - Do(V't)]dV, (67)

dAr(t) _ 1 [
dt 2t [A,(t) + 3(y - y)Ai(t)

- f Pii(V, t)dV], (68)

dt 2t [Ai(t) - (y - yo)Ar(t)

+ | PI,ii(Vt)dV (69)

where for analysis it is more convenient to use the original
equations rather than the computationally more efficient
set given as Eqs. (26)-(33). Also, the pump rates are
again assumed to be constant. While these equations
look similar to those that preceded them, the absence here
of the k (or j) subscript means that we are now dealing
with a smaller number of equations.

While the neglect of the higher spatial harmonics leads
to a dramatic simplification of the standing-wave model,
it is important to note that even this simplifed model is
substantially different from the corresponding ring laser
model as given by Eqs. (1)-(6) of Ref. 8. The polarization
elements in the above standing-wave model are complex,
and only in special cases do the standing-wave and ring
models become essentially equivalent. One such case, in-
volving line-center tuning, is noted in Section 6 below.

6. OTHER SIMPLIFICATIONS

The theoretical model discussed above contains many
complications besides multiple spatial harmonics. While
some of these complications may be important when one
seeks quantitative agreement between theory and experi-
ment, they may not all be required for more qualitative
investigations. The purpose of this section is to explore
the effects of several additional simplifications of the theo-
retical model in much the same way as was done in an
investigation of a semiclassical model for ring laser insta-
bilities.8 The plots in Fig. 5 give an overview of the types
of pulsation that can be observed in a xenon laser model
with kma = 1 for various values of the threshold parame-
ter. This set of plots will serve as a reference point
for the more approximate results to be described in the
following paragraphs.

One important complication of the model is the inclu-
sion of spectral cross relaxation arising from velocity-
changing collisions. When the cross-relaxation terms in
Eqs. (64)-(69) are switched off, one is left with simpler
equations for DO(V, t) and Mo(V, t). The resulting set of
equations is

(a)

10 

(b)

10 

O 0^ .14" itlAD I JuY
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0.0 .5
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( ri)V = t) y[= l + V)Pri(V t) + yPij,(V t)

+ iAi(t)D,(V, t)],

-y[( + iV)Pi'1(Vt) - YP,,i(Vt)

- iAr(t)Do(V, t)],

A.(V) -Ab(V) -+ ' + 'YbDo(V t)
2

Y + Yb - YbMO(V t) - 4yy___
2 Y - Yb + 

X [Ar(t)Pii1i(V, t) - Ai(t)Pr,i(V t)],

= Ae(V) + Ab(V) - YM 2 YbMO(Vt)

_ Ya - Yab Do(V, t),
2

d~rt) - - - [Ar(t) + 3(y - yo)Ai(t)

- 7 Pi, i(V, t)dV],

dt - 24 [A(t) - 3(y - yo)Ar(t)

+ | Pi(Vxt)dV],

A set of pulsation waveforms based on Eqs. (70)-(75)
with line-center tuning is shown in Fig. 6. These pulsa-

(70) tions should be compared with the pulsations shown in
Fig. 5. As in the ring laser case, there are significant
effects of cross relaxation, including the speeding up and
stabilization of the pulsations. Even though the neglect

(71) of spectral cross relaxation reduces the quantitative accu-
racy of the model, most qualitative features of the insta-
bility are retained.

Another complication of the analysis concerns the
energy-level model, which permits arbitrary total decay
rates from the upper and lower laser levels as well as

'b an arbitrary rate between levels. One finds that the
(72) essence ofthe laser instability can still be retained with

simpler energy-level schemes. For example, if b is set
equal to y + ab then Eq. (72) becomes independent of the
parameter Mo(V, t). In this case the equation for Mo(V, t)
can be ignored, and Eqs. (70)-(75) reduce to

(f3)

aP'(V ) = P + V)Pr,1(V, t) + YPi',(V t)
at

+ iAi(t)Do(V, t)], (76)

-Y[(l + V)Pi'l(V, t) - YPr,i(V, t)

- iAr(t)Do(V, t)],

(75)
aDo(V, t) _

at

where Eqs. (7)-(11) were used to eliminate the h parame-
ters and yl.

(77)

Aa(V) - Ab(V) - (a + y)Do(V, t)

-
2(Ya + Yeb) [Ar(t)Pjii(V t) - Ai(t)Pri(V t)],

(78)

Intensity vs. Time Intensity vs. Time
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Fig. 6. Theoretical intensity waveforms for a laser with line-center tuning and k.,,, = 1 but with spectral cross relaxation neglected.The threshold parameter values are (a) r = 2.0, (b) r = 1.8, (c) r = 1.6, (d) r = 1.4, (e) r = 1.2, and (f) r = 1.1. Comparison with data suchas those shown in Fig. 5 indicates that spectral cross relaxation causes a modest increase in pulsation frequency but no major qualitativechange in the general pulsation characteristics.

aPi,,(V, t)a, 
at

aD0(V, t)

at

aMo(V, t)

at

(74) aPie,(V, t)
at
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Fig. 7. Theoretical intensity waveforms for a laser with line-center
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tuning but with simplified energy-level structure and with spectral
= 2.0, (b) r = 1.8, (c) r = 1.6, (d) r = 1.4, (e) r = 1.2, (f) r = 1.1.

dt 2t [Ar(t) + 3 (y-yo)AL(t)

- f Piii(V,t)dVJ

dt - [A(t) - (y - y)Ar(t)

+ | Pr ii(Vt)dVj.

With these substitutions the electric fields can be elimi-
nated from Eqs. (76)-(78).

It is of value also to consider the dramatic simplifica-
(79) tions of the model that occur with line-center tuning

(y = yo = 0). At line center Eqs. (81) and (82) reduce to

Ar(t) = + Pi, i(Vt)dV,

Ai(t) = -J Pr,li(Vt)dV.
(80)

Figure 7 includes a series of pulsation waveforms based
on Eqs. (76)-(80) with line-center tuning for various val-
ues of the threshold parameter. These waveforms should
be compared with those of Fig. 6, which include the more
realistic energy decay rates. One finds from this com-
parison that simplifying the decay rates has little qualita-
tive effect, and hence for many purposes the simpler
model may be adequate.

In all the numerical results that have been described, it
can be observed that the intensity and other system
parameters never vary significantly within the cavity
decay time t, = 1.0 nsec. This suggests that setting the
time derivatives to zero in the field equations [Eqs. (79)-
(80)] may be an appropriate approximation. If this is
done, the fields can be written explicitly in terms of the
polarizations according to

(y- Yo) _Pr, i(V, t)dV + Pi, i(V, t)dV

1 + 52(y - o)2

(y -yo)J Pi, j (Vt)dV - f Prii(V, t)dV

Ai(t) = 1 + 
2

(y _ yo)
2

(83)

(84)

When these results are inserted into Eqs. (76)-(78), one
obtains

aPr,,(Vt) _ 1
at

aPi, (V t) = (

aDo(V, t)

at

(81)

+ iV)Pr (V, t)

- iDo(V, t) Pr, ii(V, t)dV],

+ iV)Pi,,(Vt)

- iDo(V, t) f Pi, i(V, t)dVl,

= Ad(V) - ydDo(V, t)

- 2Yd Pi, i(V, t) f_ Pi, i(V, t)dV

+ Pii(V, t) E_ Pr i(V, t)dV ,

(85)

(86)

(87)

* (82) where for compactness the pump and population difference
decay rates are denoted Ad and d, respectively. From

A,(t) =

u y . _ , j wvx~~~~~~~~~~~~~~--..

,, \ / 

v- n , r I
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the symmetry of these equations it is clear that one can
obtain nontrivial solutions while arbitrarily setting the
phase of the complex polarization amplitude. For exam-
ple, with P,, = 0, Eqs. (85)-(87) can be replaced by the
real set

aPii1(V, t) [Pi,i(V, t) - VPipi(V, t)], (88)at

aPi,1 i(, t) -Y iri(V, t) + Vi,ir(V t)
at

- Do(V, t) f Pili(V t)dV], (89)

aD0(V, t) = Ad(V) - dDo(Vt)
at

- 2d[Pi,li(V, t) Pi i(v, t)dV (90)

It may be noted that this set of equations is almost the
same as the corresponding set for a simplified ring laser
model, which was given as Eqs. (33)-(35) of Ref. 8. The
only difference is the presence of the factor 2 in Eq. (90),
and this 2 shows that, at the present level of approxima-
tion, saturation of the population difference at line center
occurs twice as fast in a standing-wave laser as it does in
a unidirectional ring laser. This faster saturation occurs
because in a standing-wave laser the atoms interact with
both the right- and left-traveling waves.

The simplification at line center that was just discussed
could actually have been incorporated much earlier if
one were interested only in line-center operation. Thus
with y = yo = 0 it is possible to set P 2j+1(V, t) = 0 and
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Ai(t) = 0 in Eqs. (1)-(6). However, for the more quantita-
tive applications of the model one would not want to be
restricted to line-center operation, and thus this limita-
tion was withheld until the last step.

A set of waveform solutions of Eqs. (88)-(90) is shown
in Fig. 8, in which the same parameter values as those in
Fig. 7 are used. Except for minor quantitative differ-
ences, the neglect of the electric-field derivatives has no
major effect on the pulsation waveforms. More gener-
ally, none of the approximations discussed above alters the
basic instability behavior of the lasers. Consequently, for
some applications the simplest models should prove to be
adequate, and the same conclusion was reached in a study
of unidirectional ring lasers.8

7. RATE-EQUATION APPROXIMATION
The laser models considered in Sections 6 and 7 all
reduced the complexity of the laser description without
substantially altering the fundamental instability charac-
teristics. For completeness we also briefly examine the
rate-equation approximation, in which the polarization is
assumed to be an instantaneous function of the electric
field. The most general version of this approximation
can be obtained by setting to infinity the polarization
decay rate y in Eqs. (1) and (2) while requiring the deriva-
tives to remain finite. In this way Eqs. (1) and (2) can be
solved explicitly for the polarization components, to obtain

_i {[1 + (2j + 1)iV]Ai(t) + yAr(t)}
PrV+i(Vt) = -i{[ [1 + (2 + 1)iV]2 + y 2

x [Dqi(Vt) - D+ 2(Vt)], (91)
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Fig. 8. Theoretical intensity waveforms for a laser with line-center tuning but with field derivatives and spectral cross relaxation ne-glected and with a simplified energy-level structure. The threshold parameter values are (a) r = 2.0, (b) r = 1.8, (c) r = 1.6, (d) r = 1.4,(e) r = 1.2, (f) r = 1.1. Comparison with Fig. 7 indicates that the neglect of the field derivatives in this example has little effect on thepulsations.
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Fig. 9. Theoretical intensity waveforms for a laser with line-center
ter values are (a) r = 2.0, (b) r = 1.8, (c) r = 1.6, (d) r = 1.4, (e) r =
oscillations are always damped.

Pi,2J+1(Vt) -i [1 + (2j + 1)iV]2 + y2

x [D2j(V, t) - D2j+2(V, t)] . (92)

When these results are substituted into Eqs. (3)-(6), the
results are rate equations for a standing-wave laser.

The rate equations that have just been described may be
solved numerically, and a series of solutions for the xenon
laser is shown in Fig. 9. The laser is always stable, and
the resulting damped relaxation oscillations are in con-
trast to the pulsations exhibited by all our semiclassical
models. None of the more complicated energy-level struc-
ture, the spectral cross relaxation, the inhomogeneous
broadening, or the spatial variations of the standing-wave
fields acts to destabilize the rate equation model. The
rate-equation approximation should never be used if there
is any possibility of semiclassical instabilities.

8. CONCLUSION

The semiclassical instabilities that are sometimes ob-
served in inhomogeneously broadened lasers are becoming
increasingly well understood, and in the case of the 3.51-
ttm-wavelength xenon laser quantitative agreement be-
tween theory and experiment seems to be possible. In
this study we have started from a standing-wave model
and explored the consequences of several approximations,
including reduced longitudinal spatial hole burning, sim-
plified energy-level structure, and neglect of spectral
cross relaxation and electric-field derivatives. These ap-
proximations may lead to substantial savings in computa-

0.5 

0.0

0.0 i

0.0 .2 .4 .6 .8 1.0

TIME (microsec)

tuning in the rate-equation approximation. The threshold parame-
1.2, (f) r = 1.1. In the rate-equation approximation the relaxation

tion time, and they may sometimes be justifiable on
physical grounds or in terms of their observed minimal
effects. On the other hand, the rate-equation approxima-
tion should never be used if there is any reason to antici-
pate the occurrence of a semiclassical instability.
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