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Source motion mitigation for adaptive matched field
processing®

Lisa M. Zurk,” Nigel Lee, and James Ward
MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420

(Received 30 November 2001; revised 23 December 2002; accepted 23 December 2002

Application of adaptive matched field processing to the problem of detecting quiet targets in shallow
water is complicated by source motion, both the motion of the target and the motion of discrete
interferers. Target motion causes spreading of the target peak, thereby reducing output signal power.
Interferer motion increases the dimensionality of the interference subspace, reducing adaptive
interference suppression. This paper presents three techniques that mitigate source motion problems
in adaptive matched field processing. The first involves rank reduction, which enables adaptive
weight computation over short observation intervals where motion effects are less pronounced. The
other two techniques specifically compensate for source motion. Explicit target motion
compensation reduces target motion mismatch by focusing snapshots according to a target velocity
hypothesis. And time-varying interference filtering places time-varying nulls on moving interferers
not otherwise suppressed by adaptive weights. The three techniques are applied to volumetric array
data from the Santa Barbara Channel Experiment and are shown to improve output
signal-to-background-plus-noise ratio by more than 3 dB over the standard minimum-variance,
distortionless response adaptive beam-former. Application of the techniques in some cases proves to
be the difference between detecting and not detecting the targeR0G8 Acoustical Society of
America. [DOI: 10.1121/1.156181]7

PACS numbers: 43.60.Gk, 43.30.\WiCB]

I. INTRODUCTION grades quickly in less-than-ideal conditiorsin particular,

This paper presents and applies three “motion mitiga moving sourcegboth targets and interfergrean degrade
. . . . ; ) "AMFP performan verel ially for large arrays with
tion” techniques for improving adaptive matched field pro- performance severely, especially for large arrays wit

. . . . . small beamwidths. Target motion spreads target energy
cessing detection of quiet, moving targets in shallow-water . .
environments across several beams, reducing output signal power and re-

: o . sulting in poorer target detection and localization. Interferer
Detection and localization of targets in shallow-water™ .~ . . . : .
. . . L motion increases the dimensionality of the interference sub-
environments is a challenging problem for which it is well-

known that plane-wave beamforming is inadequate becaus®2¢: reducing adaptive interference suppression and again

channel-specific acoustic multipath is not accounted Ry. resu(l;mg N potorer.;/_vea:k target detestlon.. ¢ | K
contrast, matched field processifdFP) accounts for coher- duct ne Wﬂy ho nl]ll \gate Zoutr_ce mo 'IOEtIS 0 apl2t> >; rank re-
ent acoustic multipath in shallow water by employing a2uction. which alows ‘adaptive weight computation over

propagation model to construct appropriate steefingrep- shorter observation intervals where sources move less and
lica”) vectors. Conventionalnonadaptive matched field are quasi-stationary. In much of the literature, rank reduction
processing tends to suffer from beampatterns with high sidg®" AMFP is performed in eigenvector spa‘?;é*.The draw-
lobes, which can obscure quiet target detection in the pre22cK 1o this is that eigenvectors have no inherent physical
ence of strong interfererdaptivematched field processing P@Sis, SO eigenvector-based rank reduction 'is usually
(AMFP) reduces interferer sidelobes by computing data2chieved with no regard for information provided by the
dependent weight vectors based on sample covariance matfoPagation physics. By contrast, several aut%é?sh_ave
(SCM) inversion?~* shown the utility of transforming the data into acoustic mode

It is well known, however, that AMFP performance de- SPace, with a physically based modal basis; mode-space rank
reduction to date, however, still employs eigenvectbiEhe
Sport . . ed in “3D adant ched field first motion mitigation technique presented here performs
ortions o is work were presented in “ adaptive matched field pro- _ . .
cessing for a moving source in a shallow water channel,” Proceedings anOde based rank reductlomMBRR) by selectlng the

the IEEE Oceans '99 Conference, Seattle, WA, September 1999: ifeduced-rank mode space according to physical consider-
“Evaluation of reduced-rank adaptive matched field processing algorithmsations. In addition to the general benefits of rank reduction,
for passive sonar detection in a shallow-water environment,” Proceedingshis technique provides both filtering of surface interferers
of the 33rd Asilomar Conference, Pacific Grove, CA, November 1999; in . . .

“Adaptive matched field processing for a moving target in a noisy shaIIowand broad(_:"nmg of bea_rr_1W|dths 'n_ the output beamformer,
water channel,” Proceedings of the Adaptive Sensor Array ProcessindOth of which further mitigate motion effects. MBRR does
(ASAP) Workshop, Lexington, MA, March 2000; and in “Interference require accurate computation of the acoustic modes, so it is
rejection for passive sonar using prior information with adaptive matchedsomewhat sensitive to environmental mismatch and it re-
field processing,” Fifth European Conference on Underwater Acoustics, . L .
Lyon, France, July 2000. quires a capable array; this is discussed further in Sec. IV.

PElectronic mail: zurk@Il.mit.edu For processing ovdong observation interval§in order
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to minimize adaptive blas_ lo$s various te(_:hnlqu_es seek to P(fg,t0,®)=WH(fg,t0,0)K(fo,to)W(fo.t0,0), (1)
address either target motighy compensationor interferer _
motion (by filtering). In the former category, the concept of wherew(fo,to,®) is the N1 weight vector based on the
matched-field trackin"**has been proposed to mitigate tar- corresponding replica vectorw(fq,t0,®), and where
get motion effects by adjusting the matched field replica vecK(fq,tg) is theNX N sample covariance matrix discussed in
tors according to a target velocity hypothesis; howeverthe following. For conventional matched field processing
matched field tracking can only produce nonadaptive outputCMFP),** the weights in Eq(1) are normalized replica vec-
By contrast, the second motion mitigation technique prediors:
sented here performs explicit target motion compensation . -
(ETMC) by focusing thedata (snapshots not the replicas, We(fo.t0,0)=0(fo.to, ®)/N, @
according to the target velocity hypothesis. This allows comwhere the replica vector is normalized such that
putation of target-motion-compensatadaptiveoutput. The |v(fo.t0,0)|?=N, so that the CMFP weight vecter,(-) in
concept of focusing snapshots is found in broadband sourqeq. (2) achieves unity gain on target.
localization problems?*® but there the focusing is done in Adaptive matched field processing computes a weight
frequency(for wideband but stationary sourgesot in space  vector that is dependent on the sample covariance matrix as
(as done in MFT and ETMC for narrowband but moving well as the replica vector. The AMFP results in this paper are
sources based on the high-resolution  minimum-variance,
To address the interference motion problem over longjistortionless-responséMVDR) filter.>® The diagonally

observation times, data-based, time-varying interference filpaded MVDR (or MVDR-DL) weight vector is given by
tering has been proposed previously in other contéxfs .

and has recently been proposed for matched field . (K(fo,to)+a3(-)) ()

pro.cessing}?‘21 The idea is to filter moving interferers, Wl )= 5P (R(forto)+2(0) ()" 3)
which are not effectively nulled by normal adaptive process-

ing, on a snapshot-by-snapshot basis, under the assumptiwfiere the MVDR weight vectomw,,(-)=Wy(fo,to,0) is
that the principal eigenvectors for each snapshot represehaised on the replica vectos(-)=v(f,ty,®) and a
the interferers to be filtered. This technique fails, howeverposition-dependent diagonal load level crﬁ(-)
whenever the target itself is loud relative to the interferers= aﬁ(fo,to,G)). The load level is chosen to be large enough
The third motion mitigation technique presented here perto satisfy a white noise gain constrift?WVNGC)

forms modetbased, time-varying interference filtering

(MTIF) that makes use of external track information to place vT/,':']( W) < E (4)
location-based nulls on interferers. Note that MTIF does not

require association of the interferer with eigenvectors of th%vhere the constant is a “relaxation” parameter, defined as

Sa:ca; however, it dozs.reg]wre accqtr_ateaquelmg c;f thg "Nhe factor by which the weight norm in E(}) is allowed to
erierence space and 1S thus sensi '.Vd pvironment and - o ceed the “white noise gain” of N [which is the value of
track mismatch. A hybrid algorithm is also presented that -

. : . . Wm(‘)Wm(') with no loading when R(fo,to)zl]. The
combines mformatlon from both the model-based and data\NNGC load level that just satisfies E@) can be efficiently
based techniques.

All three of the proposed techniques are demonstratefuolgnéj dthr:g:jegh&gra;lr:/;Sﬁg;%r;lnﬁg,m:hw;\s/éhs VT:ithr?tdvee?t-m
on vertical line array(VLA) data obtained from the Santa ployec ' 9 y gt g
Barbara Channel ExperimefBBCX) 22 Section Il presents minimizes the effects of poorly estimated components of the
the basic AMEP framework used in this work. Section 11l SCM K(fo.to) (due to insufficient snapshots, for example

describes in detail the three techniques of improving AMFP?S well as thg effects of target self-nullmg ‘?'UE to mlsmatgh.
performance on moving sourcéseduced-rank mode space M_FP weights are computed over a f|n|tg set of spaﬂal
processing, explicit target motion compensation, and timegoordlnates@, and MFP results are typically displayed via a

varying interference filtering Section IV shows the results spatial ambiguity surfacemeasu_rlng MFP output power
of applying the techniques to SBCX data and the improve[from Eq. (1_) ahovd versus spatial variablesange, depth,
ment they provide over standard AMFP output and over exandfor be_armg . .
isting motion mitigation techniques. Finally, Sec. V summa- ~ In th!s Paper, _theN><N samp!e covqnance matrix
rizes the conclusions of this work and suggests some are&s(fo:to) in Eq. (3) is computed using a time average of

for further work. snapshots taken from FFT data at the frequency of interest:
L/2—-1

Il. ADAPTIVE MATCHED FIELD PROCESSING K(fot)=— > X(fo,to+ADX(fo,to+1ADY, (5)

FRAMEWORK Li==Lr

This section presents the basic AMFP framework usedvhere X(f,t) denotes theNxX1 snapshot computed at fre-
throughout the paper. quencyf and timet, f, is the center frequency, is the

Defining ®=(r,¢,z) as the three-dimensional spatial “center time,” andL is the number of snapshots. With non-
position in range, azimuth, and depth, the MFP output for aroverlapping FFT windows, the estimate in E) requires
N-element array at frequendy, time t,, and direction® an observation period of =LAt for each covariance com-
can be written as putation, whereAt is the FFT window length.
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The baseline AMFP output for this paper is the powerrepresents the beam offset between the target signﬁtluie
output in Eq.(1) computed using the MVDR-DL weight vec- time t; and the MFP weight vectos"(®) for the assumed
tor in Eq.(3) and the sample covariance matrix in £8). I target position®. For a stationary target, assuming no other
all subsequent sections of this paper, the dependenoe of sources of mismatch, C%(§t|:w(®)):1 andML(®)=0 dB.

w, K, andP on the center frequendy, and center timéo IS or CMFP, expressiofiL1) reduces to cdéx,.v(0)), because
suppressed and assumed implicitly, except where needed fﬁqre weight vectom,(®) is a scalar multiple of the replica

clarity. vectorv(0). ML(®) quantifies an upper bound to signal-
I1l. AMFP MOTION MITIGATION to-background-plus-noise-ratitGBNR) loss due to target
o _ motion, specifically the “signal” portion of SBNR.SBNR

A. Quantifying motion effects for MFP loss due to target motion may be less tHdm () if, to

The effect of source motion on MFP detection is bestbegin with, the weight vecton(®) is mismatched with the
understood by considering the intrinsic cell size of a matche@ssumedstationary target at positior®.] This loss can be
field processoftequivalent to the beamwidth of a plane wave estimated by using Eq$6) and (7) to calculate the number
beamformer. The width of an MFP “cell” in a given spatial Of cells transited by the target during the observation fime
dimension(range, depth, or bearings defined as the dis- Which may then be used to bound the allowable radial veloc-
tance between the half-power points of the CMFP beampaity. For example, in the SBCX environment, the 3 dB range
tern in that dimension, where the gain of the beampatter i§€ll size in Eq.(6) is approximately 1R. If a source in this
one half(3 dB below its maximum value. MFP achieves €nvironment moves in range with a radial velocity greater
relatively fine resolution due to the deterministic phasing ofthan 10./T, its motion loss in Eq(10) is greater than 3 dB.
acoustic modes. Rough expressions of the range and depth The effect ofinterferer motion over a given observation
cell sizes can be obtained by considering the span of horitime T is to spread interferer energy across the eigenvalue
zontal and vertical wavenumbers of the propagating modespectrum of the sample covariance matrix. The result of this
Letting ky denote the horizontal wavenumber ahi}\‘,, the is that moving interferers consume adaptive degrees of free-
vertical wavenumber of theéith mode (representing the dom (DOF) and limit the adaptive nulling capability of the
highest propagating mode with significant enargpe fol- AMFP weight vector(3). The number of adaptive DOF con-
lowing are approximate expressions for the MFP range ang§iMed by a moving interferer is roughly equivalent to the

depth cell sizeC andC,, respectively*242° number of resc_:lution cellégivqn agqin by Eqs(6) anQ(?).
abovd that the interferer transits during the observation time.

21
Cr=f (6) _ o .
1~ Km B. Motion mitigation by mode-based rank reduction
” (MBRR)
CZ:%’ ™ One philosophy for mitigating source motion is to com-

. . pute AMFP weights over shorter observation intervals where
wherek, is the wavenumber of the first modie mode that  g,rces—hoth target and interferers—move less and are

propagates nearly horizontallyrhe MFP bearing cell size is ,as;.stationary, thus limiting motion loss. Shorter observa-
well-approximated by th.e corresponding  expressions  iRign intervals, however, mean fewer data snapshots for SCM
plane wave beamforming: computation, and it is well known that MVDR power output

C,~\/L (near broadside (8) s biased low if not enough snapshots are availéBfe.’
_ Rank reduction is one method of decreasing the number of
Cyx VAL  (near endfirg, (9 snapshots neede@here is a limit, however, as to how short

wherelL is the horizontal array extent andis the acoustic the observation tim& can be; this limit is determined by the
wavelength. Note that a straight VLA has no horizontal ex-number of snapshots needed to estimate all discrete sources
tent, but a tilted VLA has a small horizontal extent. in the data, including the targgt. _

The effect oftarget motion over a given observation Rank reduction for AMFP involves computing a
time T is to disperse the energy of the target in the MEpreduced-rank approximation of the sample covariance matrix
ambiguity surface across several MFP cells. One can defin in EQ. (5). Most commonly, this is done using the eigen-
target “motion loss” as the loss in peak target power due tov€ctor (EV) decomposition oK, given by

target motion, with the loss computed relative to the power N
of a stationary target. If the target is thought to be at position K=UXU"= E aiZGiGiH , (12
O but in reality transits through® over time, the motion loss =1
(in dB) as a function 0 is given by where U=[U,U,---Uy] is an orthogonal matrix whose col-
1L umns are comprised of the eigenvectarsof K and X
ML(©)=—10log — > co(X, ,W(0))|, (100 =diag(%,05....0%) is a diagonal matrix whose diagonal ele-
L= ! ments are comprised of the eigenvaluésof K. Transfor-
where mation from phone spadsnapshot) to EV space is rep-
|VVH(®)>Zt,|2 resented asX,=T.X, where the NXN eigenvector

(11)  transformation matrix is given byl .=U". Eigenvector-

C0§()_()t|=\xl(q)))é Y
[w( space rank reduction is then achieved by retaiftroyt of N

2w |2
)%y
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elements ok, , which is equivalent to applying an eigenvec- eikir
tor filter ®¢:Xg = ®X.=®DTeX, whered, is a diagonal fi(r,z)z\lfi(z)\/—_.
matrix with 1's (corresponding to retained eigenvecjaaad kir
0's (corresponding to filtered eigenvectprss its diagonal To account for array tilt, the rangein Eg. (16) may be
entries. replaced by an “adjusted” range+ Ar, with the element-
The drawback to EV-based rank reduction is that eigendependent offseAr varying for each hydrophoné.e., for
vectors have no inherent physical basis, so the rank reductiosach receiver depth.
is usually achieved with no regard for information provided In vector notation, Eq(14) may be rewritten as
by the propagation physics. The most common example of . -
eigenvector-based rank reduction is to retain the eigenvectors p=(FnOI)a, (17
corresponding to the largest eigenvalues, which is essentiallyhereF,,, is the NX M modal decomposition matrix whose
what is done in the well-known dominant mode rejectionith column is the attenuated mode functibir,z) in Eq.
(DMR) algorithm® Other techniques exist for EV-based rank (16), sampled at the depths of the array hydrophones; where
reduction in which the criterion for retaining eigenvectors is® stands for element-by-element multiplication; whEris a
based at least in part on correlation with the replica vectomatrix of phase terms that takes into account the effects of
look direction; examples of this include the signal coherencerray tilt; and wherea is the M X 1 vector of mode coeffi-
criteriorf and the direct-form-cross-spectral metric, whichcients «;. Equivalently, the transformation of ahx 1
was proposed and examined by the autf®fS.However, “phone-space” data snapshot to an Mx1 mode-space
the latter techniques require computation of a differentsnapshok,, can be written as
reduced-rank EV subspace with each look direction and are - -
; . Xm= T X, (18)
thus computationally expensive.
AMFP rank reduction that is both physically based andwhere theT ,, is theM X N mode transformation matrix com-
computationally simple is made possible by transformatiorputed as
of both data and replicas into acoustic mode space. The B H 1 H
acoustic mode functions are the mathematical descriptions of T ={(FaOT) " (FnOT)} (Fn®OT)". (19
the physical phenomena assumed by normal mode propag@he transformation matrifX,, in Eq. (19) is essentially that
tion models, and the number ofdependenmode functions proposed in previous papers on mode-space RMERhe
is limited to the number of propagating modes. Further, for a@nverse in Eq(19) can be unstable, especiallyM >N and
fully spanning, upright VLA, the propagating acoustic modeFﬁFm is less than full rank; in this case, small or zero eigen-
functions form an approximately orthonormal bagmote, values ofFﬂFm may be dropped in order to compute the
however, that vertical aperture is essential to the formation ofpseudginverset!
an orthonormal modal bagis The first of three motion mitigation techniques proposed
Modal decomposition makes use of the normal modehere is mode-based rank reductidBRR). This is achieved
expansion of the acoustic pressure figlft,z) at receiver by retainingP out of M elements oK, in Eq. (18), which is
ranger and depthz due to a source at deptty, which is  equivalent to applying a mode filtab

(16)

approximatedin the far field by imRZ‘Dmfm:‘I’mei, 20
. M ik . . . . .
J i el where @, is a diagonal matrix with 1'§corresponding to
- jml4 ) ) - m
P2 p(Zs) \/ge iZl Viz)¥i(2) Jer 13 retained modasand 0’s(corresponding to filtered modeas

its diagonal entries. For example,,=diag(1,...,1,0,...,0) re-
whereW,(-) are the acoustic mode functions(zy) is the tains the first few(lower-ordey modes and filters the rest.
water density at the source depkh,is the horizontal wave- MBRR can succeed where EV-based techniques do not
number associated with tiign mode, andvl is the number of because the mode functions have physical structure that can
“propagating” modes for whictk; does not have significant b€ exploited to separate submerged targets and surface inter-

imaginary part. The expression in E4:3) may be rewritten ferers. (Successful eigenvector separation of nonorthogonal
as sources requires different source powers, which will not al-

ways be the case. Equal-power nonorthogonal sources will
M not be separated well using eigenvectoEor example, be-
p(r,z)=2 ai(z5)fi(r,z), (14)  cause only higher-order modes are strongly excited at the
=1 water surface and because lower-order modes often contain a
significant portion of the energy for sources at depth, one
potentially effective MBRR technique is to retain only the
lower-order modesgand to filter the higher-order mode ©f
i course, the success of mode-based surface-submerged source
PN _ separation may vary with environment.
ai(zs)= Wi(z,), (15 . . . . .
p(zs) N In addition to allowing adaptive processing with fewer
snapshots, MBRR thus has the added benefit of filtering sur-
and where the function§ (r,z) are the attenuated acoustic face energy while not suffering significant signal gain degra-
mode functions: dation for targets at depth. Further, filtering of the higher-

where the constants;(z;) may be thought of as coefficients
in the modal expansion,

2722 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003 Zurk et al.: Adaptive matched field processing
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order modes has the effect of increasing the intrinsic MFReeping the datdsnapshots and SCMixed. Because the
range cell size by decreasing the denominator of ®Gy. adaptive weight computation in Eq3) requires multiple
Thus, AMFP motion effects are further mitigated, as bothsnapshots for a given replica vector, target motion compen-
target and interferers transit fewer mode-space MFP cellsation for adaptive MFP requires adjustment of the data
than phone-space MFP cells, resulting in less target motiowhile keeping the replica vectors fixed. The latter is what is
loss and fewer interferer DOF. It is also true, however, thadone in ETMC. Another significant difference is computa-
the increased cell size results in decreased source localizatidional: MFT requires compensation of every replica vector

accuracy. with each snapshot in time, whereas ETMC requires only the

adjustment of the snapshot itself. Again, it is important to
C. Motion mitigation by explicit target motion note that both techniques can only compensate for the mo-
compensation (ETMC) tion of a single source.

A second philosophy for mitigating source motion is to _ o _ .
compute AMFP weights over long observation intervals D- Motion mitigation by model-based, time-varying
but to compensate explicity for source motion. Processindteference filtering  (MTIF)
over long observation intervals, if done properly, increases  The last of three motion mitigation techniques proposed
the accuracy of the adaptive weight computation and inhere is model-based, time-varying interference filtering
creases incoherent integration gain. Over long observatioftMTIF), which combats interference motion loss over long
intervals, however, both target and interferer motion have t@bservation intervals. Interference filtering involves spatial
be accounted for. filtering of an interferer, in which the data is projected onto a
The second of three motion mitigation techniques pro-subspace that is orthogonal to thestimatedl interference
posed here is explicit target motion compensati@MC),  subspace. Because interferers move, the rank of the interfer-
which combats target motion loss over long observation inence subspace estimate over the entire observation interval
tervals. This is accomplished by adjusting the amplitude andan be quite large, and filtering of the data by this “long-
phase across each data snapst{ét,t;) in Eq. (5) so that time” interference subspace estimate may result in undesir-
the target appears stationary. It is important to note thaéble reduction of the target peak. The solution to this prob-
ETMC (as well as other target motion compensation techiem is to apply atime-varyingspatial filter to the data that
niques compensates for the motion of single source; it  removes arinstantaneousestimate of the interference sub-
cannot effectively compensate for different motions of mul-spaceat each snapshpthe instantaneous subspace is likely
tiple sources. The amplitude/phase adjustment is determinddw-rank because it is estimated over a very short observa-
by applying a velocity hypothesis to the target to predict thetion time.
target position at each timg, and then by comparing the The spatial interference filter is the orthogonal projec-
target replica vector at each positi@mputed via a propa- tion complement — ®(dHd) 1" of the interference sub-
gation model with the replica vector at a chosen, “focus” space estimat®. This filter is applied to each snapshot, and
position. Assuming uncorrelated sensor data, the adjustmettie filtered snapshot is then target-motion-compensated as
for the kth sensor at timé, is given by detailed earlier. The resulting filtered and compensated snap-
\If|(k)=e‘jA"5l(k)Aa|(k), 21) s_hot is then used as in E(p) to compute the sample cova-
riance matrixk.
whereA ¢,(k) is the phase difference between the response  Clearly, the most important aspect of the interference
of the kth hydrophone for the predicted target position atfiltering technique is estimating the interference subspace.
time t; and the response of theh hydrophone for the target Data-based estimation assumes that the interferer is the
focus position; and wher& « (k) is the corresponding target strongest source in the data and is captured by the principal
amplitude ratio. Computation of the correct compensationgigenvectois) of the “instantaneous covariance matrix”
A ¢ andAq thus requires both an accurate target velocitycomputed for each snapshot. By contrast, MTIF makes use
hypothesis and accurate propagation modeling. of external track information for the interferer to build a
Once each snapshot has been “compensated,” the resulbcation-based interference subspace estimate. Hybrid esti-
ing covariance matrix contains the signature of a target thahation combines information from both. The three methods
has been “focused” to the focus point. The focus point is anyare detailed in the following.
position along the target tradkluring the observation inter-
val) to which motion will be compensated; a single focus
point is chosen for a given observation interval Perfect The data-based method of interference filterisgnilar
compensation produces output equivalent to that for a stao what Cox terms “multi-rate adaptatiot) assumes that
tionary target at the focus point; this theoretically recovershe interference is strong and can be estimated with a small
whatever target motion loss has occurred during the obserumber of snapshot} fewer than the total number of snap-
vation interval. In this paper, the predicted position of theshotsL. At each timet;, an instantaneous covariance matrix
target in themiddleof the observation period is chosen as theK . is computed with] snapshot¢centered on th&h snap-

1. Data-based interference filtering

focus point. shob:
It is important to distinguish ETMC with matched field L 4+3/2
tracking(MFT) algorithms*?*3which adjust the replica vec- RKogm S M 22
- . . . . inst™ XJXj : ( )
tors v according to the target velocity hypothesis, while j=1=3/2
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The M principal eigenvector§’ of this instantaneous cova- uses® 4 except where the interference model is deemed
riance matrix are then used to estimdtgthe instantaneous inaccuratelas measured by correlation with.,,).

interference subspaceb gy =[U;Uy -ty ], where {G;},

are the principal eigenvectors ;... The success of the

data-based method relies on the assumption that the interfet: RESULTS

ence and target subspaces are distinct in eigenvector space; |, this section, the three AMFP motion mitigation tech-
specifically, it is assumed that that interferer comprises th‘?liques proposed earlier are applied to data from the Santa
only strong source in the data. Problems arise if the target ig5rpara Channel Experime(BBCX). Baseline AMFP per-

loud relative to the interfergin which case the target will be  ¢5rmance is computed using the MVDR-DL weight vector in
part of the interference estimate and will itself be filtered Eq. (3).

The data-based method also assumes that the interferer can Results are presented in the form of MFP ambiguity sur-

be estimated well withJ snapshots; problems arise if the t50e5(or derivatives, with the implicit assumption that de-
interferer still moves significantly during the computation of 1oction is done in the spatial domain. Note that because of

Eq. (22). the redundancy in MFP steering vectors, it is inherently dif-
ficult to perform detection on MFP ambiguity surfaces. Per-
2. Model-based interference filtering formance is quantified by output SBNRSsignal-to-

Model-based, time-varying interference filtering background-and-noise rajjovhich for an ambiguity surface

(MTIF)™-2L constructs its spatial filter assuming that someiS calculated as the ration dB) of the output signal peak
prior knowledge of the interferer’s position is available. An relative to the level of the backgrouridonsisting of output
example might be the tracking of a merchant ship by arCiSe, interference, and possibly strong source sidelobes
airborne asset in the region. In order to estimate the interferl Ne background level is defined as the 25th percentile of the
ence subspace, a propagation model is used to determine tREIered output powers on the ambiguity surface. For strong
acoustic signaturdreplica vectoy for an interferer at the discrete sources, the 25th percentile measure may reflect
given position. To protect against inaccuracies in the interSource sidelobes, which are not traditionally considered
ferer position, the interference subspace is computed tging Packground. However, it should be pointed out that for de-
replica vectors spanning a spatial region centered at the if€ction in the spatial domain, discrete interferer sidelobes
stantaneous position estimate of the interferdryyq  Oft€N comprise the *background,” especially for data taken
=[0(0)0(0,)--0(Oy_1)], Where O,,...0y_, repre- N heavy-shipping-density environments where mterfere;rs
sent neighboring coordinates in range and deptid possi- '€ constantly present. Thus, a processor that lowers side-
bly bearing to the center coordinat®,. The amount of l0bes not only improves localization but also improves de-
range and depth “padding” that is necessary is determined€ction in the spatial domain, and this is reflected in both the
by the accuracy of the prior knowledgthe greater the un- 25th percentile measure and in the resulting SBNR.
certainty in the position of the interferer, the largérshould The SBCX experiment was conducted in April 1998 in
be); any padding increases the size of the interference suii® 200-m-deep littoral waters of the Santa Barbara
space estimate. Padding is also necessary when environmenP@nnef” One of the passive acoustic sensors deployed dur-
tal information is uncertain, in which case more replica vec-Nd the experiment was a 150-hydrophone volumetric array
tors are needed to describe a given interferer. Clearly, thi§alled the full-field processingFFP) array. The FFP array
method is dependent on accurate external information, but fonsisted of five 30-phone VLAs arranged in a pentagonal

does not make any assumptions about interferer versus targg;gnfiguration. The combination of vertical and horizontal ap-
strength(in contrast to the data-based method erture allowed full, three-dimensional localization in range,

depth, and bearing.

One of the acoustic sources deployed during SBCX was
a J15-3 transducer that was towed by a research vessel, the

The hybrid method of interference filtering combines in- Acoustic Explorer(AX). The J15-3 was used to generate a
formation from both the data-based and model-based agomb sequence of 12 tones at approximately 159 dB re 1
proaches. To accomplish this, the model-based replica vegPa source level. The AX contained an onboard GPS re-
tors {Umtm—1 that span the presumed interferer position areceiver for platform position information, and a nearby radar
projected onto the data-based interference subspace spanngdtion produced track information for surface vessels in the
by the principal eigenvectors df;,;. The hybrid interfer- SBCX are&? The SBCX site bathymetry is shown in Fig. 1.
ence subspace is then formed by selecting only those replid@eplica vectors were computed by using KRaAKEN normal
vectors with significant projection onto the datd;;  mode progrart? to generate mode functions and wavenum-
={Umh 17:'1<I>data> v, where y is an adjustable parameter bers for water depths ranging from 50 to 260 m. A two-
between 0 and 1 representing the minimum acceptable pralimensional adiabatic approximation was then applied to de-
jection. Higher values o produce more conservative inter- rive range-dependentreplica vectors (with the range
ference subspace estimates; in the examples bele®.6, dependence due to varying site bathymgethe replicas
requiring fairly (but not extremelyhigh correlation between were computed using a geoacoustic model that consisted of
replicas in the model subspace and the data. In general, theo sediment layers overlaying an acoustic half-space; the
greater one’s confidence in the modeérsus the dajathe  parameters used for the sediment were obtained from previ-
lower y should be. Note that the hybrid method essentiallyous investigation in this area and are given in Table I. The

3. Hybrid interference filtering
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FIG. 1. SBCX site bathymetry. Dashed lines indicate shipping lanes. The
map origin is the FFP array, indicated by the red asterisk. The California
coastline is in the northeast corner of the map. 180 - T
200 | | |
sound speed profiléSVP) for the water column was mea- 1485 1490 1495 1500 1505

sured experimentally in several regions throughout the dura- Sound Speed (m/s)

tion of the experiment; the repllcas were CompUted using arI:—lIG. 2. Typical shallow-water, downward-refracting sound speed profile

average SVP shown in Fig. 2 _ (SSP used in allkraken computations and obtained from averaging mul-
Figure 3 shows processing of data from a single VLAtiple measurements.

(N=230phones) for 300 s at 235 Hz, one of the comb fre-
guencies. Time-averaged covariance estimation was used
with At=1s, resulting in 300 snapshots over 300 s. CMFRImode-based rank reductiprFirst, Figs. 4a) and (b) show
and AMFP output were computed using the CMFP weighteigenvector-based and mode-based AMFP rank reduction, re-
vector in Eq.(2) and the AMFP weight vector in Eq3),  spectively, for the full 300 s processed in Fig. 3. The
respectively, and the results are shown in Figa) and (b). eigenvector-based rank reduction in Figa)ds achieved us-
Note that the 90.4 dB peak of the CMFP surface, according’g dominant mode rejectiofDMR) with rank 10(compared
to the sonar equation, equals SL-TL-MM, with source levelto the array size of 30 For the long observation time, snap-
SL=159 dB, transmission loss Tk-60 dB for a 2 km  shots are plentifu(300 snapshots fakt=1s FFT window,
source, and mismatch MM 8.4 dB due to both motion and SO rank reduction is not necessary for computational pur-
steering vector mismatch. The AMFP peak of 87.4 dB isposes. Indeed, as has been observed previously by the
lower because of greater mismatch. The CMFP output in Figauthors,?® reduced-rank DMR displays poorer sidelobe re-
3(a) displays the characteristically high sidelobes of non-jection than the full-rank MVDR-DL. The result, in this case,
adaptive MFP processing; this is manifested by the measured that the background level increases by 3.1 dB over the
background level of 84 dB, resulting in an output SBNR of full-rank MVDR-DL to 79.4 dB, and the output SBNR de-
6.4 dB. The AMFP output in Fig.(8) displays significantly ~creases by 3 dB to 8.1 dB. For the long observation time,
lower sidelobes than CMFP; the background level is 76.3 dBhen, there is no reason to perform eigenvector-based rank
and the SBNR is 11.1 dB. However, the motion of the targefeduction.
over 300 s(about 780 m in rangehas resulted in peak dis- By contrast, MBRR is highly effective over the long
persion; the motion loss from E¢L0) is ~7.3 dB(vs 5.8 dB ~ observation time because of wider cell-widths in the
for CMFP). Motion loss is greater for AMFP than for CMFP reduced-rank mode space. Figurgh)4 shows MBRR
because of the higher resolution of the adaptive weight vecachieved by retaining the ten lowest-order modes. The range
tors. resolution for the reduced-rank mode result—estimated from
Figure 4 demonstrates motion mitigation via MBRR Ed. (6), but withky, replaced byp, the highest propagating
mode in the reduced-rank subspacés approximately

TABLE |. Parameters for geoacoustic model used in SBCX datatepth 346 m, compared to the 68 m resolution of the full-rank

from  surface; c.=compressional  sound  speed; p=density;  result. The result of this wider cell-width is a higher target

ac=compressional wave attenuation. peak(90.3 dB compared to 87.4 dB in the full-rank result
2(m) oo (mls) » (glord) e (dBIV) and a 4.4 dB increase in output SBNR5.5 to 11.1 dB,

because the target has transited fewer MFP cells over the

209 1607 1.95 0.37 300 s observation time and there is correspondingly less mo-
309 1702 1.95 0.37 tion loss[5.2 dB compared to 7.3 dB for the full-rank case,
309 1862 1.98 0.035 using Eq.(10)]. Note that basic sonar equation computations
609 2374 1.98 0.035 (assuming that transmission loss follows a cylindrical
609 2374 203 0.04 spreading laydictate thaa 3 dBincrease in output SBNR

J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003

results in a doubling of detection range; thus, the 4.4 dB
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FIG. 3. Ambiguity surfaces from VLA data\= 30 phones) for a 235 Hz tone processed with an observation tiffie800 s and FFT windowit=1 s. The
range of the AX(according to GPBwas 1.67—2.45 km from the array. Nonadaptive CMFP outp(a)idisplays characteristically high sidelobes, with output
SBNR 6.4 dB. Adaptive MVDR-DL output irib) shows lower sidelobes but a dispersed peak due to target motion; output SBNR..i5 dB. Estimated
target motion loss is 7.3 dB due to the 0.78 km motion of the target in range during the 300 s observation time. Colorbar units hreRiZHz.

increase in output SBNR is significant. Figuréyvividly AMFP output over 11 11 snapshojsof data within the
illustrates, then, the motion mitigation over long observationoriginal 300 s observation period; during these 11 s, the tar-
times provided by adaptive MBRR. get transited less than one full range cell-widtesulting in
The more typical application of rank reduction however, little motion loss. Eigenvector-based rank reduction using
involves very short time intervals over which source motionrank-10 DMR in Fig. 4c) performs poorly because there are
is less pronounced. Figuresc# and (d) show reduced-rank too few snapshots to effectively reject all sidelobes in eigen-
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FIG. 4. Reduced-rank AMFP surfaces for the same data as in Fig. &d(b) Rank-10 DMR and Rank-10 mode space AMFPTer 300 s of data. Rank-10

DMR in (a), as expected, has higher sidelobes than full-rank MVDR-DL in Filg), 3esulting in lower output SBNR of 8.1 dB. Rank-10 mode spadd)n

is less sensitive to motiofbecause of wider MFP cells in reduced mode spaesulting in less motion l0og$.2 dB vs 7.3 dB for the full-rank casea higher

signal peak(almost 3 dB better than full-rank MVDRand output SBNR of 15.5 dBc) and (d) Rank-10 DMR and Rank-10 mode space AMFP Tor

=11 s(11 snapshojsof data. Rank-10 DMR ir(c) is ineffective because the reduced-dimension eigenvalue spectrum no longer allows adequate sidelobe
nulling; the output SBNR is 16.9 dB, but there are multiple peaks within 3 dB of the target peak. Rank-10 mode $gace lirghly effective because
significant filtering occurs during modal rank reduction; the background level drops to 67 dB, resulting in an output SBNR of 22.4 dB. ColorbadBnits are
re 1 uPa/Hz.
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vector space. Even though the measured output SBNR is

high (16.9 dB, there are several “false” peaks of nearly the

same power as the main target peak, so the target has not

been unambiguously detected. By contrast, the rank-10 50
mode-space resu(ten lowest-order modes retained Fig.

4(d) displays excellent sidelobe rejection and an unambigu-
ous target peakoutput SBNR~22.4 dB. The reason for
this is twofold: first, the ten lowest-order modes represent all
the significant propagating modes at the 235 Hz frequency,
so rank-10 AMFP output is still meaningful in mode space; 150
second, the wider cell-widths in the reduced-rank mode

space effectively “group” neighboring ambiguity peaks into

larger peaks regions. Figuréd} illustrates that when com- 200
puting reduced-rank AMFP output over very short observa- L nanﬁe{km}
tion intervals to mitigate motion, mode space provides a

physically meaningful and intelligent way to perform the FIG. 5. Target-motion-compensated AMFP output for the same data as in
rank reduction Fig. 3, also processed for observation tifie 300 s. The plot shows the

. . . . signal focus that results when motion compensation is applied using the
Over both short and long observation times, the distingps track with a focus range of 2.0 km from the array. Target motion

guishing feature for adaptive MBRR is its wider cell widths. compensation adjusts the amplitude and phase of each snapshot according to
This can be advantageous, since the coarser MFP cells régo’ifvoer"uﬁifﬂtyeﬂiﬁféﬂeﬁ@b Lh%igﬂf:npi?'?tg]9r1éi£‘ljﬁa;1“p;fe;ntgu?7ﬁ
duce the number of “beams” that need to be formed to covelgBNR of 10 Colorbar unite a6 dB 1 ,?LP&/’HZ. g P
a given search region adequately. However, the coarser MFP
cells also result in poorer localization, making it more likely
for interferers to reside within one cell width of the target which is entirely accurate for the SBCX data. Thus, it can be
and thus appear in the same peak region as the target. Theasonably stated that mode-space processing is only some-
latter is not as great a concern as it may appear, given thehat sensitive to environmental mismatch. Computing the
potential with MFP for range, deptand bearing discrimina- modal decomposition accurately also requires an array ca-
tion. pable of resolving the modes; the SBCX VLA, which is al-

It is important to note that the success of mode-basednost fully spanning, is an example of the latter.
processing requires enough environmental information to In contrast to the motion mitigation provided by
compute the modal decomposition in Ed.4) accurately. reduced-rank mode-based processing, ET(dxplicit target
The SBCX environment was fairly well characterized, butmotion compensationas detailed in Sec. Il C uses target
not extraordinarily so, as the mode functions in the abovetrack hypotheses to correct for target motion explicitly. Fig-
discussed results were computed using historical geoacoustice 5 shows ETMC AMFP output over the 300 s observation
parametergTable ) and an average SV{Fig. 2), neither of  interval processed in Fig. 3. The result is a focused target

Depth (m)
=
[=]

-5 FIG. 6. Target motion compensation
in bearing, applied to data from mul-
tiple VLAs. Results are range-bearing
ambiguity surfaces for 1-3 VLAs pro-

10 cessed coherently on a 235 Hz tone

over observation tim& =120 s, using

FFT windowAt=1 s. The single VLA

result in(a) shows coarse bearing lo-

calization due to the tilt of the VLA.

Coherent processing of two VLAs

should give additional azimuth resolu-

tion due to the 130 m horizontal base-
line, but the uncompensated result in

(b) is equivalent to incoherent array

averaging because of motion decorre-

lation effects. Motion-compensated re-
sults for two VLAs (c) and three

VLAs (d) give the expected azimuthal

resolution and full, coherent array

180
(b} Bearing (degrees)

=15

-5

-10 gain.
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FIG. 7. Time-varying interference filtering of AMFP output at 94 (ime-averaged covariance matrix=200 s,At=1 s). The AX was 5.05-5.75 km from

the array at the same time a surface ship was traveling in the eastbound shippifigan&m from the array with estimated interference level 163 d&)

The unfiltered result with output SBNR 7.8 dB; however, the target is not unambiguously detected because of interferer gildlbbagsult after motion
compensation onlyoutput SBNR remains 7.8 dB but the target is localjzéd) Data-based filtering followed by motion compensation, with the principal
eigenvector used to estimate the instantaneous interference subspace; the resulting output SBNR is 6.8 dB, a decrease from the unfiltered result due t
undesired target filterindd) Data-based filtering with two principal eigenvectors; the resulting output SBNR is again 6.8 dB, but altogether too much of the
target has been filtergthrget peak 12.2 dB below the unfiltered result—note the lower colpreaiModel-based filtering followed by motion compensation,

with M =7 replica vectors used to estimate the instantaneous interference subspace; the resulting output SBNR i€ )1HybdB filtering, withM =7 and

y=0.6; the resulting output SBNR is 10.8 dB. Both model-based and hybrid filters produce good results for this scenario because the interfereagposition w
approximately knowr({from a radar trackand the acoustic propagation model was accurate. Colorbar units axeIldgPa/Hz.

peak(91.1 dB, compared to 87.4 dB for the uncompensatedbearing AMFP output is shown for data from multiple VLAs
AMFP resuly and output SBNR improvement of 3.3 dB (recall that the FFP array in SBCX contained five VDAs
(11.1 to 14.4 dB. Note that in this particular example, the processed at 235 Hz ovdr=120s, using aAt=1s FFT
true target track was approximately known, so the output isvindow. For a single VLA[Fig. 6(@)], the array tilt of the
close to a best-case result. Further research is needed to dd-A (approximately 15f allows coarse azimuthal localiza-
termine the sensitivity of the motion compensation algorithmtion. The addition of a second VLAFig. 6(b)] should pro-
to target track accuracy. vide finer resolution and coherent array gain, but target
A second example of ETMC, this time in the bearing motion—the differential Doppler across the two VLAs—
dimension, is illustrated in Fig. 6. In this example, range-introduces a time-varying phase that prevents any coherent
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processing of the two VLASs; the result is then an incoherenthan the model-based outpuThe output SBNR of 10.8 dB
sum of single-VLA outputgwith the same target peak re- for the hybrid output is still 3 dB higher than that for the
gion). Note that the motion compensation expression in Equnfiltered output in Fig. (8. This example is a case where
(21) contains a phase correction that accounts for the modhe model-basedand hybrid interference filtering tech-
ally dependent Doppler signatures. After correcting for thisniques perform wellbecause of accurate interferer track in-
phase, the compensated surface for two VUAS. 6(c)]  formation but the data-based filtering technique performs
shows the grating pattern one would expect from a sparspoorly (because the target is loud relative to the interferer
horizontal aperture. Processing of three VLAs with motion There are cases, however, when the interferer track is
compensatioffiFig. 6(d)] results in a single strong peak with unknown, so data-based interference filtering is the only op-
array gain 10log,3~5 dB higher than the single-VLA re- tion; the following example is one such case. Figure 8 shows
sult. It is important to note once again that ETMC is de-range-time AMFP output derived from range-depth ambigu-
signed for a single source and that the SBNR improvemenity surfaces by taking the maximum over a set of depths.
seen in the above two examples is not guaranteed for muutput was generated using FFT winddw= 16 s; the data
tiple sources. contain both a loud, moving surface interferer and a weaker
All of the results to this point have demonstrated im-acoustic source at depth. FiguréaBis the basic “surface”
proved AMFP output on a single, moving target. For dataAMFP result, generated from surface depths 0-20 m. The
that also include an interferer, the third motion mitigationtrack of the interferer is clearly visible, with~15 dB
technique is necessary, that of MTIFodel-based, time- interferer-to-noise ratio at its closest point of approach, at 38
varying interference filtering Figure 7 shows AMFP output min. Figure &b) applies data-based interference filtering in
for data containing a loud, moving interferer locateé.7 ~ Which M=2 principal eigenvectorécomputed usingl=7
km from the FFP arrayat another bearingn addition to the ~ shapshots at each time instaate used to generate the in-
AX towed source located-5.5 km from the array. The pro- terferer null; the result is effective removal of nearly all in-
cessing was done at frequency 94 fnother of the comb terferer energy. Figure(8) is the basic “submerged” AMFP
frequenciel with observation timer=200s and FFT win- result, generated from depths 50 to 55 m that include the
dowAt=1s. The basic AMFP result in Fig(d is contami-  target depth. The target track is now visible, but it is still
nated by sidelobes from the loud interferer, to the point thapbscured by sidelobes from the surface interferer. Applying
the target is not detectable. The measured output SBNR fata-based interference filtering as above, in Fid),8esults
7.8 dB, but there are several peaks higher than the targgi effective removal of the interferer sidelobes and retention
peak(at 5.5 km range and 15 m deptfTarget motion com- of the now-distinct target track. The SBNR improvement
pensatior{Fig. 7(b)] focuses target energy to the correct lo- from applying data-based interference filtering at depth is up
cation, but sidelobes from the interferer remain; the output© 10 dB where the target and interferer tracks cross in range.
SBNR remains 7.8 dB, but the only peak of the ambiguity
surface is the target. In Figs(cJ and (d), data-based inter-
ference filtering using one and two principal eigenvectors,v' CONCLUSIONS
respectively, is used to remove the interferer sidelobes. Be-  This paper proposed three techniques to improve AMFP
cause the target and the interferer have nearly the sangerformance for detecting quiet, moving targets. Each of the
phone-level(source level minus transmission Ipg@wer in techniques was demonstrated on data examples to provide 3
this example, the target has been incorporated into the eigedB or more improvement in output SBNR over basic AMFP
vector estimate of the interferer subspace, resulting in undesutput. Basic AMFP suffers both from target motion, in
ired filtering of the target; the resulting output SBNR of 6.8 which the target moves across several resolution cells during
dB for both Figs. 7c) and (d) is actually lower than the the observation time and the target peak is reduced, and from
unfiltered result. By contrast, Fig(6) demonstrates the use interferer motion, in which the moving interferer occupies
of MTIF to remove the interferer sidelobes. The MTIF several adaptive degrees of freedom and reduces adaptive
(model-basedresult uses a rough estimate of the interferernulling capability.
position(derived here from a radar tracto generate a time- The first motion mitigation technique, mode-based rank
varying, location-based null on the interferer; the interfererreduction, reduces the effects of both target and interferer
space has dimensiavl =7, to account for potential inaccu- motion over long observation times by increasing the effec-
racies in the interferer track information. Application of tive size of the MFP resolution cells. Both target and inter-
MTIF increases output SBNR to 11.2 dB, an increase of 3.4erers move across fewer resolution cells for a given obser-
dB over the unfiltered result. In Fig(fj, hybrid interference vation time, and motion loss is correspondingly reduced. The
filtering is used to remove the interferer sidelobes. The hytechnique was demonstrated on a data example in which tar-
brid method uses the model-based interference subspace @&t motion loss was reduced and output SBNR was increased
timate (again with dimensioM =7) but eliminates any rep- by 4.4 dB compared to the basic, full-rank AMFP output.
licas from the interferer space estimate that do not have higfithe technique is only somewhat sensitive to environmental
correlation with the principal eigenvectors of the dé&s  mismatch, but it does require an array capable of resolving
measured by the correlation paramejer0.6). The effect of  the acoustic modesuch as the SBCX VLA used in the data
this is greater protection of the target peg@k.6 vs 86.6 dB  examples of this papgrFuture work should examine the
for the model-based outpuat the expense of less sidelobe effectiveness of mode-based rank reduction for tactical hori-
rejection (background level approximately 1.5 dB higher zontal line arrays.
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FIG. 8. AMFP range-time tracks, processed with FFT windoiw= 16 s. Data include both a loud surface interferer and a weak acoustic source at depth, with
the interferer approximately 30 dB louder. Pl¢# and (b) are derived from range-depth ambiguity surfaces focused at depths near the dagatlean 20

m depth. The data in[@) have not been filtered, and the ship track is clearly seen with INR at CPA of 1&ER is att =38 min). Data-based filtering with

M =2 eigenvalues and=7 snapshots has been applied(b), and the ship energy has been effectively removed. Rtand (d) are derived from
range-depth ambiguity surfaces focused at depths near the target depth of 50 m. Théaldavie not been filtered, and sidelobes from the surface interferer
are still visible. After applying data-based filtering ag(lim, the result in(d) removes the interferer sidelobes and retains the target track. SBNR improvement
from data-based interference filtering is up to 10 dB where the tracks cross in range. Colorbar unitseafie dBa/Hz.

The second motion mitigation technique, explicit targetwas demonstrated on a data example in which a radar track
motion compensation, reduces the effect of target motionmwas used to form an interference null based approximately
over long observation times by using a hypothesized targein the location of the interferer, resulting in unambiguous
track to focus data snapshots; done accurately, target motiatetection of the targefnot possible in the basic AMFP re-
compensation eliminates target motion I¢&s a single tar- sulf) and a 3.4 dB increase in output SBNR over the basic,
ged. This technique was demonstrated on the same data exnfiltered AMFP output. Again, even greater SBNR gains are
ample to provide both improved output SBNBR.3 dB bet-  possible with more accurate interferer tracks. Greater protec-
ter) and improved source localization over the basic,tion of the target peak is achievable with the hybrid
uncompensated AMFP result. Even greater SBNR gains araterference-filtering technique(combining elements of
possible with more accurate target tracks. However, one ahodel-based and data-based filtejiraf the expense of less
the open questions with this technig@ad a focus for future interference nulling; hybrid filtering produdea 3 dBoutput
work) is how sensitive it is to inaccuracies in the assumedSBNR increase in the same example. It is important to note
target track and to environmental mismatch, both of whichthat the use of external information for the model-based fil-
would reduce the effectiveness of the focusing operationtering technique removes the need to associate interferers
Also, it should be noted again that the technique is designedith principal eigenvectors, which is a potential weakness of
for a single source; another interesting question is how mothe data-based filtering meth@dhen the target is loud rela-
tion compensation might be combined with interference fil-tive to the interferer However, accurate track and environ-
tering to handle data with multiple sources. mental information is needed for model-based filtering to

The third motion mitigation technique, model-basedsucceed, and future work should investigate how sensitive
time-varying interference filtering, reduces the effect of in-the technique is to mismatch.
terference motion by placing a time-varying null on the in- All three of the techniques presented here require intel-
terferer; done accurately, interference filtering removes interligent application of external information. Mode-based rank
ferer sidelobes entirely and increases output SBNReduction(the least dependent of the three techniques on ex-
(potentially by a very large amount if the interferer is loud ternal information requires some knowledge of the number
relative to the target The model-based filtering technique of significant propagating modes in the data. Target motion
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