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Source motion mitigation for adaptive matched field
processinga)

Lisa M. Zurk,b) Nigel Lee, and James Ward
MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420

~Received 30 November 2001; revised 23 December 2002; accepted 23 December 2002!

Application of adaptive matched field processing to the problem of detecting quiet targets in shallow
water is complicated by source motion, both the motion of the target and the motion of discrete
interferers. Target motion causes spreading of the target peak, thereby reducing output signal power.
Interferer motion increases the dimensionality of the interference subspace, reducing adaptive
interference suppression. This paper presents three techniques that mitigate source motion problems
in adaptive matched field processing. The first involves rank reduction, which enables adaptive
weight computation over short observation intervals where motion effects are less pronounced. The
other two techniques specifically compensate for source motion. Explicit target motion
compensation reduces target motion mismatch by focusing snapshots according to a target velocity
hypothesis. And time-varying interference filtering places time-varying nulls on moving interferers
not otherwise suppressed by adaptive weights. The three techniques are applied to volumetric array
data from the Santa Barbara Channel Experiment and are shown to improve output
signal-to-background-plus-noise ratio by more than 3 dB over the standard minimum-variance,
distortionless response adaptive beam-former. Application of the techniques in some cases proves to
be the difference between detecting and not detecting the target. ©2003 Acoustical Society of
America. @DOI: 10.1121/1.1561817#

PACS numbers: 43.60.Gk, 43.30.Wi@JCB#

I. INTRODUCTION

This paper presents and applies three ‘‘motion mitiga-
tion’’ techniques for improving adaptive matched field pro-
cessing detection of quiet, moving targets in shallow-water
environments.

Detection and localization of targets in shallow-water
environments is a challenging problem for which it is well-
known that plane-wave beamforming is inadequate because
channel-specific acoustic multipath is not accounted for.1 By
contrast, matched field processing~MFP! accounts for coher-
ent acoustic multipath in shallow water by employing a
propagation model to construct appropriate steering~or ‘‘rep-
lica’’ ! vectors. Conventional~nonadaptive! matched field
processing tends to suffer from beampatterns with high side-
lobes, which can obscure quiet target detection in the pres-
ence of strong interferers.Adaptivematched field processing
~AMFP! reduces interferer sidelobes by computing data-
dependent weight vectors based on sample covariance matrix
~SCM! inversion.2–4

It is well known, however, that AMFP performance de-

grades quickly in less-than-ideal conditions.1,3 In particular,
moving sources~both targets and interferers! can degrade
AMFP performance severely, especially for large arrays with
small beamwidths.5 Target motion spreads target energy
across several beams, reducing output signal power and re-
sulting in poorer target detection and localization. Interferer
motion increases the dimensionality of the interference sub-
space, reducing adaptive interference suppression and again
resulting in poorer weak target detection.

One way to mitigate source motion is to apply rank re-
duction, which allows adaptive weight computation over
shorter observation intervals where sources move less and
are quasi-stationary. In much of the literature, rank reduction
for AMFP is performed in eigenvector space.6–8 The draw-
back to this is that eigenvectors have no inherent physical
basis, so eigenvector-based rank reduction is usually
achieved with no regard for information provided by the
propagation physics. By contrast, several authors9–11 have
shown the utility of transforming the data into acoustic mode
space, with a physically based modal basis; mode-space rank
reduction to date, however, still employs eigenvectors.11 The
first motion mitigation technique presented here performs
mode-based rank reduction~MBRR! by selecting the
reduced-rank mode space according to physical consider-
ations. In addition to the general benefits of rank reduction,
this technique provides both filtering of surface interferers
and broadening of beamwidths in the output beamformer,
both of which further mitigate motion effects. MBRR does
require accurate computation of the acoustic modes, so it is
somewhat sensitive to environmental mismatch and it re-
quires a capable array; this is discussed further in Sec. IV.

For processing overlong observation intervals~in order

a!Portions of this work were presented in ‘‘3D adaptive matched field pro-
cessing for a moving source in a shallow water channel,’’ Proceedings of
the IEEE Oceans ’99 Conference, Seattle, WA, September 1999; in
‘‘Evaluation of reduced-rank adaptive matched field processing algorithms
for passive sonar detection in a shallow-water environment,’’ Proceedings
of the 33rd Asilomar Conference, Pacific Grove, CA, November 1999; in
‘‘Adaptive matched field processing for a moving target in a noisy shallow
water channel,’’ Proceedings of the Adaptive Sensor Array Processing
~ASAP! Workshop, Lexington, MA, March 2000; and in ‘‘Interference
rejection for passive sonar using prior information with adaptive matched
field processing,’’ Fifth European Conference on Underwater Acoustics,
Lyon, France, July 2000.

b!Electronic mail: zurk@ll.mit.edu
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to minimize adaptive bias loss2!, various techniques seek to
address either target motion~by compensation! or interferer
motion ~by filtering!. In the former category, the concept of
matched-field tracking12,13has been proposed to mitigate tar-
get motion effects by adjusting the matched field replica vec-
tors according to a target velocity hypothesis; however,
matched field tracking can only produce nonadaptive output.
By contrast, the second motion mitigation technique pre-
sented here performs explicit target motion compensation
~ETMC! by focusing thedata ~snapshots!, not the replicas,
according to the target velocity hypothesis. This allows com-
putation of target-motion-compensatedadaptiveoutput. The
concept of focusing snapshots is found in broadband source
localization problems,14,15 but there the focusing is done in
frequency~for wideband but stationary sources!, not in space
~as done in MFT and ETMC for narrowband but moving
sources!.

To address the interference motion problem over long
observation times, data-based, time-varying interference fil-
tering has been proposed previously in other contexts16,17

and has recently been proposed for matched field
processing.18–21 The idea is to filter moving interferers,
which are not effectively nulled by normal adaptive process-
ing, on a snapshot-by-snapshot basis, under the assumption
that the principal eigenvectors for each snapshot represent
the interferers to be filtered. This technique fails, however,
whenever the target itself is loud relative to the interferers.
The third motion mitigation technique presented here per-
forms model-based, time-varying interference filtering
~MTIF! that makes use of external track information to place
location-based nulls on interferers. Note that MTIF does not
require association of the interferer with eigenvectors of the
data; however, it does require accurate modeling of the in-
terference space and is thus sensitive to~environment and
track! mismatch. A hybrid algorithm is also presented that
combines information from both the model-based and data-
based techniques.

All three of the proposed techniques are demonstrated
on vertical line array~VLA ! data obtained from the Santa
Barbara Channel Experiment~SBCX!.22 Section II presents
the basic AMFP framework used in this work. Section III
describes in detail the three techniques of improving AMFP
performance on moving sources~reduced-rank mode space
processing, explicit target motion compensation, and time-
varying interference filtering!. Section IV shows the results
of applying the techniques to SBCX data and the improve-
ment they provide over standard AMFP output and over ex-
isting motion mitigation techniques. Finally, Sec. V summa-
rizes the conclusions of this work and suggests some areas
for further work.

II. ADAPTIVE MATCHED FIELD PROCESSING
FRAMEWORK

This section presents the basic AMFP framework used
throughout the paper.

Defining Q5(r ,f,z) as the three-dimensional spatial
position in range, azimuth, and depth, the MFP output for an
N-element array at frequencyf 0 , time t0 , and directionQ
can be written as

P~ f 0 ,t0 ,Q!5wW H~ f 0 ,t0 ,Q!K̂ ~ f 0 ,t0!wW ~ f 0 ,t0 ,Q!, ~1!

wherewW ( f 0 ,t0 ,Q) is the N31 weight vector based on the
corresponding replica vectorvW ( f 0 ,t0 ,Q), and where
K̂ ( f 0 ,t0) is theN3N sample covariance matrix discussed in
the following. For conventional matched field processing
~CMFP!,23 the weights in Eq.~1! are normalized replica vec-
tors:

wW c~ f 0 ,t0 ,Q!5vW ~ f 0 ,t0 ,Q!/N, ~2!

where the replica vector is normalized such that
uvW ( f 0 ,t0 ,Q)u25N, so that the CMFP weight vectorwW c(•) in
Eq. ~2! achieves unity gain on target.

Adaptive matched field processing computes a weight
vector that is dependent on the sample covariance matrix as
well as the replica vector. The AMFP results in this paper are
based on the high-resolution minimum-variance,
distortionless-response~MVDR! filter.2,3 The diagonally
loaded MVDR~or MVDR-DL! weight vector is given by

wW m~• !5
~K̂ ~ f 0 ,t0!1sd

2~• !I !21vW ~• !

vW ~• !H~K̂ ~ f 0 ,t0!1sd
2~• !I !21vW ~• !

, ~3!

where the MVDR weight vectorwW m(•)5wW m( f 0 ,t0 ,Q) is
based on the replica vectorvW (•)5vW ( f 0 ,t0 ,Q) and a
position-dependent diagonal load level sd

2(•)
5sd

2( f 0 ,t0 ,Q). The load level is chosen to be large enough
to satisfy a white noise gain constraint4 ~WNGC!

wW m
H~• !wW m~• !<

b

N
, ~4!

where the constantb is a ‘‘relaxation’’ parameter, defined as
the factor by which the weight norm in Eq.~4! is allowed to
exceed the ‘‘white noise gain’’ of 1/N @which is the value of
wW m

H(•)wW m(•) with no loading when K̂ ( f 0 ,t0)5I ]. The
WNGC load level that just satisfies Eq.~4! can be efficiently
found through iterative searching,8 which is the method em-
ployed here. Diagonally loading the MVDR weight vector
minimizes the effects of poorly estimated components of the
SCM K̂ ( f 0 ,t0) ~due to insufficient snapshots, for example!
as well as the effects of target self-nulling due to mismatch.

MFP weights are computed over a finite set of spatial
coordinatesQ, and MFP results are typically displayed via a
spatial ambiguity surfacemeasuring MFP output power
@from Eq. ~1! above# versus spatial variables~range, depth,
and/or bearing!.

In this paper, theN3N sample covariance matrix
K̂ ( f 0 ,t0) in Eq. ~3! is computed using a time average of
snapshots taken from FFT data at the frequency of interest:

K̂ ~ f 0 ,t0!5
1

L (
l 52L/2

L/221

xW~ f 0 ,t01 lDt !xW~ f 0 ,t01 lDt !H, ~5!

where xW ( f ,t) denotes theN31 snapshot computed at fre-
quency f and time t, f 0 is the center frequency,t0 is the
‘‘center time,’’ andL is the number of snapshots. With non-
overlapping FFT windows, the estimate in Eq.~5! requires
an observation period ofT5LDt for each covariance com-
putation, whereDt is the FFT window length.
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The baseline AMFP output for this paper is the power
output in Eq.~1! computed using the MVDR-DL weight vec-
tor in Eq.~3! and the sample covariance matrix in Eq.~5!. In
all subsequent sections of this paper, the dependence ofvW ,
wW , K̂ , andP on the center frequencyf 0 and center timet0 is
suppressed and assumed implicitly, except where needed for
clarity.

III. AMFP MOTION MITIGATION

A. Quantifying motion effects for MFP

The effect of source motion on MFP detection is best
understood by considering the intrinsic cell size of a matched
field processor~equivalent to the beamwidth of a plane wave
beamformer!. The width of an MFP ‘‘cell’’ in a given spatial
dimension~range, depth, or bearing! is defined as the dis-
tance between the half-power points of the CMFP beampat-
tern in that dimension, where the gain of the beampatter is
one half ~3 dB below! its maximum value. MFP achieves
relatively fine resolution due to the deterministic phasing of
acoustic modes. Rough expressions of the range and depth
cell sizes can be obtained by considering the span of hori-
zontal and vertical wavenumbers of the propagating modes.
Letting kM denote the horizontal wavenumber andkzM

the
vertical wavenumber of theMth mode ~representing the
highest propagating mode with significant energy!, the fol-
lowing are approximate expressions for the MFP range and
depth cell sizesCR andCZ , respectively:9,24,25

CR5
2p

k12kM
, ~6!

CZ5
p

kzM

, ~7!

wherek1 is the wavenumber of the first mode~the mode that
propagates nearly horizontally!. The MFP bearing cell size is
well-approximated by the corresponding expressions in
plane wave beamforming:

Cf'l/L ~near broadside! ~8!

Cf}Al/L ~near endfire!, ~9!

whereL is the horizontal array extent andl is the acoustic
wavelength. Note that a straight VLA has no horizontal ex-
tent, but a tilted VLA has a small horizontal extent.

The effect of target motion over a given observation
time T is to disperse the energy of the target in the MFP
ambiguity surface across several MFP cells. One can define
target ‘‘motion loss’’ as the loss in peak target power due to
target motion, with the loss computed relative to the power
of a stationary target. If the target is thought to be at position
Q but in reality transits throughQ over time, the motion loss
~in dB! as a function ofQ is given by

ML~Q!5210 log10F 1

L (
l 51

L

cos2~xW t l
,wW ~Q!!G , ~10!

where

cos2~xW t l
,wW ~F!!,

uwW H~Q!xW t l
u2

uwW ~Q!u2uxW t l
u2 ~11!

represents the beam offset between the target signaturexW t l
at

time t l and the MFP weight vectorwW H(Q) for the assumed
target positionQ. For a stationary target, assuming no other
sources of mismatch, cos2(xWtl

,wW (Q))51 andML(Q)50 dB.
For CMFP, expression~11! reduces to cos2(xWtl

,vW(Q)), because
the weight vectorwW c(Q) is a scalar multiple of the replica
vector vW (Q). ML(Q) quantifies an upper bound to signal-
to-background-plus-noise-ratio~SBNR! loss due to target
motion, specifically the ‘‘signal’’ portion of SBNR.@SBNR
loss due to target motion may be less thanML(Q) if, to
begin with, the weight vectorwW (Q) is mismatched with the
assumed~stationary! target at positionQ.# This loss can be
estimated by using Eqs.~6! and ~7! to calculate the number
of cells transited by the target during the observation timeT,
which may then be used to bound the allowable radial veloc-
ity. For example, in the SBCX environment, the 3 dB range
cell size in Eq.~6! is approximately 10l. If a source in this
environment moves in range with a radial velocity greater
than 10l/T, its motion loss in Eq.~10! is greater than 3 dB.

The effect ofinterferermotion over a given observation
time T is to spread interferer energy across the eigenvalue
spectrum of the sample covariance matrix. The result of this
is that moving interferers consume adaptive degrees of free-
dom ~DOF! and limit the adaptive nulling capability of the
AMFP weight vector~3!. The number of adaptive DOF con-
sumed by a moving interferer is roughly equivalent to the
number of resolution cells@given again by Eqs.~6! and ~7!
above# that the interferer transits during the observation time.

B. Motion mitigation by mode-based rank reduction
„MBRR…

One philosophy for mitigating source motion is to com-
pute AMFP weights over shorter observation intervals where
sources–both target and interferers—move less and are
quasi-stationary, thus limiting motion loss. Shorter observa-
tion intervals, however, mean fewer data snapshots for SCM
computation, and it is well known that MVDR power output
is biased low if not enough snapshots are available.2,26,27

Rank reduction is one method of decreasing the number of
snapshots needed.~There is a limit, however, as to how short
the observation timeT can be; this limit is determined by the
number of snapshots needed to estimate all discrete sources
in the data, including the target.!

Rank reduction for AMFP involves computing a
reduced-rank approximation of the sample covariance matrix
K̂ in Eq. ~5!. Most commonly, this is done using the eigen-
vector ~EV! decomposition ofK̂ , given by

K̂5USUH5(
i 51

N

s i
2uW iuW i

H , ~12!

whereU5@uW 1uW 2¯uW N# is an orthogonal matrix whose col-
umns are comprised of the eigenvectorsuW i of K̂ and S
5diag(s1

2,s2
2,...,sN

2) is a diagonal matrix whose diagonal ele-
ments are comprised of the eigenvaluess i

2 of K̂ . Transfor-
mation from phone space~snapshotsxW ) to EV space is rep-
resented as xWe5TexW , where the N3N eigenvector
transformation matrix is given byTe5UH. Eigenvector-
space rank reduction is then achieved by retainingP out of N
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elements ofxWe , which is equivalent to applying an eigenvec-
tor filter Fe :xWeR

5FexWe5FeTexW , where Fe is a diagonal
matrix with 1’s ~corresponding to retained eigenvectors! and
0’s ~corresponding to filtered eigenvectors! as its diagonal
entries.

The drawback to EV-based rank reduction is that eigen-
vectors have no inherent physical basis, so the rank reduction
is usually achieved with no regard for information provided
by the propagation physics. The most common example of
eigenvector-based rank reduction is to retain the eigenvectors
corresponding to the largest eigenvalues, which is essentially
what is done in the well-known dominant mode rejection
~DMR! algorithm.6 Other techniques exist for EV-based rank
reduction in which the criterion for retaining eigenvectors is
based at least in part on correlation with the replica vector
look direction; examples of this include the signal coherence
criterion8 and the direct-form-cross-spectral metric, which
was proposed and examined by the authors.28,29 However,
the latter techniques require computation of a different
reduced-rank EV subspace with each look direction and are
thus computationally expensive.

AMFP rank reduction that is both physically based and
computationally simple is made possible by transformation
of both data and replicas into acoustic mode space. The
acoustic mode functions are the mathematical descriptions of
the physical phenomena assumed by normal mode propaga-
tion models, and the number ofindependentmode functions
is limited to the number of propagating modes. Further, for a
fully spanning, upright VLA, the propagating acoustic mode
functions form an approximately orthonormal basis~note,
however, that vertical aperture is essential to the formation of
an orthonormal modal basis!.

Modal decomposition makes use of the normal mode
expansion of the acoustic pressure fieldp(r ,z) at receiver
ranger and depthz due to a source at depthzs , which is
approximated~in the far field! by

p~r ,z!5
j

r~zs!A8p
e2 j p/4(

i 51

M

C i~zs!C i~z!
ejki r

Akir
, ~13!

whereC i(•) are the acoustic mode functions,r(zs) is the
water density at the source depth,ki is the horizontal wave-
number associated with theith mode, andM is the number of
‘‘propagating’’ modes for whichki does not have significant
imaginary part. The expression in Eq.~13! may be rewritten
as

p~r ,z!5(
i 51

M

a i~zs! f i~r ,z!, ~14!

where the constantsa i(zs) may be thought of as coefficients
in the modal expansion,

a i~zs!5
je2 j p/4

r~zs!A8p
C i~zs!, ~15!

and where the functionsf i(r ,z) are the attenuated acoustic
mode functions:

f i~r ,z!5C i~z!
ejki r

Akir
. ~16!

To account for array tilt, the ranger in Eq. ~16! may be
replaced by an ‘‘adjusted’’ ranger 1Dr , with the element-
dependent offsetDr varying for each hydrophone~i.e., for
each receiver depthz!.

In vector notation, Eq.~14! may be rewritten as

pW 5~Fm(G!aW , ~17!

whereFm is the N3M modal decomposition matrix whose
ith column is the attenuated mode functionf i(r ,z) in Eq.
~16!, sampled at the depths of the array hydrophones; where
( stands for element-by-element multiplication; whereG is a
matrix of phase terms that takes into account the effects of
array tilt; and whereaW is the M31 vector of mode coeffi-
cients a i . Equivalently, the transformation of anN31
‘‘phone-space’’ data snapshotxW to an M31 mode-space
snapshotxWm can be written as

xWm5TmxW , ~18!

where theTm is theM3N mode transformation matrix com-
puted as

Tm5$~Fm(G!H~Fm(G!%21~Fm(G!H. ~19!

The transformation matrixTm in Eq. ~19! is essentially that
proposed in previous papers on mode-space MFP.9,11 The
inverse in Eq.~19! can be unstable, especially ifM.N and
Fm

HFm is less than full rank; in this case, small or zero eigen-
values ofFm

HFm may be dropped in order to compute the
~pseudo!inverse.11

The first of three motion mitigation techniques proposed
here is mode-based rank reduction~MBRR!. This is achieved
by retainingP out of M elements ofxWm in Eq. ~18!, which is
equivalent to applying a mode filterFm :

xWmR
5FmxWm5FmTmxW , ~20!

where Fm is a diagonal matrix with 1’s~corresponding to
retained modes! and 0’s~corresponding to filtered modes! as
its diagonal entries. For example,Fm5diag(1,...,1,0,...,0) re-
tains the first few~lower-order! modes and filters the rest.

MBRR can succeed where EV-based techniques do not
because the mode functions have physical structure that can
be exploited to separate submerged targets and surface inter-
ferers.~Successful eigenvector separation of nonorthogonal
sources requires different source powers, which will not al-
ways be the case. Equal-power nonorthogonal sources will
not be separated well using eigenvectors.! For example, be-
cause only higher-order modes are strongly excited at the
water surface and because lower-order modes often contain a
significant portion of the energy for sources at depth, one
potentially effective MBRR technique is to retain only the
lower-order modes~and to filter the higher-order modes!. Of
course, the success of mode-based surface-submerged source
separation may vary with environment.

In addition to allowing adaptive processing with fewer
snapshots, MBRR thus has the added benefit of filtering sur-
face energy while not suffering significant signal gain degra-
dation for targets at depth. Further, filtering of the higher-
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order modes has the effect of increasing the intrinsic MFP
range cell size by decreasing the denominator of Eq.~6!.
Thus, AMFP motion effects are further mitigated, as both
target and interferers transit fewer mode-space MFP cells
than phone-space MFP cells, resulting in less target motion
loss and fewer interferer DOF. It is also true, however, that
the increased cell size results in decreased source localization
accuracy.

C. Motion mitigation by explicit target motion
compensation „ETMC…

A second philosophy for mitigating source motion is to
compute AMFP weights over long observation intervalsT
but to compensate explicity for source motion. Processing
over long observation intervals, if done properly, increases
the accuracy of the adaptive weight computation and in-
creases incoherent integration gain. Over long observation
intervals, however, both target and interferer motion have to
be accounted for.

The second of three motion mitigation techniques pro-
posed here is explicit target motion compensation~ETMC!,
which combats target motion loss over long observation in-
tervals. This is accomplished by adjusting the amplitude and
phase across each data snapshotxW ( f 0 ,t l) in Eq. ~5! so that
the target appears stationary. It is important to note that
ETMC ~as well as other target motion compensation tech-
niques! compensates for the motion of asingle source; it
cannot effectively compensate for different motions of mul-
tiple sources. The amplitude/phase adjustment is determined
by applying a velocity hypothesis to the target to predict the
target position at each timet l , and then by comparing the
target replica vector at each position~computed via a propa-
gation model! with the replica vector at a chosen, ‘‘focus’’
position. Assuming uncorrelated sensor data, the adjustment
for the kth sensor at timet l is given by

C l~k!5e2 j Df l ~k!Da l~k!, ~21!

whereDf l(k) is the phase difference between the response
of the kth hydrophone for the predicted target position at
time t l and the response of thekth hydrophone for the target
focus position; and whereDa l(k) is the corresponding target
amplitude ratio. Computation of the correct compensations
Df l and Da l thus requires both an accurate target velocity
hypothesis and accurate propagation modeling.

Once each snapshot has been ‘‘compensated,’’ the result-
ing covariance matrix contains the signature of a target that
has been ‘‘focused’’ to the focus point. The focus point is any
position along the target track~during the observation inter-
val! to which motion will be compensated; a single focus
point is chosen for a given observation intervalT. Perfect
compensation produces output equivalent to that for a sta-
tionary target at the focus point; this theoretically recovers
whatever target motion loss has occurred during the obser-
vation interval. In this paper, the predicted position of the
target in themiddleof the observation period is chosen as the
focus point.

It is important to distinguish ETMC with matched field
tracking~MFT! algorithms,12,13which adjust the replica vec-
tors vW according to the target velocity hypothesis, while

keeping the data~snapshots and SCM! fixed. Because the
adaptive weight computation in Eq.~3! requires multiple
snapshots for a given replica vector, target motion compen-
sation for adaptive MFP requires adjustment of the data
while keeping the replica vectors fixed. The latter is what is
done in ETMC. Another significant difference is computa-
tional: MFT requires compensation of every replica vector
with each snapshot in time, whereas ETMC requires only the
adjustment of the snapshot itself. Again, it is important to
note that both techniques can only compensate for the mo-
tion of a single source.

D. Motion mitigation by model-based, time-varying
interference filtering „MTIF…

The last of three motion mitigation techniques proposed
here is model-based, time-varying interference filtering
~MTIF!, which combats interference motion loss over long
observation intervals. Interference filtering involves spatial
filtering of an interferer, in which the data is projected onto a
subspace that is orthogonal to the~estimated! interference
subspace. Because interferers move, the rank of the interfer-
ence subspace estimate over the entire observation intervalT
can be quite large, and filtering of the data by this ‘‘long-
time’’ interference subspace estimate may result in undesir-
able reduction of the target peak. The solution to this prob-
lem is to apply atime-varyingspatial filter to the data that
removes aninstantaneousestimate of the interference sub-
spaceat each snapshot; the instantaneous subspace is likely
low-rank because it is estimated over a very short observa-
tion time.

The spatial interference filter is the orthogonal projec-
tion complementI2F(FHF)21FH of the interference sub-
space estimateF. This filter is applied to each snapshot, and
the filtered snapshot is then target-motion-compensated as
detailed earlier. The resulting filtered and compensated snap-
shot is then used as in Eq.~5! to compute the sample cova-
riance matrixK̂ .

Clearly, the most important aspect of the interference
filtering technique is estimating the interference subspace.
Data-based estimation assumes that the interferer is the
strongest source in the data and is captured by the principal
eigenvector~s! of the ‘‘instantaneous covariance matrix’’
computed for each snapshot. By contrast, MTIF makes use
of external track information for the interferer to build a
location-based interference subspace estimate. Hybrid esti-
mation combines information from both. The three methods
are detailed in the following.

1. Data-based interference filtering

The data-based method of interference filtering~similar
to what Cox terms ‘‘multi-rate adaptation’’18! assumes that
the interference is strong and can be estimated with a small
number of snapshotsJ, fewer than the total number of snap-
shotsL. At each timet l , an instantaneous covariance matrix
K̂ inst is computed withJ snapshots~centered on thelth snap-
shot!:

K̂ inst5 (
j 5 l 2J/2

l 1J/2

xW j xW j
H . ~22!
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TheM principal eigenvectors16,17 of this instantaneous cova-
riance matrix are then used to estimateF, the instantaneous
interference subspace:Fdata5@uW 1uW 2¯uW M#, where $uW i% i 51

M

are the principal eigenvectors ofK̂ inst. The success of the
data-based method relies on the assumption that the interfer-
ence and target subspaces are distinct in eigenvector space;
specifically, it is assumed that that interferer comprises the
only strong source in the data. Problems arise if the target is
loud relative to the interferer~in which case the target will be
part of the interference estimate and will itself be filtered!.
The data-based method also assumes that the interferer can
be estimated well withJ snapshots; problems arise if the
interferer still moves significantly during the computation of
Eq. ~22!.

2. Model-based interference filtering

Model-based, time-varying interference filtering
~MTIF!19–21 constructs its spatial filter assuming that some
prior knowledge of the interferer’s position is available. An
example might be the tracking of a merchant ship by an
airborne asset in the region. In order to estimate the interfer-
ence subspace, a propagation model is used to determine the
acoustic signature~replica vector! for an interferer at the
given position. To protect against inaccuracies in the inter-
ferer position, the interference subspace is computed usingM
replica vectors spanning a spatial region centered at the in-
stantaneous position estimate of the interferer:Fmodel

5@vW (Q0)vW (Q1)¯vW (QM21)#, where Q1 ,...,QM21 repre-
sent neighboring coordinates in range and depth~and possi-
bly bearing! to the center coordinateQ0 . The amount of
range and depth ‘‘padding’’ that is necessary is determined
by the accuracy of the prior knowledge~the greater the un-
certainty in the position of the interferer, the largerM should
be!; any padding increases the size of the interference sub-
space estimate. Padding is also necessary when environmen-
tal information is uncertain, in which case more replica vec-
tors are needed to describe a given interferer. Clearly, this
method is dependent on accurate external information, but it
does not make any assumptions about interferer versus target
strength~in contrast to the data-based method!.

3. Hybrid interference filtering

The hybrid method of interference filtering combines in-
formation from both the data-based and model-based ap-
proaches. To accomplish this, the model-based replica vec-
tors $vW m%m51

M that span the presumed interferer position are
projected onto the data-based interference subspace spanned
by the principal eigenvectors ofK̂ inst. The hybrid interfer-
ence subspace is then formed by selecting only those replica
vectors with significant projection onto the data:Fhybrid

5$vW m%, vW m
HFdata>g, where g is an adjustable parameter

between 0 and 1 representing the minimum acceptable pro-
jection. Higher values ofg produce more conservative inter-
ference subspace estimates; in the examples below,g50.6,
requiring fairly ~but not extremely! high correlation between
replicas in the model subspace and the data. In general, the
greater one’s confidence in the model~versus the data!, the
lower g should be. Note that the hybrid method essentially

usesFmodel except where the interference model is deemed
inaccurate~as measured by correlation withFdata).

IV. RESULTS

In this section, the three AMFP motion mitigation tech-
niques proposed earlier are applied to data from the Santa
Barbara Channel Experiment~SBCX!. Baseline AMFP per-
formance is computed using the MVDR-DL weight vector in
Eq. ~3!.

Results are presented in the form of MFP ambiguity sur-
faces~or derivatives!, with the implicit assumption that de-
tection is done in the spatial domain. Note that because of
the redundancy in MFP steering vectors, it is inherently dif-
ficult to perform detection on MFP ambiguity surfaces. Per-
formance is quantified by output SBNR~signal-to-
background-and-noise ratio!, which for an ambiguity surface
is calculated as the ratio~in dB! of the output signal peak
relative to the level of the background~consisting of output
noise, interference, and possibly strong source sidelobes!.
The background level is defined as the 25th percentile of the
ordered output powers on the ambiguity surface. For strong
discrete sources, the 25th percentile measure may reflect
source sidelobes, which are not traditionally considered
background. However, it should be pointed out that for de-
tection in the spatial domain, discrete interferer sidelobes
often comprise the ‘‘background,’’ especially for data taken
in heavy-shipping-density environments where interferers
are constantly present. Thus, a processor that lowers side-
lobes not only improves localization but also improves de-
tection in the spatial domain, and this is reflected in both the
25th percentile measure and in the resulting SBNR.

The SBCX experiment was conducted in April 1998 in
the 200-m-deep littoral waters of the Santa Barbara
Channel.22 One of the passive acoustic sensors deployed dur-
ing the experiment was a 150-hydrophone volumetric array
called the full-field processing~FFP! array. The FFP array
consisted of five 30-phone VLAs arranged in a pentagonal
configuration. The combination of vertical and horizontal ap-
erture allowed full, three-dimensional localization in range,
depth, and bearing.

One of the acoustic sources deployed during SBCX was
a J15-3 transducer that was towed by a research vessel, the
Acoustic Explorer~AX !. The J15-3 was used to generate a
comb sequence of 12 tones at approximately 159 dB re 1
mPa source level. The AX contained an onboard GPS re-
ceiver for platform position information, and a nearby radar
station produced track information for surface vessels in the
SBCX area.22 The SBCX site bathymetry is shown in Fig. 1.
Replica vectors were computed by using theKRAKEN normal
mode program30 to generate mode functions and wavenum-
bers for water depths ranging from 50 to 260 m. A two-
dimensional adiabatic approximation was then applied to de-
rive range-dependentreplica vectors ~with the range
dependence due to varying site bathymetry!. The replicas
were computed using a geoacoustic model that consisted of
two sediment layers overlaying an acoustic half-space; the
parameters used for the sediment were obtained from previ-
ous investigation in this area and are given in Table I. The
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sound speed profile~SVP! for the water column was mea-
sured experimentally in several regions throughout the dura-
tion of the experiment; the replicas were computed using an
average SVP shown in Fig. 2.

Figure 3 shows processing of data from a single VLA
(N530 phones) for 300 s at 235 Hz, one of the comb fre-
quencies. Time-averaged covariance estimation was used
with Dt51 s, resulting in 300 snapshots over 300 s. CMFP
and AMFP output were computed using the CMFP weight
vector in Eq.~2! and the AMFP weight vector in Eq.~3!,
respectively, and the results are shown in Figs. 3~a! and ~b!.
Note that the 90.4 dB peak of the CMFP surface, according
to the sonar equation, equals SL-TL-MM, with source level
SL5159 dB, transmission loss TL;60 dB for a 2 km
source, and mismatch MM;8.4 dB due to both motion and
steering vector mismatch. The AMFP peak of 87.4 dB is
lower because of greater mismatch. The CMFP output in Fig.
3~a! displays the characteristically high sidelobes of non-
adaptive MFP processing; this is manifested by the measured
background level of 84 dB, resulting in an output SBNR of
6.4 dB. The AMFP output in Fig. 3~b! displays significantly
lower sidelobes than CMFP; the background level is 76.3 dB
and the SBNR is 11.1 dB. However, the motion of the target
over 300 s~about 780 m in range! has resulted in peak dis-
persion; the motion loss from Eq.~10! is ;7.3 dB~vs 5.8 dB
for CMFP!. Motion loss is greater for AMFP than for CMFP
because of the higher resolution of the adaptive weight vec-
tors.

Figure 4 demonstrates motion mitigation via MBRR

~mode-based rank reduction!. First, Figs. 4~a! and ~b! show
eigenvector-based and mode-based AMFP rank reduction, re-
spectively, for the full 300 s processed in Fig. 3. The
eigenvector-based rank reduction in Fig. 4~a! is achieved us-
ing dominant mode rejection~DMR! with rank 10~compared
to the array size of 30!. For the long observation time, snap-
shots are plentiful~300 snapshots forDt51 s FFT window!,
so rank reduction is not necessary for computational pur-
poses. Indeed, as has been observed previously by the
authors,7,29 reduced-rank DMR displays poorer sidelobe re-
jection than the full-rank MVDR-DL. The result, in this case,
is that the background level increases by 3.1 dB over the
full-rank MVDR-DL to 79.4 dB, and the output SBNR de-
creases by 3 dB to 8.1 dB. For the long observation time,
then, there is no reason to perform eigenvector-based rank
reduction.

By contrast, MBRR is highly effective over the long
observation time because of wider cell-widths in the
reduced-rank mode space. Figure 4~b! shows MBRR
achieved by retaining the ten lowest-order modes. The range
resolution for the reduced-rank mode result—estimated from
Eq. ~6!, but withkM replaced bykP , the highest propagating
mode in the reduced-rank subspace—is approximately
346 m, compared to the 68 m resolution of the full-rank
result. The result of this wider cell-width is a higher target
peak~90.3 dB compared to 87.4 dB in the full-rank result!
and a 4.4 dB increase in output SBNR~15.5 to 11.1 dB!,
because the target has transited fewer MFP cells over the
300 s observation time and there is correspondingly less mo-
tion loss@5.2 dB compared to 7.3 dB for the full-rank case,
using Eq.~10!#. Note that basic sonar equation computations
~assuming that transmission loss follows a cylindrical
spreading law! dictate that a 3 dBincrease in output SBNR
results in a doubling of detection range; thus, the 4.4 dB

FIG. 1. SBCX site bathymetry. Dashed lines indicate shipping lanes. The
map origin is the FFP array, indicated by the red asterisk. The California
coastline is in the northeast corner of the map.

TABLE I. Parameters for geoacoustic model used in SBCX data:z5depth
from surface; cc5compressional sound speed; r5density;
ac5compressional wave attenuation.

z (m) cc (m/s) r ~g/cm3! ac (dB/l)

209 1607 1.95 0.37
309 1702 1.95 0.37

309 1862 1.98 0.035
609 2374 1.98 0.035

609 2374 2.03 0.04

FIG. 2. Typical shallow-water, downward-refracting sound speed profile
~SSP! used in allKRAKEN computations and obtained from averaging mul-
tiple measurements.
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increase in output SBNR is significant. Figure 4~b! vividly
illustrates, then, the motion mitigation over long observation
times provided by adaptive MBRR.

The more typical application of rank reduction however,
involves very short time intervals over which source motion
is less pronounced. Figures 4~c! and ~d! show reduced-rank

AMFP output over 11 s~11 snapshots! of data within the
original 300 s observation period; during these 11 s, the tar-
get transited less than one full range cell-width~resulting in
little motion loss!. Eigenvector-based rank reduction using
rank-10 DMR in Fig. 4~c! performs poorly because there are
too few snapshots to effectively reject all sidelobes in eigen-

FIG. 3. Ambiguity surfaces from VLA data (N530 phones) for a 235 Hz tone processed with an observation time ofT5300 s and FFT windowDt51 s. The
range of the AX~according to GPS! was 1.67–2.45 km from the array. Nonadaptive CMFP output in~a! displays characteristically high sidelobes, with output
SBNR 6.4 dB. Adaptive MVDR-DL output in~b! shows lower sidelobes but a dispersed peak due to target motion; output SBNR is;11.1 dB. Estimated
target motion loss is 7.3 dB due to the 0.78 km motion of the target in range during the 300 s observation time. Colorbar units are dBre 1 mPa/Hz.

FIG. 4. Reduced-rank AMFP surfaces for the same data as in Fig. 3.~a! and~b! Rank-10 DMR and Rank-10 mode space AMFP forT5300 s of data. Rank-10
DMR in ~a!, as expected, has higher sidelobes than full-rank MVDR-DL in Fig. 3~b!, resulting in lower output SBNR of 8.1 dB. Rank-10 mode space in~b!
is less sensitive to motion~because of wider MFP cells in reduced mode space!, resulting in less motion loss~5.2 dB vs 7.3 dB for the full-rank case!, a higher
signal peak~almost 3 dB better than full-rank MVDR!, and output SBNR of 15.5 dB.~c! and ~d! Rank-10 DMR and Rank-10 mode space AMFP forT
511 s ~11 snapshots! of data. Rank-10 DMR in~c! is ineffective because the reduced-dimension eigenvalue spectrum no longer allows adequate sidelobe
nulling; the output SBNR is 16.9 dB, but there are multiple peaks within 3 dB of the target peak. Rank-10 mode space in~d! is highly effective because
significant filtering occurs during modal rank reduction; the background level drops to 67 dB, resulting in an output SBNR of 22.4 dB. Colorbar units aredB
re 1 mPa/Hz.

2726 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003 Zurk et al.: Adaptive matched field processing

Downloaded 08 Feb 2012 to 131.252.4.4. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



vector space. Even though the measured output SBNR is
high ~16.9 dB!, there are several ‘‘false’’ peaks of nearly the
same power as the main target peak, so the target has not
been unambiguously detected. By contrast, the rank-10
mode-space result~ten lowest-order modes retained! in Fig.
4~d! displays excellent sidelobe rejection and an unambigu-
ous target peak~output SBNR;22.4 dB!. The reason for
this is twofold: first, the ten lowest-order modes represent all
the significant propagating modes at the 235 Hz frequency,
so rank-10 AMFP output is still meaningful in mode space;
second, the wider cell-widths in the reduced-rank mode
space effectively ‘‘group’’ neighboring ambiguity peaks into
larger peaks regions. Figure 4~d! illustrates that when com-
puting reduced-rank AMFP output over very short observa-
tion intervals to mitigate motion, mode space provides a
physically meaningful and intelligent way to perform the
rank reduction.

Over both short and long observation times, the distin-
guishing feature for adaptive MBRR is its wider cell widths.
This can be advantageous, since the coarser MFP cells re-
duce the number of ‘‘beams’’ that need to be formed to cover
a given search region adequately. However, the coarser MFP
cells also result in poorer localization, making it more likely
for interferers to reside within one cell width of the target
and thus appear in the same peak region as the target. The
latter is not as great a concern as it may appear, given the
potential with MFP for range, depth,andbearing discrimina-
tion.

It is important to note that the success of mode-based
processing requires enough environmental information to
compute the modal decomposition in Eq.~14! accurately.
The SBCX environment was fairly well characterized, but
not extraordinarily so, as the mode functions in the above-
discussed results were computed using historical geoacoustic
parameters~Table I! and an average SVP~Fig. 2!, neither of

which is entirely accurate for the SBCX data. Thus, it can be
reasonably stated that mode-space processing is only some-
what sensitive to environmental mismatch. Computing the
modal decomposition accurately also requires an array ca-
pable of resolving the modes; the SBCX VLA, which is al-
most fully spanning, is an example of the latter.

In contrast to the motion mitigation provided by
reduced-rank mode-based processing, ETMC~explicit target
motion compensation! as detailed in Sec. III C uses target
track hypotheses to correct for target motion explicitly. Fig-
ure 5 shows ETMC AMFP output over the 300 s observation
interval processed in Fig. 3. The result is a focused target

FIG. 6. Target motion compensation
in bearing, applied to data from mul-
tiple VLAs. Results are range-bearing
ambiguity surfaces for 1–3 VLAs pro-
cessed coherently on a 235 Hz tone
over observation timeT5120 s, using
FFT windowDt51 s. The single VLA
result in ~a! shows coarse bearing lo-
calization due to the tilt of the VLA.
Coherent processing of two VLAs
should give additional azimuth resolu-
tion due to the 130 m horizontal base-
line, but the uncompensated result in
~b! is equivalent to incoherent array
averaging because of motion decorre-
lation effects. Motion-compensated re-
sults for two VLAs ~c! and three
VLAs ~d! give the expected azimuthal
resolution and full, coherent array
gain.

FIG. 5. Target-motion-compensated AMFP output for the same data as in
Fig. 3, also processed for observation timeT5300 s. The plot shows the
signal focus that results when motion compensation is applied using the
GPS track with a focus range of 2.0 km from the array. Target motion
compensation adjusts the amplitude and phase of each snapshot according to
a given velocity hypothesis. The signal peak is 91.1 dB@compared to 87.4
dB for uncompensated MVDR output in Fig. 3~b!#, resulting in an output
SBNR of 14.4 dB. Colorbar units are dBre 1 mPa/Hz.
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peak~91.1 dB, compared to 87.4 dB for the uncompensated
AMFP result! and output SBNR improvement of 3.3 dB
~11.1 to 14.4 dB!. Note that in this particular example, the
true target track was approximately known, so the output is
close to a best-case result. Further research is needed to de-
termine the sensitivity of the motion compensation algorithm
to target track accuracy.

A second example of ETMC, this time in the bearing
dimension, is illustrated in Fig. 6. In this example, range-

bearing AMFP output is shown for data from multiple VLAs
~recall that the FFP array in SBCX contained five VLAs!,
processed at 235 Hz overT5120 s, using aDt51 s FFT
window. For a single VLA@Fig. 6~a!#, the array tilt of the
VLA ~approximately 15°! allows coarse azimuthal localiza-
tion. The addition of a second VLA@Fig. 6~b!# should pro-
vide finer resolution and coherent array gain, but target
motion—the differential Doppler across the two VLAs—
introduces a time-varying phase that prevents any coherent

FIG. 7. Time-varying interference filtering of AMFP output at 94 Hz~time-averaged covariance matrix,T5200 s,Dt51 s). The AX was 5.05–5.75 km from
the array at the same time a surface ship was traveling in the eastbound shipping lane~;6.7 km from the array!, with estimated interference level 163 dB.~a!
The unfiltered result with output SBNR 7.8 dB; however, the target is not unambiguously detected because of interferer sidelobes.~b! The result after motion
compensation only~output SBNR remains 7.8 dB but the target is localized!. ~c! Data-based filtering followed by motion compensation, with the principal
eigenvector used to estimate the instantaneous interference subspace; the resulting output SBNR is 6.8 dB, a decrease from the unfiltered result due to
undesired target filtering.~d! Data-based filtering with two principal eigenvectors; the resulting output SBNR is again 6.8 dB, but altogether too much of the
target has been filtered~target peak 12.2 dB below the unfiltered result—note the lower colorbar!. ~e! Model-based filtering followed by motion compensation,
with M57 replica vectors used to estimate the instantaneous interference subspace; the resulting output SBNR is 11.2 dB.~f! Hybrid filtering, withM57 and
g50.6; the resulting output SBNR is 10.8 dB. Both model-based and hybrid filters produce good results for this scenario because the interferer position was
approximately known~from a radar track! and the acoustic propagation model was accurate. Colorbar units are dBre 1 mPa/Hz.
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processing of the two VLAs; the result is then an incoherent
sum of single-VLA outputs~with the same target peak re-
gion!. Note that the motion compensation expression in Eq.
~21! contains a phase correction that accounts for the mod-
ally dependent Doppler signatures. After correcting for this
phase, the compensated surface for two VLAs@Fig. 6~c!#
shows the grating pattern one would expect from a sparse
horizontal aperture. Processing of three VLAs with motion
compensation@Fig. 6~d!# results in a single strong peak with
array gain 10 log103'5 dB higher than the single-VLA re-
sult. It is important to note once again that ETMC is de-
signed for a single source and that the SBNR improvement
seen in the above two examples is not guaranteed for mul-
tiple sources.

All of the results to this point have demonstrated im-
proved AMFP output on a single, moving target. For data
that also include an interferer, the third motion mitigation
technique is necessary, that of MTIF~model-based, time-
varying interference filtering!. Figure 7 shows AMFP output
for data containing a loud, moving interferer located;6.7
km from the FFP array~at another bearing! in addition to the
AX towed source located;5.5 km from the array. The pro-
cessing was done at frequency 94 Hz~another of the comb
frequencies!, with observation timeT5200 s and FFT win-
dow Dt51 s. The basic AMFP result in Fig. 7~a! is contami-
nated by sidelobes from the loud interferer, to the point that
the target is not detectable. The measured output SBNR is
7.8 dB, but there are several peaks higher than the target
peak~at 5.5 km range and 15 m depth!. Target motion com-
pensation@Fig. 7~b!# focuses target energy to the correct lo-
cation, but sidelobes from the interferer remain; the output
SBNR remains 7.8 dB, but the only peak of the ambiguity
surface is the target. In Figs. 7~c! and ~d!, data-based inter-
ference filtering using one and two principal eigenvectors,
respectively, is used to remove the interferer sidelobes. Be-
cause the target and the interferer have nearly the same
phone-level~source level minus transmission loss! power in
this example, the target has been incorporated into the eigen-
vector estimate of the interferer subspace, resulting in undes-
ired filtering of the target; the resulting output SBNR of 6.8
dB for both Figs. 7~c! and ~d! is actually lower than the
unfiltered result. By contrast, Fig. 7~e! demonstrates the use
of MTIF to remove the interferer sidelobes. The MTIF
~model-based! result uses a rough estimate of the interferer
position~derived here from a radar track! to generate a time-
varying, location-based null on the interferer; the interferer
space has dimensionM57, to account for potential inaccu-
racies in the interferer track information. Application of
MTIF increases output SBNR to 11.2 dB, an increase of 3.4
dB over the unfiltered result. In Fig. 7~f!, hybrid interference
filtering is used to remove the interferer sidelobes. The hy-
brid method uses the model-based interference subspace es-
timate~again with dimensionM57) but eliminates any rep-
licas from the interferer space estimate that do not have high
correlation with the principal eigenvectors of the data~as
measured by the correlation parameterg50.6!. The effect of
this is greater protection of the target peak~87.6 vs 86.6 dB
for the model-based output! at the expense of less sidelobe
rejection ~background level approximately 1.5 dB higher

than the model-based output!. The output SBNR of 10.8 dB
for the hybrid output is still 3 dB higher than that for the
unfiltered output in Fig. 7~a!. This example is a case where
the model-based~and hybrid! interference filtering tech-
niques perform well~because of accurate interferer track in-
formation! but the data-based filtering technique performs
poorly ~because the target is loud relative to the interferer!.

There are cases, however, when the interferer track is
unknown, so data-based interference filtering is the only op-
tion; the following example is one such case. Figure 8 shows
range-time AMFP output derived from range-depth ambigu-
ity surfaces by taking the maximum over a set of depths.
Output was generated using FFT windowDt516 s; the data
contain both a loud, moving surface interferer and a weaker
acoustic source at depth. Figure 8~a! is the basic ‘‘surface’’
AMFP result, generated from surface depths 0–20 m. The
track of the interferer is clearly visible, with;15 dB
interferer-to-noise ratio at its closest point of approach, at 38
min. Figure 8~b! applies data-based interference filtering in
which M52 principal eigenvectors~computed usingJ57
snapshots at each time instant! are used to generate the in-
terferer null; the result is effective removal of nearly all in-
terferer energy. Figure 8~c! is the basic ‘‘submerged’’ AMFP
result, generated from depths 50 to 55 m that include the
target depth. The target track is now visible, but it is still
obscured by sidelobes from the surface interferer. Applying
data-based interference filtering as above, in Fig. 8~d!, results
in effective removal of the interferer sidelobes and retention
of the now-distinct target track. The SBNR improvement
from applying data-based interference filtering at depth is up
to 10 dB where the target and interferer tracks cross in range.

V. CONCLUSIONS

This paper proposed three techniques to improve AMFP
performance for detecting quiet, moving targets. Each of the
techniques was demonstrated on data examples to provide 3
dB or more improvement in output SBNR over basic AMFP
output. Basic AMFP suffers both from target motion, in
which the target moves across several resolution cells during
the observation time and the target peak is reduced, and from
interferer motion, in which the moving interferer occupies
several adaptive degrees of freedom and reduces adaptive
nulling capability.

The first motion mitigation technique, mode-based rank
reduction, reduces the effects of both target and interferer
motion over long observation times by increasing the effec-
tive size of the MFP resolution cells. Both target and inter-
ferers move across fewer resolution cells for a given obser-
vation time, and motion loss is correspondingly reduced. The
technique was demonstrated on a data example in which tar-
get motion loss was reduced and output SBNR was increased
by 4.4 dB compared to the basic, full-rank AMFP output.
The technique is only somewhat sensitive to environmental
mismatch, but it does require an array capable of resolving
the acoustic modes~such as the SBCX VLA used in the data
examples of this paper!. Future work should examine the
effectiveness of mode-based rank reduction for tactical hori-
zontal line arrays.
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The second motion mitigation technique, explicit target
motion compensation, reduces the effect of target motion
over long observation times by using a hypothesized target
track to focus data snapshots; done accurately, target motion
compensation eliminates target motion loss~for a single tar-
get!. This technique was demonstrated on the same data ex-
ample to provide both improved output SBNR~3.3 dB bet-
ter! and improved source localization over the basic,
uncompensated AMFP result. Even greater SBNR gains are
possible with more accurate target tracks. However, one of
the open questions with this technique~and a focus for future
work! is how sensitive it is to inaccuracies in the assumed
target track and to environmental mismatch, both of which
would reduce the effectiveness of the focusing operation.
Also, it should be noted again that the technique is designed
for a single source; another interesting question is how mo-
tion compensation might be combined with interference fil-
tering to handle data with multiple sources.

The third motion mitigation technique, model-based
time-varying interference filtering, reduces the effect of in-
terference motion by placing a time-varying null on the in-
terferer; done accurately, interference filtering removes inter-
ferer sidelobes entirely and increases output SBNR
~potentially by a very large amount if the interferer is loud
relative to the target!. The model-based filtering technique

was demonstrated on a data example in which a radar track
was used to form an interference null based approximately
on the location of the interferer, resulting in unambiguous
detection of the target~not possible in the basic AMFP re-
sult! and a 3.4 dB increase in output SBNR over the basic,
unfiltered AMFP output. Again, even greater SBNR gains are
possible with more accurate interferer tracks. Greater protec-
tion of the target peak is achievable with the hybrid
interference-filtering technique~combining elements of
model-based and data-based filtering!, at the expense of less
interference nulling; hybrid filtering produced a 3 dBoutput
SBNR increase in the same example. It is important to note
that the use of external information for the model-based fil-
tering technique removes the need to associate interferers
with principal eigenvectors, which is a potential weakness of
the data-based filtering method~when the target is loud rela-
tive to the interferer!. However, accurate track and environ-
mental information is needed for model-based filtering to
succeed, and future work should investigate how sensitive
the technique is to mismatch.

All three of the techniques presented here require intel-
ligent application of external information. Mode-based rank
reduction~the least dependent of the three techniques on ex-
ternal information! requires some knowledge of the number
of significant propagating modes in the data. Target motion

FIG. 8. AMFP range-time tracks, processed with FFT windowDt516 s. Data include both a loud surface interferer and a weak acoustic source at depth, with
the interferer approximately 30 dB louder. Plots~a! and~b! are derived from range-depth ambiguity surfaces focused at depths near the surface~less than 20
m depth!. The data in~a! have not been filtered, and the ship track is clearly seen with INR at CPA of 15 dB~CPA is att538 min). Data-based filtering with
M52 eigenvalues andJ57 snapshots has been applied in~b!, and the ship energy has been effectively removed. Plots~c! and ~d! are derived from
range-depth ambiguity surfaces focused at depths near the target depth of 50 m. The data in~c! have not been filtered, and sidelobes from the surface interferer
are still visible. After applying data-based filtering as in~b!, the result in~d! removes the interferer sidelobes and retains the target track. SBNR improvement
from data-based interference filtering is up to 10 dB where the tracks cross in range. Colorbar units are dBre 1 mPa/Hz.
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compensation requires an accurate target track hypothesis.
And model-based interference filtering requires an accurate
interferer track. To varying degrees, as mentioned earlier, all
three techniques require accurate environmental information.
Future work should examine the robustness of these tech-
niques to inaccuracies in the assumed external information.31
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