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Rapid Communication

Virus Silicification under Simulated Hot Spring Conditions

James R. Laidler and Kenneth M. Stedman

Abstract

Silicification of organisms in silica-depositing environments can impact both their ecology and their presence in
the fossil record. Although microbes have been silicified under laboratory and environmental conditions, viruses
have not. Bacteriophage T4 was successfully silicified under laboratory conditions that closely simulated those
found in silica-depositing hot springs. Virus morphology was maintained, and a clear elemental signature of
phosphorus was detected by energy-dispersive X-ray spectrophotometry (EDS). Key Words: Bacteriophage T4—
Virus—Microbial silicification—Fossil record. Astrobiology 10, 569–576.

1. Introduction

Viruses are the most abundant microorganisms on the
planet; an estimated 4�1030 viruses inhabit the waters of

Earth’s oceans (Suttle, 2005). Environmental virus concen-
trations range widely: 105 to 107 per milliliter in hot springs
and hydrothermal vents (Breitbart et al., 2004; Ortmann and
Suttle, 2005; Lee et al., 2007) to 105 to 108 per milliliter of
seawater (Wommack and Colwell, 2000; Suttle, 2005; Filippini
et al., 2008; He et al., 2009), 107 to 109 per milliliter in freshwater
lakes and streams (Slovackova and Marsalek, 2008; de Araujo
and Godinho, 2009; Personnic et al., 2009) to 109 per gram of
soil (Swanson et al., 2009). In all these environments, viruses
outnumber prokaryotes (bacteria and archaea), often by an
order of magnitude or more (Wommack and Colwell, 2000;
Breitbart et al., 2004; Ortmann and Suttle, 2005; Lee et al., 2007;
Suttle, 2007; Filippini et al., 2008; Slovackova and Marsalek,
2008; de Araujo and Godinho, 2009; He et al., 2009; Personnic
et al., 2009; Swanson et al., 2009).

Viruses are thought by many to be ubiquitous companions
of all cellular life (Koonin and Martin, 2005; Forterre, 2006a;
Koonin et al., 2006). Although there are numerous cellular
organisms without known virus ‘‘companions,’’ this is
thought to be due to the difficulties of finding viruses rather
than any inherent lack of viruses in these organisms.

Although generally viewed as parasites, viruses can play
other roles in the environment, such as promoting horizontal
gene transfer between organisms, including organisms of
different species (Ripp et al., 1994; Jiang and Paul, 1998; Filee
et al., 2002; Weinbauer, 2004; Beumer and Robinson, 2005;
Sullivan et al., 2006; Kenzaka et al., 2007). Another important
ecological role viruses play is that of microbial predator; in
that role, they recycle scarce nutrients and increase the ge-
netic diversity of an ecosystem (Hennes and Simon, 1995;

Riemann and Middelboe, 2002; Weinbauer, 2004; Jardillier
et al., 2005; Ortmann and Suttle, 2005). This role is particu-
larly important in ecosystems where the more ‘‘typical’’ eu-
karyotic microbial predators are unable to function. Such
ecosystems include hydrothermal environments where the
temperature is persistently above the limit for eukaryotic life
(Baumgartner et al., 2002, 2003).

Many of these hydrothermal waters become oversaturated
in silica as they cool to ambient temperature (White et al.,
1956). Microorganisms in these silica-depositing waters can
act as nucleation sites for silica polymerization, which leads
to their being encased in silica (Schultze-Lam et al., 1995;
Cady and Farmer, 1996; Renaut et al., 1998; Jones et al., 2000,
2004; McKenzie et al., 2001; Konhauser et al., 2004; Amores
and Warren, 2007; Peng et al., 2007) and, after diagenesis,
their preservation in the fossil record (Cloud and Licari, 1968;
Schopf and Packer, 1987; Cady and Farmer, 1996; Reysen-
bach and Cady, 2001; Al-Hanbali and Holm, 2002; Geptner
et al., 2005; Schopf, 2006).

In 1915, Charles Walcott was the first to report finding
fossilized microbes: blue-green algae (now called cyano-
bacteria) in limestone of the Newland Formation in central
Montana (Walcott, 1915). Since that time, there have been a
number of similar findings in a variety of mineral settings
(e.g., Barghoorn and Tyler, 1965; Cloud, 1965; Schopf and
Packer, 1987; Altermann and Schopf, 1995; Schopf, 2006).
Many of the most distinct microbial fossils are those that
have been found in silica-rich rock, for example, cherts and
flints. Despite vigorous debate about the oldest of these finds
(Lowe, 1994; Garcia-Ruiz et al., 2003; Brasier et al., 2005), the
consensus is that these fossils date the beginning of microbial
life to earlier than 3 billion years ago.

Currently, microbes in hydrothermal springs are often
accompanied by, and presumably infected with, a variety of
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viruses (Prangishvili et al., 1999; Reysenbach and Cady, 2001;
Al-Hanbali and Holm, 2002; Breitbart et al., 2004; Geptner et al.,
2005; Snyder, 2005; Stedman et al., 2006; Lee et al., 2007). It is
reasonable to assume that these viruses would be silicified
along with their microbial hosts in a silica-depositing envi-
ronment. If viruses can be silicified along with their hosts, it is
also possible that they might be present in the fossil record.

Discovery of fossilized viruses would be a boon not only
to virologists but also to those interested in the origins of life
on Earth and elsewhere. While it is supposed that viruses
originated at approximately the same time as cellular life
(Forterre, 2006a, 2006b; Koonin et al., 2006), there is no direct
evidence of viruses in existence prior to the past century.
There is, however, some indirect evidence of ancient viruses,
such as the presence of structures that resemble polyhedrosis
virus inclusions in insects trapped in amber dated to 100
million years ago (Poinar and Poinar, 2005). Phylogenetic
analysis also supports the ancient nature of viruses (Hendrix
et al., 1999; Filee et al., 2002; Holmes, 2003; Benson et al., 2004;
Rice et al., 2004).

While silicification of viruses would be an important first
step toward incorporation in the fossil record, it is only a
single step. Whether recognizable fossil viruses or detectable
biosignatures would survive taphonomic alteration is un-
known. The oldest molecular biosignatures, from specimens
billions of years old, are remnants of membrane lipids (e.g.,
Brocks et al., 1999, 2003). While bacteriophage T4 (used in
this study) does not have a lipid envelope (the viral analogue
to a cell membrane), many viruses, including some bacte-
riophage, do (Laurinavicius et al., 2007). Proteins (Nielsen-
Marsh et al., 2009) and DNA (Noonan et al., 2006; Haile et al.,
2009) have been sequenced from specimens tens of thou-
sands of years old. Thus, it appears possible that some viral
components could survive diagenesis. If viral lipids can be
distinguished from their host membrane lipids, even after
taphonomic alteration, it might be possible to identify a viral
biosignature even when their morphology has been altered
beyond recognition.

In this study, bacteriophage T4 (Fig. 1) silicified under
conditions similar to those observed in the outflow channels
of silica-depositing hot springs—room temperature and
300 ppm (5 mM) silica (White et al., 1956; Renaut et al., 1998;
McCleskey et al., 2004). The methods used were similar to
those used in the experimental silicification of bacteria
(Westall et al., 1995; Toporski et al., 2002; Yee et al., 2003;
Benning et al., 2004a, 2004b; Konhauser et al., 2004; Orange
et al., 2009). Bacteriophage T4 was used because it has been
extensively studied (Karam, 1994), and its genome (Miller
et al., 2003), structure (Fokine et al., 2004; Leiman et al., 2004;
Aksyuk et al., 2009), and host interactions (Karam, 1994;
Mosig et al., 2001; Filee et al., 2005; Kenzaka et al., 2007) are
well characterized. The silicified viruses have a clearly rec-
ognizable morphology and a detectable phosphorus signal
on elemental analysis.

2. Methods

2.1. Virus stocks

Bacteriophage T4 stock was obtained from Carolina Bio-
logicals at a concentration of between 5�108 plaque-forming
units/milliliter and 2�1010 plaque-forming units/milliliter; it
was stored at 48C until use. Immediately prior to use, 100 ml

of the virus stock was dialyzed against sterile deionized
water with a Millipore VSWP (0.025 mm pore) membrane for
1 hour to remove salts and proteins from the storage media
(Marusyk and Sergeant, 1980).

2.2. Silica analysis

Silica concentrations were determined colorimetrically by
the heteropoly blue modification of the silicomolybdate
method (Kahler, 1941; Fishman and Friedman, 1989). All
reagents and samples were stored in polyethylene or poly-
styrene containers, and the colorimetric reaction was carried
out in polyethylene microcentrifuge tubes.

2.3. Silicification

Silicification was performed at room temperature at a final
silica solution of 300 ppm SiO2, which simulates the condi-
tions of some outflow channels of silica-depositing hot
springs. This solution was made fresh at the start of each
experiment by using solid sodium metasilicate. The pH of
the silicification solution was adjusted to between 6.8 and 7.2
with small amounts of 1.0 N HCl immediately before use.
Nine hundred microliters of the pH-adjusted solution was
then mixed with 100 ml of the virus stock and incubated at

Capsid (head)

Tail

Tail fibers

Bacteriophage T4 Structure

Base plate

FIG. 1. Simplified diagram of bacteriophage T4 showing
the major subunits of the virus.
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room temperature. A control specimen was simultaneously
prepared with sterile water at a pH between 6.8 and 7.2 and
incubated in parallel.

Silicification experiments were also carried out with ster-
ile, filtered (0.2 mm) water from a known silica-depositing hot
spring, ‘‘The Growler,’’ located near Lassen Volcanic Na-
tional Park (Thompson, 1983). The silica content of this
spring, measured at its surface outlet, was 230–270 ppm SiO2

(Thompson, 1983), but at the time of the experiment the silica
content of the spring water sample had dropped to 104 ppm,
probably due to being stored at room temperature. The silica
concentration was adjusted to 300 ppm with the addition of
freshly made sodium metasilicate concentrate, and the re-
sulting solution was promptly used for silicification.

2.4. Electron microscopy

Specimens were prepared by dialyzing a 50–100 ml aliquot
of the treated virus-containing solution against deionized
water with a Millipore VSWP (0.025 mm pore) membrane for
1 hour to remove residual dissolved silica. A 5 ml drop of the
dialyzed solution was placed on a 400 mesh copper grid with
a carbon-Formvar film (Ted Pella, Inc.) and allowed to re-
main for 2 minutes before wicking away the remaining liq-
uid. The grids were then negatively stained with 2% uranyl
acetate for 30 seconds, after which time the remaining stain
was removed by wicking.

Transmission electron micrographs were obtained by a
JEOL 100CX transmission electron microscope (TEM) with
a Gatan 782 ES500W CCD camera that used an accelerat-
ing voltage of 100 kV. High-resolution imaging and energy-

dispersive X-ray spectrophotometry (EDS) were performed
on an FEI Technai F-20 TEM (accelerating voltage 200 kV)
with an EDAX EDS system, which provides ‘‘real time’’
monitoring of the X-ray peaks as the exposure progresses.
EDS was performed with a raster-scanned 15 nm electron
beam, and the elemental peaks were identified by their
characteristic energy (Bearden, 1967).

The EDS was performed by scanning the electron beam
over a rectangular region of the virus capsid and a control
area of the grid of identical size that lacked virus particles.
Comparison with unsilicified bacteriophage T4 was done
with the same technique. A longer exposure time was used
on the unsilicified bacteriophage T4 when no silicon peak
was seen at shorter exposures; this was done to rule out the
possibility that silicon in the interior of the virus was
somehow ‘‘shielded’’ by the capsid.

3. Results

To determine whether a model virus with well-defined
structure—bacteriophage T4 (Fig. 1)—would silicify in a simu-
lated hot spring environment, it was incubated for 48 hours in a
300 ppm (5 mM) silica solution and then observed with the
TEM. After exposure, the virus particles appeared to be coated
with a conforming layer of silica, with the virus morphology
clearly intact (Fig. 2B, 2C). With exposures of over 72 hours, the
coating appeared to become thicker; by 120 hours, the viruses
were not identifiable. In contrast, the bacteriophage T4 exposed
to only water did not appear to be coated (Fig. 2A, 2C).

The coating was most apparent around the heads of the
virus as a lighter, nonstaining outline of the capsid. Tails of

FIG. 2. TEM images of control and silicified virus. (A) Untreated bacteriophage T4 negatively stained with uranyl acetate.
(B) Bacteriophage T4 exposed to 300 ppm silica for 48 hours and stained with uranyl acetate. (C) A mixture of treated and
untreated bacteriophage T4 to highlight the differences. (D) Bacteriophage T4 exposed for 48 hours to Growler hot spring
water augmented with sodium metasilicate to a total silica concentration of 300 ppm. Scale bars are 100 nm in all panels
except (C), where it is 200 nm. All images obtained using a JEOL 100CX TEM at 100 kV accelerating voltage.
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the silica-treated viruses appeared thicker than the untreated
viruses. These differences were best observed when the
treated and untreated viruses were mixed together in a 1:1
ratio immediately before placing them on the TEM grid and
staining (Fig. 2C).

Similar results were obtained with actual hot spring water
from the known silica-depositing hot spring, ‘‘The Growler’’
(Thompson, 1983). However, the stored Growler hot spring
water used in the experiment contained large numbers of 5–
10 nm suspended spheroids. When silica-augmented Grow-

ler hot spring water was used, the coating of the virus par-
ticles incorporated these spheroids, which gave the virus a
‘‘lumpy’’ appearance (Fig. 2D). Nevertheless, virus mor-
phology was clearly maintained and was very similar to that
seen when the simple silica solution was used, as discussed
above.

An even more extreme situation was observed when the
viruses were exposed to silica solutions in LB or Lysogeny
Broth (Bertani, 1951). This medium, used for virus propa-
gation, contains relatively high concentrations of proteins

FIG. 3. EDS of the capsid of a single silicified bacteriophage T4, a control region of the same grid, and the capsid of a
bacteriophage T4 that had not been treated with silica solution (15 nm spot size). Silicon (Si) and phosphorus (P) signals
detected in the treated bacteriophage T4 are greatly reduced in the control region. Silicon was not detected in the untreated
bacteriophage T4. The detection of copper is due to the TEM grid (i.e., a copper grid with carbon/Formvar film). Uranium
peaks are due to the post-fixation uranyl acetate stain. Image (A), from the targeting scan of the EDS, shows the region
sampled for the treated bacteriophage T4 (labeled ‘‘1’’) and the control area (labeled ‘‘2’’). Image (B), a high-resolution TEM
image of an untreated bacteriophage T4 after EDS, shows the area scanned by the electron beam.
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and other organic molecules. Under these conditions, large
(50–150 mm) colloidal particles were formed that adhered
preferentially to the virus capsid (data not shown). However,
these concentrations of organic molecules are not typically
seen in a hot spring environment (Wilson et al., 2000; Ball
et al., 2002; McCleskey et al., 2004).

To further characterize the treated virus, high-resolution
transmission electron microscopy with elemental analysis
(EDS) was performed (Fig. 3). Elemental analysis showed
a significant silicon peak in the silicified bacteriophage T4,
which was absent both in the background of the silicified
bacteriophage T4 specimen and in bacteriophage T4 that had
been exposed only to water. A small, though clearly defined,
phosphorus peak was also seen. Since bacteriophage T4 does
not possess an envelope (analogous to the cell membrane of
cellular organisms) and its proteins are not known to be
phosphorylated, the phosphorus signature must be from the
genomic DNA in the capsid. The copper peaks are from the
copper grid, and the uranium peaks are from the uranyl
acetate stain used to identify the virus particles for analysis.

4. Discussion

Geochemical considerations predict that the small size of
viruses, ca. 100 nm, would preclude their silicification since
even under supersaturation conditions, such as those found
in silica-depositing hot spring ecosystems, the rate of silica
dissolution would exceed its rate of deposition (Alexander,
1957; Kobayashi et al., 2005; Conrad et al., 2007). Results of
this study have shown, however, that at silica concentrations
below that needed for homogeneous (spontaneous) nucle-
ation (Weres et al., 1980), virus particles can become coated in
silica (Fig. 2). Ongoing virus silicification studies in our
laboratory indicate that other viruses also become silicified
under similar conditions (unpublished results).

The degree of silicification of the T4 viruses is yet to be
determined, and it may be that they are not permineralized
but only have a surface coating of silica. The capsid of bac-
teriophage T4 is composed of repeating interlocking proteins
and is porous to small molecules, including the uranyl ace-
tate used for staining. The decrease in staining of the capsid
after silica treatment, seen most clearly in Fig. 2c, suggests
that the silica coating is extensive enough either to reduce the
porosity of the capsid or decrease its aqueous internal vol-
ume. Still, some internal space remains, as evidenced by the
diffusion of stain into the capsid.

As viruses are often the only microbial predators in silica-
depositing hot springs, their silicification could render them
non-infectious and ultimately lead to a decrease in microbial
diversity in these environments (Fuhrman, 1999; Riemann
and Middelboe, 2002; Bouvier and del Giorgio, 2007; Suttle,
2007). A decrease in microbial diversity might manifest as a
decrease in the number of species, or it could result in one
species—or a small group of species—being dominant for a
prolonged period of time, as has been reported in some
studies in which hot spring microbial diversity was exam-
ined over time (Snyder, 2005; Snyder et al., 2007).

Another possible outcome would be for viruses that have
adapted to silica-depositing environments to have modifi-
cations of their external surfaces that reduce or eliminate
silicification. This is significant in light of previous studies
that have shown that different peptide sequences and func-

tional groups can have markedly different affinities for silica
deposition (Coradin et al., 2002; Naik et al., 2002; Fang et al.,
2008; Wallace et al., 2009). A few studies have shown that
certain amino acids—histidine, lysine, and arginine—lead to
increased affinity for silica binding (Coradin et al., 2002; Naik
et al., 2002; Liang et al., 2009), whereas amino acids with
alcohol groups—tyrosine, serine, and threonine—tend to
reduce binding to silica (Fang et al., 2008). Therefore, struc-
tural characterization of indigenous hot spring viruses is a
necessary next step in this research. Intriguingly, the coat
proteins of fuselloviruses, common in acidic hot springs, are
rich in lysine and arginine residues (Palm et al., 1991; Sted-
man et al., 2003; Wiedenheft et al., 2004; Redder et al., 2009),
which should make them more susceptible to being encased
in silica.

Although our experimental findings have shown that
viruses will silicify under conditions similar to those found in
silica-depositing hot springs, it remains to be seen whether
silicified viruses can be found in the environment. Kyle et al.
(2008) showed that viruses in the Rı́o Tinto can become
coated with iron oxides, which suggests that silicified viruses
should occur when geochemical conditions favor silica de-
position. Perhaps the most important implication of this
work is that viruses coated with silica have the potential to
become incorporated into the fossil record along with their
microbial hosts. This study has also shown that the initial
steps of the silicification process leave the virus morpho-
logically recognizable, which raises the possibility that fos-
silized viruses might some day be found. In addition,
elemental ‘‘fingerprints’’ (Fig. 3) may allow detection of si-
licified viruses in petrographic thin sections. The fossilization
of viruses in mineralizing environments, and the potential to
preserve their biosignatures in the geological record, has
profound implications for the study of viruses and their
antiquity.
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