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ABSTRACT 

 

Excessive noise exposure may present a hazard to hearing, cardiovascular and psychosomatic 

health. Mass transit systems, such as the Bay Area Rapid Transit (BART) system, are potential 

sources of excessive noise. The purpose of this study was to characterize transit noise and riders’ 

exposure to noise on the BART system using three dosimetry metrics.  

We made 268 dosimetry measurements on a convenience sample of 51 line segments. 

Dosimetry measures were modeled using linear and non-linear multiple regression as functions of 

average velocity, tunnel enclosure, flooring, and wet weather conditions, and presented visually on a 

map of the BART system. 

This study provides evidence of levels of hazardous levels of noise exposure in all three 

dosimetry metrics. Leq and Lmax measures indicate exposures well above ranges associated with 

increased cardiovascular and psychosomatic health risks in the published literature. Lpeak indicate 

acute exposures hazardous to adult hearing on about one percent of line segment rides, and acute 

exposures hazardous to child hearing on about two percent of such rides. 

The noise to which passengers are exposed may be due to train-specific conditions (velocity 

and flooring), but also to rail conditions (velocity and tunnels). These findings may point at possible 

remediation (revised speed limits on longer segments, and those segments enclosed by tunnels). The 

findings also suggest that specific rail segments could be improved for noise.  
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INTRODUCTION 
 

Bay Area Rapid Transit (BART) is a regional rapid transit rail system connecting portions of San 

Francisco, Alameda, San Mateo, and Contra Costa Counties. During a typical weekday, passengers 

take about 360,000 rides on the system.1 While customer satisfaction with the transit system is 

generally high, noise on BART trains is consistently reported as one of the greatest factors leading to 

dissatisfaction,2 as borne out by complaints reported to local news media.3-5 Indeed, we have 

personally witnessed child and adult passengers covering their ears while riding BART, wearing ear 

protection such as earplugs or earmuffs, and pairs of individuals leaning close together and shouting 

at high volume in order to carry on conversation. Excessive noise levels associated with other above 

and below-ground mass transit systems has been documented. 6,7 Most recently, studies of the New 

York City subway system indicate that noise levels are sufficiently high to be injurious to the hearing 

health of some portion of the ridership. 8,9 

Noise exposure is a concern on BART for several reasons. As a nuisance, noise inhibits 

conversation, and can be an unpleasant sensory experience. More concerning, however, are the 

known and suspected physiological effects of noise on humans. Chronic exposure to high levels of 

noise is well established as contributing to hearing loss. 10-12 Mounting recent evidence suggests that 

chronic noise provokes the hypothalamic-pituitary-adrenal axis, activating negative endocrine and 

vascular outcomes, as seen in the association between chronic noise exposure and increased risk of 

hypertension,13-16 increased risk of myocardial infarction,10,13 and psychosomatic stress. 10,17 Findings 

have also shown that children living amid chronic noise have elevated levels of stress-induced 

hormones, as well as elevated blood pressure.18,19 There is also evidence of negative behavioral 
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outcomes of noise exposure as well,10,20 including negative behavioral effects of noise on children’s 

cognition, concentration and memory, 17,19-21 and on school performance.22 

The level of noise on trains results from many interacting factors,23 including wheel roundness 

(i.e., deviation from perfectly circular) and wheel trueness (side-to-side wobble in shape), rail 

condition (e.g., ‘corrugation’, banking, points, etc.), the speed of a train, whether a particular line 

segment is in open air or in a tunnel, and the points and curves of a specific line segment among 

other factors. 

This study attempts to quantify BART passengers’ potential exposures to hazardous levels of 

noise using a convenience sample of line segments central to the transit system. We also ask whether 

different measures of noise exposure are explained by average velocity, tunnel enclosure, flooring, 

and wet weather conditions. 

 

METHODS 

During January, February, and March of 2009, line segments (i.e., the portions of a BART line in 

a specific direction between one station and the next) were sampled by convenience. The number of 

samples for the reported segments ranges from 1 to 10. 

Measures 

Noise dosimetry measurements were made using a Quest Q 300 logging noise dosimeter clipped 

to the belt, with its microphone clipped to the top of the left shoulder approximately 10 cm from 

the left ear. Measurements were made separately for each direction in any particular line segment; 

measurements began with the closing of train doors, and ceased with their opening. The dosimeter’s 

calibration was checked using a QC-10 Calibrator (114 dB at 1000 Hz) a few minutes before the 

first measurement on each day that measurements were made, and the dosimeter was recalibrated 
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two months before measurements commenced. The dosimeter was set to integrate sound levels over 

one minute intervals with a 3 dB exchange rate, an 80 dB threshold, an 85 dB criterion and a 115 

dB upper limit. We collected average (Leq), maximum (Lmax) and peak (Lpeak) sound levels. Leq and 

Lmax were A-weighted (dBA), and Lpeak was unweighted (dB). 

In addition, the presence of newer hard composite flooring (versus older carpeting), rain water 

on the ground, and full or partial enclosure of a line segment by a tunnel were recorded and coded as 

indicator variables. Average velocity (km/hour) was constructed using line segment lengths from 

BART GIS data and duration as measured by recorded start and stop times. For two records made 

when boarding at the Millbrae station, there was a wait of several minutes from the time the doors 

shut and the time the train commenced moving, and both records were excluded in analyses of 

average velocity. In all but three cases, measurements were made from the bicycle/wheelchair seat, 

and in those other three cases were made from the bicycle/handicap/elderly seating. 

Descriptive statistics 

Unpresented histograms (see appended supplement) characterized the overall distributions of 

our three dosimetry measures. Leq was massed at about 82 dBA, and was skewed somewhat below 

the mean with low measures likely resulting from the threshold of 80 dB, thus are likely to be 

slightly understating the true Leq level. Of the 268 noise dosimetry measurements of Leq, 60 (22%) 

were above 85 dBA. Measures of Lpeak massed around 112 dB, but skewed several standard 

deviations above the mean. Six recorded Lpeak levels exceeded 120 dB, the World health 

Organization’s (WHO) guideline threshold for hearing impairment in children24, and three reported 

Lpeak levels exceeded 140 dB, the threshold for hearing impairment in adults used by both the 

National Institute of Occupational Health and Safety (NIOSH) and the WHO 24,25; the maximum 

recorded Lpeak level was above 147 dB. (This level was slightly over the upper end of the dosimeter’s 
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listed range, but a sensitivity analysis limiting this value of 144 gave substantively the same results in 

Table IV, with difference in the restricted model estimate appearing at the 5th significant figure.) 

Lmax was massed just under 90 dBA, but is slightly skewed to the right. 141 measurements of Lmax 

were greater than 90 dBA, 4 measurements of Lmax were greater than 100 dBA, and the maximum 

was greater than 105 dBA. These are very high levels, well exceeding the levels cited in the US 

 
Figure 1 Map of mean and maximum Leq (dBA). The number of observations is overlaid on each line segment 
except those with a single measurement. The shape and position of line segments have been distorted to facilitate 
visual discrimination, and should be interpreted as schematic. 
 



Environmental Protection Agency’s (1979) examination of maximum allowable exposures.26 We 

considered the effects of time of day as a proxy for passenger noise on all three noise measures using 

multiple nonparametric smoothing regressions (presented in the appended supplement), but found 

no relationship in each case. Figures 1a, b and c illustrate the average and maximum recorded values 

for all three metrics along each line segment for which there were two or more measures, in order to 

 
Figure 2 Map of mean and maximum Lpeak (dB). The number of observations is overlaid on each line segment 
except those with a single measurement. The shape and position of line segments have been distorted to facilitate 
visual discrimination, and should be interpreted as schematic. 
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visually characterize the noise exposure of particular rides (color maps annotated with measurements 

are available in the appended supplement). These maps were generated using the numbers in Table 

I, which associates average and maximum recorded for each dosimetry measure. 

These data can be used to describe exposure to transit noise on BART cars under different 

plausible transit scenarios. We present three such commute scenarios corresponding to actual 

Figure 3 Map of mean and maximum Lmax (dBA). The number of observations is overlaid on each line segment 
except those with a single measurement. The shape and position of line segments have been distorted to facilitate 
visual discrimination, and should be interpreted as schematic. 
 



Table I: Dosimetry measures for 51 BART line segments with two or more measures. Numbers given are mean 
(SD) maximum. N is the number of observations made on each line. 
Segment N Duration Leq (dBA) Lpeak (dB) Lmax (dBA) 
12th St–19th St 6 64 (3.4) 88 (4.1) 93 77 (8) 82 109 (4.2) 118 
12th St–West Oakland 5 264 (51.3) 84 (2.9) 89 69 (7.4) 80 111 (0.7) 112 
16th St–24th St 6 101 (2.1) 92 (0.7) 93 82 (1.2) 83 114 (0.7) 115 
16th St–Civic Center 8 119 (7.8) 94 (1.5) 96 87 (1.7) 90 119 (10.6) 140 
19th St–12th St 5 65 (8.3) 87 (3) 90 79 (3.3) 82 110 (1.7) 111 
19th St–MacArthur 7 222 (104.1) 91 (2.1) 94 79 (2.7) 82 116 (0.9) 117 
24th St–16th St 10 103 (7.5) 92 (1.7) 95 86 (2) 90 115 (2.6) 120 
24th St–Glen Park 4 143 (4) 93 (0.7) 93 84 (0.6) 85 111 (0.7) 112 
Ashby–MacArthur 5 167 (5.9) 95 (1.4) 97 82 (1.4) 84 113 (0.9) 114 
Ashby–Berkeley 6 127 (8.3) 98 (1.9) 101 90 (1.9) 93 113 (1.7) 115 
Balboa Park–Daly City 4 216 (54.8) 92 (1) 94 80 (2.5) 83 115 (1.3) 116 
Balboa Park–Glen Park 4 117 (3.3) 97 (1.1) 98 91 (1.2) 92 115 (1.3) 116 
Bay Fair–Hayward 2 218 (2.8) 87 (2.5) 89 77 (3) 79 113 (1.5) 114 
Bay Fair–San Leandro 2 272 (81.3) 91 (9.6) 97 73 (3) 75 129 (25.9) 147 
Civic Center–16th St 8 117 (2) 92 (1.9) 94 86 (1.6) 88 111 (1.7) 114 
Civic Center–Powell 10 70 (3.9) 89 (3) 94 78 (2.8) 82 111 (1.5) 114 
Coliseum–Fruitvale 2 173 (5.7) 84 (1.5) 85 68 (5.2) 72 110 (3) 112 
Coliseum–San Leandro 3 221 (4) 90 (2.4) 93 79 (1.8) 80 111 (1.6) 113 
Colma–Daly City 4 187 (16.1) 93 (1) 94 81 (1.7) 83 112 (1.2) 114 
Colma–South San Francisco 4 156 (4.8) 89 (1.2) 90 78 (2) 80 111 (1.4) 113 
Daly City–Balboa Park 4 183 (5.4) 91 (2.8) 93 80 (3.8) 83 114 (1.4) 115 
Daly City–Colma 4 216 (5.4) 84 (1.6) 86 73 (3.7) 77 112 (1.1) 113 
Berkeley–Ashby 3 118 (3.1) 94 (1.6) 95 86 (1.7) 87 112 (2.7) 115 
Berkeley–North Berkeley 5 124 (0.7) 88 (2.3) 91 81 (2.3) 85 113 (1.7) 115 
Embarcadero–Montgomery 8 59 (1.4) 89 (1.5) 91 82 (1.1) 84 114 (1.4) 116 
Embarcadero–West Oakland 10 394 (9.5) 97 (1.8) 100 87 (1.1) 89 114 (1.3) 117 
Fruitvale–Coliseum 3 172 (8.1) 92 (1.2) 93 82 (0.7) 83 114 (1.3) 114 
Fruitvale–Lake Merritt 2 234 (2.1) 94 (3.7) 96 82 (1.7) 83 112 (1.2) 113 
Glen Park–24th St 4 139 (3.5) 96 (0.7) 96 86 (0.8) 87 115 (1) 116 
Glen Park–Balboa Park 4 120 (7.8) 95 (1.1) 96 87 (0.8) 88 113 (1.1) 114 
Hayward–Bay Fair 2 219 (9.2) 85 (2.5) 87 74 (3.4) 76 112 (2.6) 114 
Lake Merritt–12th St 2 154 (2.1) 81 (0.1) 81 62 (0.7) 63 111 (2.4) 113 
Lake Merritt–Fruitvale 3 207 (3.8) 95 (1.4) 97 83 (0.8) 84 116 (3.7) 120 
Lake Merritt–West Oakland 2 317 (39.6) 85 (0.7) 85 68 (5.7) 72 111 (0.6) 112 
MacArthur–19th St 6 179 (28.3) 90 (1.6) 93 80 (1.9) 84 116 (1.2) 118 
MacArthur–Ashby 5 180 (16.3) 87 (2.3) 89 75 (3.4) 79 109 (1.7) 111 
MacArthur–Rockridge 2 116 (5.7) 83 (3) 85 66 (3.5) 69 117 (7.2) 122 
Millbrae–San Bruno 4 490 (300.7) 91 (1.1) 92 79 (2.1) 81 113 (0.4) 113 
Montgomery–Embarcadero 8 65 (7.4) 89 (2.2) 93 81 (3) 84 113 (1.4) 115 
Montgomery–Powell 8 66 (3.9) 84 (2.3) 88 73 (4.5) 80 106 (1.4) 108 
North Berkeley–Berkeley 4 134 (20.1) 90 (0.5) 90 82 (1.4) 84 120 (15.4) 143 
Powell–Civic Center 8 75 (10) 87 (3.1) 93 78 (2.7) 83 109 (1.3) 112 
Powell–Montgomery 10 73 (13.3) 86 (3.7) 94 73 (5.6) 78 107 (1.9) 111 
San Bruno–Millbrae 4 351 (111.5) 88 (3) 92 76 (5) 81 111 (1.4) 113 
San Bruno–South San Francisco 4 179 (8.3) 96 (1.3) 97 86 (1.2) 87 114 (1.2) 115 
San Leandro–Bay Fair 2 193 (2.1) 89 (1) 90 81 (1.7) 82 116 (3.3) 118 
South San Francisco–Colma 4 172 (16.3) 92 (0.9) 93 80 (1.8) 81 112 (0.7) 113 
South San Francisco–San Bruno 4 179 (9.9) 95 (0.6) 96 87 (1.4) 88 112 (0.8) 113 
West Oakland–12th Street 4 211 (24.7) 86 (2) 88 75 (2.5) 77 111 (0.9) 112 
West Oakland–Embarcadero 7 380 (15.6) 101 (3.1) 105 92 (1.7) 94 118 (6.8) 133 
West Oakland–Lake Merritt 5 315 (33.9) 89 (2.1) 91 74 (2) 76 112 (2.4) 115 
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weekday roundtrip commutes of two of the authors during the study period. The average time of 

these commute scenarios ranged from 58 to 73 minutes, and each scenario comprised 24 line 

segments round-trip. The minimum mean Leq exposure at different levels by mean time in transit for 

these three commute scenarios is detailed in Table II. On average, riders experience a minimum 

exposure between 54 and 61 minutes per day at Leq ≥ 70 dBA, between 19 and 23 minutes per day 

at Leq ≥ 85 dBA due to noise while BART cars are in motion. Riders on the MacArthur to Daily City 

commute experience a minimum exposure of 7 minutes per day at Leq ≥ 95 dBA. 

Table II Minimum mean Leq exposure times for three roundtrip commute scenarios (h:mm:ss). 
 24th Street & North 

Berkeley 
24th Street & 

Hayward 
MacArthur & Daly 

City  
Roundtrip mean transit duration 0:57:57 1:13:06 1:02:25 
    
Mean Leq:    
≥70 dBA 0:53:33 1:01:13 0:53:33 
≥75 dBA 0:51:14 0:45:28 0:51:14 
≥80 dBA 0:36:27 0:35:44 0:36:27 
≥85 dBA 0:22:38 0:18:33 0:22:38 
≥90 dBA 0:08:27 0:06:20 0:08:27 
≥95 dBA 0:00:00 0:00:00 0:06:34 

 

The number of line segments where mean Lmax exceeds specific levels for these three commutes 

are detailed in Table III. Riders in the commute scenarios experience a minimum of between 20 and 

22 exposures per day at mean Lmax ≥ 85 dBA, between 10 and 14 exposures per day at mean Lmax ≥ 

90 dBA, and between 2 and 5 exposures per day at mean Lmax ≥ 95 dBA. Riders on the two 

commute scenarios including MacArthur station experienced at least one exposure per day to mean 

Lmax ≥ 100 dBA. 
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Table III Line segments with mean Lmax at different levels for three roundtrip commute scenarios. 
 24th Street & North 

Berkeley 
24th Street & 

Hayward 
MacArthur & Daly 

City  
Total number of segments roundtrip: 24 24 24 
    
Number of segments w/ mean Lmax:    
≥70 dBA 24 22 24 
≥75 dBA 24 22 24 
≥80 dBA 24 22 24 
≥85 dBA 22 20 21 
≥90 dBA 12 10 14 
≥95 dBA 4 2 5 
≥100 dBA 1 0 1 
 

Data Analysis 

We explained our three noise dosimetry measures by velocity, tunnel enclosure, flooring type, 

and weather conditions using multiple regression frameworks. We began with a full model, removed 

predictors stepwise according to highest p-value. Preliminary multivariate nonparametric smoothing 

regression27,28 of all three dosimetry measures (Equations 1a–1c) suggested that only the relationship 

between average velocity and Leq was nonlinear (Figure 2), with the linear main effect of velocity 

virtually saturating at about 53 km/hour. Our preliminary nonparametric additive running-line 

smoothing regressions were fit using the mrunning package 2.0.0 in Stata (these models used 

centered average velocity). Such non-linearities are both substantively interesting, and violate the 

assumption of linearity, which may bias linear regression estimates. Accordingly, we modeled the 

effect of average velocity on Leq using non-linear least squares regression to model a break point in 

the linear relationship (Equations 2a and 2b). Lpeak and Lmax were modeled using multiple ordinary 

least squares regression. All regression analyses were conducted in Stata,29 and average velocity was 

centered. Full regression models included all predictor variables, plus multiplicative interaction 

terms for centered average velocity and degree of tunnel enclosure. We estimated full models which 
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included all predictors and interactions (Equations 3a and 4a), and restricted models which retained 

only predictors at the α=0.05 level (Equations 3b and 4b). 

 

 
 

Figure 2 Effect of average velocity on Leq modeled with a nonlinear breakpoint in the effect of average velocity at 
52 km/hour (thick black line) overlaid on top of a restricted nonparametric smoothing model of Leq— —(thick 
black line) with 95% point-wise confidence intervals (thin grey lines), and the raw data. 
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  (1a) 

  (1b) 

  (1c) 

  (2a) 
 
  (2b) 
 
  (3a) 
 
  (3b) 
	  

  (4a) 
 
  (4b) 
 
 
Where: 

  

€ 

vc : centered average velocity in km/hour 

  

€ 

vb : change in slope of average velocity at the break, modeled by max(average velocity –  

€ 

θv , 0) 

  

€ 

θv : estimated breakpoint at which centered average velocity changes slope 

T: presence of a tunnel longer than three cars on the line segment (1 = tunnel present) 

  

€ 

vcT : multiplicative interaction between   

€ 

vc  and T. 

f :presence of newer hard floor instead of older carpet (1 = with hard floor) 

w: presence of rain water on the ground during the ride (1 = water on ground) 

    

€ 

ε Leq

* ,ε L peak

* ,ε Lmax

* : model error terms, adjusted for clustering by line segment, assumed normal 

 

Despite the fact that our sample was by convenience, our study obtains very high statistical 

power (>0.95) with respect to Cohen’s30 post hoc analysis of power to detect a change in the sample 
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correlation coefficient (R2) due to the inclusion of the independent variables. We also have very high 

power (>0.90) using Kelley and Maxwell’s method31 in our restricted models of both Leq and Lmax, 

but are underpowered for the unrestricted models and for Lpeak generally (see appended supplement). 

 

RESULTS 

Clustered regression results are presented in Table IV. We found that average velocity had 

different effects on our three dosimetry measures. Leq increased linearly with average velocity by 0.52 

(95% CI: 0.36, 0.67) dBA per km/hour, with that effect almost completely saturating to 0.05 dBA 

per km/hour (95% CI: -0.34, 0.45) above approximately 53 km/hour as illustrated in Figure 2. Lpeak 

was not found to be significantly related to average velocity. Lmax was found to decrease linearly by -

0.11 dBA (95% CI: -0.32, 0.09) in cars running on line segments without tunnels, but to increase 

linearly by 0.19 dBA (95% CI: 0.15, 0.24; calculated as described in Figueiras et al. 1998, page 

2100)32 in cars running on segments with tunnels. 

Leq increased by 5.1 dBA (95% CI: 3.7, 6.4) on line segments enclosed by tunnels. Lmax increased 

by 2.5 dBA (95% CI: -1.7, 6.7), with the above described significant interaction with average 

velocity. 

Presence of the newer composite flooring was associated with an increase of 1.8 dBA (95% CI: 

0.58, 3.1) in Leq, and was associated with an increase of 1.5 dBA (95% CI: 0.69, 2.3) in Lmax. 

Flooring was not associated with Lpeak. 

The presence of water on the ground was not associated with any of our three noise dosimetry 

measures. 

Table IV: Parameter estimates for full and restricted and nonlinear least squares models (Leq), and ordinary least 
squares models (Lpeak and Lmax).  
 Full model Restricted model 
 parameter estimate (sd) p-valuea parameter estimate (sd) p-valuea 
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y: Leq (dBA)   
  82.9 (1.05)  <0.001  83.0  (1.04)  <0.001 

  0.489 (0.070)  <0.001  0.516  (0.077)  <0.001 
 (break at 53 km/hour)  -0.430 (0.124)  0.001  -0.462  (0.122)  <0.001 

  6.78 (2.00)  0.001  5.06  (0.680)  <0.001 
  0.260 (0.145)  0.094       
  -0.278 (0.193)  0.169       

  1.98 (0.658)  0.004  1.81  (0.856)  0.003 
  -0.706 (1.06)  0.503     

RMSE  5.030   5.095     
R2  0.479    0.457     

   
y: Lpeak (dB)   

  118  (5.98) <0.001  113 (0.507) <0.001 

  -0.352  (0.297) 0.351  

  -5.92  (5.96) 0.387  

  0.425  (0.298) 0.305  

  1.07  (0.517) 0.118  

  -0.121  (0.889) 0.889        
RMSE  4.632   4.766     
R2  0.073    0.000     
   

y: Lmax (dBA)   
  88.2 (2.07) <0.001  88.2 (2.07) <0.001 
  -0.115 (0.102) 0.310  -0.114 (0.107) 0.258 
  2.51 (2.12) 0.310  2.50  (2.11) 0.258 

  0.309 (0.104) 0.006  0.309 (0.104) 0.005 
  1.56 (0.104) <0.001  1.52 (0.412) 0.001 
  -0.375 (0.858) 0.660       

RMSE  3.505   3.499 
R2  0.4708    0.462 

Note: All models accounted for clustering in line segments, thereby estimating robust standard errors. N = 266 for 
all models. Both the full and restricted nonlinear least squares models of Leq converged in 11 iterations. 
a All p-values were corrected for multiple comparisons using the false discovery rate41, using p.adjust() in R version 
2.9. 
 

DISCUSSION 

This small study provides evidence of potential noise exposures that may be deleterious to the 

health of BART passengers. The Leqand Lpeak levels reported here are comparable, although 

somewhat louder, to in-car noise levels recently reported in the New York Metro subway system.8,9 

The reported Leq exposure durations ≥85 dBA in the three commute scenarios translate to 40%–

48% of the maximum daily noise exposure levels set by the EPA to broadly protect population 

hearing.24,26 This implies compounded noise-related risks for those riders who reside or work in very 
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noisy environments. Our Leq and Lmax measures indicate exposure to very loud noise for periods 

somewhat comparable to the daily ranges associated with increased cardiovascular and 

psychosomatic health risks.10,12,15,17,18,20,33-37 However, we caveat that these studies generally treated 

periodic exposures throughout the day, such as those due to proximity to rail systems or traffic. 

Most BART trips are likely to extend beyond one line segment; for round-trip commuters, such 

exposure will double in the course of a day. This implies chronic exposure to persistent levels of 

noise during the workday, and may present a threat of hypertension and other health problems 

associated with chronically heightened psychosomatic stress. Lpeak levels indicate acute exposures 

potentially damaging to adult hearing on about one percent of rides from one station to the very 

next station, and acute exposures potentially damaging to children’s hearing on about two percent of 

such rides.24 Hearing may also be threatened by BART noise indirectly, as many people employ 

headphones while riding BART (e.g., for digital musical players), and BART noise may drive riders 

to raise headphone volume to damaging levels. 

While recognizing that passenger exposures to loud noises on BART are unlikely to exceed an 

hour or two per day and thus likely to present only a small health risk to individuals, we also 

consider this from a population perspective; small increases in individual risk for health problems 

caused by chronic exposure, when multiplied across large populations—such as the hundreds of 

thousands of riders each weekday—may amount to large public health concerns. 38,39 Moreover, 

from a vulnerabilities perspective, 40 populations already under stress, suffer greater extremes and 

greater uncertainty in health outcomes as a result of stresses; because BART serves the elderly, 

school-age children, and socio-economically marginalized communities, we find vulnerability to 

noise especially concerning, and a needed avenue for further research. 
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We have provided evidence that the noise to which passengers are exposed may be due to car-

specific conditions (velocity and flooring), but also to rail conditions (speed limit, and tunnels). 

These finding may point at possible remediation (revised speed limits on longer segments, and those 

enclosed by tunnels). The findings also suggest the possibility that specific line segments could be 

physically improved for noise. Factors not considered here—such as wheel and brake conditions, or 

rail conditions—may also contribute to noise levels. 

This study has several limitations. First, the small sample size does not permit an estimation of 

the distribution of dosimetry responses for each line segment. A thorough sampling of every line 

segment in the BART system would also give a better picture of passenger exposure. Likewise, we 

did not account for clustering of variance by car that a larger study would (for example, using cross-

classified multilevel models). Better dosimeters could provide more finely spaced measurements 

permitting a more nuanced visual characterization of gradients of noise dosimetry along single line 

segments, and assessment of the relationships between more instantaneous measures of velocity and 

dosimetry measures. Such finely spaced measurements could also permit total counts of Lpeak and 

Lmax events as recommended by the WHO,24 rather than the ‘at least one event per line segment’ 

given by these measures in this study. Our use of average (rather than instantaneous) velocity biases 

regression results toward finding smaller effects since, if the effects of instantaneous velocity on noise 

are positive, ‘average velocity’ will be slightly lower than instantaneous velocity when dosimetry 

measures are high, and conversely will be higher than instantaneous velocity when dosimetry 

measures are low. 

We conclude by noting that BART’s operation appears to produce several kinds of noise-related 

health hazard. While news reports indicate that BART took steps to improve rail condition in 2009, 

3-5 it remains to be seen if and how passenger noise exposure will be affected. BART, being a public 
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institution, should serve its passengers at a minimum by communicating the health hazard imposed 

by the noisy conditions under which it operates, perhaps even suggesting ways for passengers to 

protect themselves from hazardous noise and, most fully, by making trains quieter. BART could also 

establish ongoing noise dosimetry measures for the protection of riders’ health. Such a surveillance 

system could also provide better understanding of velocity/noise measures, since instantaneous train 

speed is available to BART operators. 
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