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Introduction

Refactoring tools can improve the speed and accuracy with which we create and
maintain software — but only if they are used. In practice, tools are not used
as much as they could be; this seems to be because they do not align with the
refactoring strategy preferred by the majority of programmers: floss refactoring.
We propose five principles that characterize successful floss refactoring tools —
principles that can help programmers to choose the most appropriate refactoring
tools and also help toolsmiths to design more usable tools.

1 What is Refactoring?

Refactoring is the process of changing the structure of software while preserving
its external behavior. The term was introduced by Opdyke and Johnson in
1990 [1], and popularized by Martin Fowler’s book [2], but refactoring has been
practiced ever since programmers have been writing programs. Fowler’s book
is largely a catalog of refactorings; each refactoring is a pattern of change that
has been observed repeatedly in various languages and application domains.

Some refactorings make localized changes to a program, while others make
more global changes. For example, when you perform the INLINE TEMP refac-
toring, you replace each occurrence of a temporary variable with its value. In-
specting a method from java.lang.Long,



public static Long valueOf(long 1) {
final int offset = 128;
if (1 >= -128 && 1 <= 127) { // will cache
return LongCache.cache[(int)1l + offset];

}

return new Long(l);

we might apply the INLINE TEMP refactoring to the variable offset. Here is
the result:

public static Long valueOf(long 1) {
if (1 >= -128 && 1 <= 127) { // will cache
return LongCache.cache[(int)1l + 128];
}

return new Long(1l);

The inverse operation, in which we take the second of these methods, in-
troduce a new temporary variable to represent 128, is also a refactoring, which
Fowler calls INTRODUCE EXPLAINING VARIABLE. Whether the version of the
code with or without the temporary variable is better depends on the context.
The first version would be better if you were about to change the code so that
offset appeared a second time; the second version might be better if you prefer
more concise code. So, whether a refactoring improves your code depends on
the context: you must still exercise good judgement.

Refactoring is an important technique because it helps you to make semantic
changes to your program. For example, suppose that you want the ability to
read and write to a video stream using java.io. The relevant existing classes
are shown in black at the top of Figure 1. Unfortunately, this class hierarchy
confounds two concerns: the direction of the stream (input or output) and the
kind of storage that the stream works over (file or byte array). It would be
difficult to add video streaming to the original java.io because you would have
to add two new classes, VideoInputStream and VideoOutputStream, as shown
by the grey boxes at the top of Figure 1. You would probably be forced to
duplicate code between these two classes because their functionality would be
similar.

Fortunately, we can separate these concerns by applying the TEASE APART
INHERITANCE refactoring to produce the two hierarchies shown in black at the
bottom of Figure 1. It’s easier to add video streaming in the refactored version:
all that you need do is add a class VideoStorage as a subclass of Storage, as
shown by the grey box at the bottom of Figure 1. Because it enables software
change, “Refactoring helps you develop code more quickly” [2, p. 57].
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Figure 1: A stream class hierarchy in java.io (top, black) and a refactored
version of the same hierarchy (bottom, black). In grey, an equivalent change is
made in each version.

Not only has refactoring been prescribed by Fowler, but research suggests
that many professional programmers refactor regularly. For example, Xing and
Stroulia recently studied the Eclipse code base, and “discovered that indeed
refactoring is a frequent practice and it involves a variety of restructuring types,
ranging from simple element renamings and moves to substantial reorganizations
of the containment and inheritance hierarchies” [3]. Murphy and colleagues
studied 41 programmers using the Eclipse environment [4]: they found that
every programmer used at least one refactoring tool.

2 Refactoring Tools

Refactoring tools automate refactorings that you would otherwise perform with
an editor. Many popular development environments for a variety of languages
now include refactoring tools: Eclipse (http://eclipse.org), Microsoft Visual Stu-
dio (http://msdn.microsoft.com/vstudio), Xcode (http://developer.apple.com/tools/
xcode), and Squeak (http://www.squeak.org) are among them. You can find a
more extensive list at http://refactoring.com/tools.html.

Let’s see how a small refactoring might be performed using Eclipse. We will
use the class java.lang.Float as the code to be refactored. First, we choose the
code we want refactored, typically by selecting it in an editor. In this example,
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Figure 2: Selected code to be refactored in Eclipse, and a context menu. The
next step is to select Extract Method. .. in the menu.
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Figure 3: A configuration dialog asks us to enter information. The next step is
to type “isSubnormal” into the Method name text box, after which the Preview >
and OK buttons become active.
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Figure 4: A preview of the changes that will be made to the code. At the top,
you can see a summary of the changes. The original code is on the left, and the
refactored code on the right. You press OK to have the changes applied.



we’'ll choose the conditional expression in an if statement (Fig. 2) that checks
to make sure that f is in subnormal form. Let’s suppose that we want to put
this condition into its own method so that we can give it an intention-revealing
name and so that we can reuse it elsewhere in the Float class. After selecting
the expression, we choose the desired refactoring from a menu. The refactoring
that we want is called ExTrRACT METHOD (Fig. 2).

The menu selection starts the refactoring tool, which brings up a dialog
asking us to supply configuration options (Fig. 3). We have to provide a name
for the new method: we’ll call it isSubnormal. We can also select some other
options. We then have the choice of clicking OK, which would perform the
refactoring immediately, or Preview >.

The preview page (Fig. 4) shows the differences between the original code
and the refactored version. If we like what we see, we can click OK to have the
tool apply the transformation. The tool then returns us to the editor, where we
can resume our previous task.

Of course, we could have performed the same refactoring by hand: we could
have used the editor to make a new method called isSubnormal, cutting-and-
pasting the desired expression into the new method, and editing the if state-
ment so that it uses the new method name. However, using a refactoring tool
can have two advantages.

1. The tool is less likely to make a mistake than is a programmer refactoring
by hand. In our example, the tool correctly inferred the necessary argu-
ment and return types for the newly created method, as well as deducing
that the method must be static. When refactoring by hand, you can easily
make a mistake on such details.

2. The tool is faster than refactoring by hand. Doing it by hand, we would
have to take time to make sure that we got the details right, whereas a tool
can make the transformation almost instantly. In a file-based environment
like Eclipse, refactorings that affect many source files, such as renaming
a class, can be quite time-consuming to perform manually. They can be
accomplished almost instantly by a refactoring tool.

In short, refactoring tools allow us to program faster and with fewer mistakes —
but only if we choose to use them.

3 Refactoring Tools are Underused

Because they automate what you would otherwise do by hand, and because they
are less error-prone and faster, we would expect programmers to use refactoring
tools frequently. However, we have found that programmers do not always



use refactoring tools, even when they are available. Let’s look at some of the
evidence.

Evidence: Low Academic Usage

At Portland State University (PSU) we have observed many programmers not
using refactoring tools. In a questionnaire administered in March 2006, we
asked students in an object-oriented programming class if they had used refac-
toring tools in the past, and to what extent [5]. Of the 16 students who par-
ticipated, only 2 reported having used refactoring tools. One of them reported
that when the appropriate type of refactoring tool was available, he chose to
use it over refactoring by hand just 60% of the time; the other student reported
that he used a tool 20% of the time.

We have also studied the history of refactoring tool usage on networked
computers in our college at PSU. Between September 2006 and December 2007,
of the 42 people who used Eclipse, only 6 had tried Eclipse’s refactoring tools.

These studies both suggest low usage of refactoring tools (about 14%) among
academic programmers.

Evidence: Low Usage Among Professionals

Perhaps the situation is different among professional programmers? At the
Agile Open Northwest conference in January 2007, we surveyed more than 90%
of the attendees (112 surveyed) to ask about refactoring tool usage. On average,
when a refactoring tool is available for a refactoring that programmers want to
perform, they choose to use the tool 68% of the time; the rest of the time they
refactor by hand.

While this usage is higher than our academic programmers, it may be an
overestimate for professional programmers in general. This is because agile
methodologies encourage vigorous refactoring, so we expect that the attendees
at an agile conference would be more familiar with refactoring tools, and would
use them more often, than would non-agile programmers.

Whatever the precise usage rates for refactoring tools, these data suggest
that programmers could be using refactoring tools substantially more frequently.

Evidence: Predicted Usage Does Not Match Observed Us-
age

When we compare predicted usage rates of two refactorings against the usage
rates of the corresponding refactoring tools observed in the field, we find a
surprising discrepancy.



In a study of 37 students, most with programming work experience, Mantyla
and Lassenius asked each student to evaluate 10 pieces of code [6]. For each
piece of code, the student was asked which refactorings were needed, and how
likely the student would be to perform those refactorings. On average, subjects
judged that they were about 38% more likely to perform EXTRACT METHOD
than RENAME. Furthermore, EXTRACT METHOD was needed more than 3 times
as frequently as RENAME. Using this data, we predict that programmers are
more likely to perform EXTRACT METHOD than RENAME.

However, Murphy and colleagues’ study [4] of 41 professional software de-
velopers shows that Eclipse’s EXTRACT METHOD tool is used significantly less
often than its RENAME tool. While all 41 programmers used the RENAME tool
at least once, only 20 programmers used the EXTRACT METHOD tool (Fig. 5).
Furthermore, the RENAME tool was used 6.7 times more than the EXTRACT
METHOD tool. In short, programmers were observed to use refactoring tools to
perform RENAME substantially more than EXTRACT METHOD.

Comparing these two studies, we can see that predicted refactoring tool
usage does not match observed refactoring tool usage. From this, we infer that
some refactoring tools—the EXTRACT METHOD tool in this case—may be
underused.

The Cause of Underuse

If indeed refactoring tools are not used as much as they could be, what is the
cause? Until recently, the blame could be placed on the lack of available tools.
However, in our Agile 2007 survey, of the 83 people surveyed who programmed,
73 had a refactoring tool available at least some of the time.

As we will explain, we believe that the reason that many programmers un-
deruse refactoring tools is that the design of some refactoring tools doesn’t fit
their refactoring strategy.

4 Two Refactoring Strategies:
Floss Refactoring and Root Canal Refactoring

When we talk about refactoring strategies, we are referring to the choices that
you make about how to mix refactoring with your other programing tasks, and
how frequently you choose to refactor. To describe the strategies, we use a den-
tal metaphor. We call one strategy floss refactoring; this is characterized by
frequent refactoring, intermingled with other kinds of program changes. In con-
trast, we call the other strategy root canal refactoring. This is characterized
by infrequent, protracted periods of refactoring, during which time program-
mers perform few if any other kinds of program changes. You perform floss
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Figure 5: Uses of Eclipse refactoring tools by 41 developers. Each column is
labeled with the name of a tool-initiated refactoring in Eclipse, and the number
of programmers that used that tool. Each row represents an individual pro-
grammer. Each box is labeled by how many times that programmer used the
refactoring tool. The darker pink the interior of a box, the more times the pro-
grammer used that tool. Data provided courtesy of Murphy and colleagues [4].
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refactoring to maintain healthy code, and you perform root canal refactoring to
correct unhealthy code.

We use the metaphor because, for many people, flossing one’s teeth every
day is a practice they know that they should follow, but which they sometimes
put off. Neglecting to floss can lead to tooth decay, which can be corrected with
a painful and expensive trip to the dentist for a root canal procedure. Likewise,
a program that is refactored frequently and dutifully is likely to be healthier and
less expensive in the long run than a program whose refactoring is deferred until
the last bug can’t be fixed or the next feature can’t be added. Like delaying
dental flossing, delaying refactoring is a decision developers may make to save
time, but one that may have painful consequences later.

It is not the kind of refactoring (RENAME, EXTRACT METHOD, TEASE
APART INHERITANCE, etc.) that determines whether the transformation is a
floss or a root canal refactoring. The difference hinges on why the refactoring is
performed. You are floss refactoring if your goal is to better understand a par-
ticular piece of code or to make a specific change that is difficult with the current
structure. You are root canal refactoring if you are spending days cleaning up
crufty code, preparing for some change that may be made in the future, or if
you are improving the quality of your code, not to enable a specific change, but
because you are aware that it has become a mess. Although we cannot know a
programmer’s motivation by examining their code, we can induce the difference
between floss refactoring and root canal refactoring by seeing if other changes
are intermingled with the refactorings (floss), or whether many refactorings take
place without any intermingled edits (root canal).

Experts Recommend that Programmers should Floss

Experts have generally advocated that programmers perform floss refactoring
rather than root canal refactoring. For instance, Fowler states:

In almost all cases, I'm opposed to setting aside time for refactor-
ing. In my view refactoring is not an activity you set aside time
to do. Refactoring is something you do all the time in little bursts.
You don’t decide to refactor, you refactor because you want to do
something else, and refactoring helps you to do that other thing. [2,
p. 58]

Jim Shore has given similar advice:

Avoid the temptation to stop work and refactor for several weeks.
Even the most disciplined team inadvertently takes on design debt,
so eliminating debt needs to be an ongoing activity. Have your team
get used to refactoring as part of their daily work. [7]
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Jeffries and colleagues have advocated floss refactoring as a key practice of
Agile programming:

We keep the code simple at all times. This minimizes the investment
in excess framework and support code. We retain the necessary
flexibility through refactoring. [8]

Empirical Evidence: Programmers Avoid Root Canals

Not only do experts recommend floss refactoring over root canal refactoring, but
programmers appear to heed their advice. We mention two studies: although
the data are limited, they suggest that programmers do floss refactoring rather
than root canal refactoring.

Weiigerber and Diehl measured the proportion of daily code changes due to
refactorings in three large open-source projects [9]. If root canal refactoring were
taking place, there would be days in the development cycle on which refactoring
occurred, but on which no other programming tasks were completed. However,
the authors found that “in all three projects, there are no days which only
contain refactorings”, suggesting that although refactorings were being applied
often, at no point did the programmers set aside a day or more for refactoring,
as would be characteristic of root canal refactoring.

Murphy and colleagues’ data [4] also suggests that root canal refactoring is
not a popular strategy. These data show a total of 2671 programming episodes,
delimited by commits to source-code repositories by 31 separate programmers.
283 of these episodes showed evidence of the use of one or more refactoring tools;
at most 10 of the episodes contained just refactoring tool usage and no program
edits. In other words, in only 10 of 283 episodes do we observe the possibility
of root canal refactoring. The actual number is probably even smaller: in 9 of
those 10 cases, the programmer used an editor for which edit events could not
be captured.

5 Floss Refactoring and
Refactoring Tool Design

So far we have argued that floss refactoring is both the recommended best-
practice and a common current practice, while root canal refactoring is depre-
cated in both theory and practice. How does the dominance of floss refactoring
affect refactoring tools? Is a tool designed to support floss refactoring different
from a tool for root canal refactoring? How can we help toolsmiths to build
tools better-suited for floss refactoring, and how can we help programmers to
recognize such tools?

12



We propose five principles to characterize a tool that supports floss refac-
toring. Such a tool should allow the programmer to:

—_

. choose the desired refactoring quickly,
2. switch seamlessly between program editing and refactoring,
view and navigate the program code while using the tool,

avoid providing explicit configuration information, and

orok W

access all the other tools normally available in the development environ-
ment while using the refactoring tool.

Unfortunately, refactoring tools don’t always follow these principles; as a
result, floss refactoring with tools can be cumbersome. Let’s revisit our refac-
toring tool example (Figures 2 through 4) to see how these principles apply to
a typical refactoring tool.

After selecting the code to be refactored, we needed to choose which refac-
toring to perform, which we did using a menu (Fig. 2). Menus containing refac-
torings can be quite long and difficult to navigate; this problem gets worse as
more refactorings are added to development environments. As one respondent
complained in our Agile 2007 survey, the “menu’s too big sometimes, so search-
ing [for] the refactoring takes too long.” Choosing the name that most closely
matches the transformation that you have in your head is also a distraction: the
mapping from the code change to the name is not always obvious. Thus, using
a menu as the mechanism to initiate a refactoring tool violates Principle 1.

Next, most refactoring tools require configuration (Fig. 3). This makes
the transition between editing and refactoring particularly rough, as you must
change your focus from the code to the refactoring tool. Moreover, it’s difficult
to choose contextually-appropriate configuration information without viewing
the context, and a modal configuration dialog like that shown in Fig. 3 obscures
your view of the context. Furthermore, you cannot proceed unless you provide
the name of the new method, even if you don’t care what the name is. Thus,
such configuration dialogs violate Principles 2, 3, and 4.

Before deciding whether to apply the refactoring, we were given the oppor-
tunity to preview the changes in a difference viewer (Fig. 4). While it is useful
to compare your code before and after, presenting the code in this way forces
you to stay inside the refactoring tool, where no other tools are available. For
instance, in the difference view you cannot hover over a method reference to
see its documentation. Thus, a separate, modal view for a refactoring preview
violates Principle 5.

We have found similar problems with other tools; this makes them less useful
for floss refactoring.

13



public boolean equals (Obhject obi) |
if (obj instanceof Long) |
return value == [EifelilogEelonBRNeyls i -NRI=EN ;

!

return false;

public boolean equals (Object obli) |
if (ob] instanceof Long) |
return value == @{obj};
}
return false;

}

private long {Object obji{
return | (Long)obi).longvalue();
'

Figure 6: At the top, a method in java.lang.Long in an X-develop editor.
At the bottom, the resulting code immediately after the EXTRACT METHOD
refactoring. The name of the new method is m, but the cursor is positioned to
facilitate an immediate RENAME refactoring.

6 Tools for Floss Refactoring

Fortunately, some tools seem to have been built for floss refactoring, and em-
brace our principles. Let’s look at some examples.

In Eclipse, while you initiate most refactorings with a cumbersome hierarchy
of menus, you can perform a MOVE CLASS refactoring simply by dragging a class
icon in the Package Explorer from one package icon to another. All references to
the moved class will be updated to reflect its new location. This is analogous to
dragging and dropping a file in your operating system’s file explorer. This simple
mechanism allows the refactoring tool to stay out of your way; since the class
and target package are implicitly chosen by the drag gesture, you have already
provided all the configuration information required to execute the refactoring.
Because of the simplicity and speed of this refactoring initiation mechanism, it
adheres to Principles 1, 2, and 4.

The X-develop environment (http://www.omnicore.com/xdevelop.htm) makes
a significant effort to avoid modal dialog boxes for configuring its refactoring
tools. For instance, the EXTRACT METHOD refactoring is performed without
any configuration at all, as shown in Figure 6. Instead, the new method is given
an automatic name. After the refactoring is complete, you can change the name
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Figure 7: Refactoring Cues’ non-modal view. Users can enter configuration
information (right), or select the code fragment that they wish to refactor.

by placing the cursor over the default name, and simply typing a new name:
this is actually a rename refactoring, and the tool makes sure that all refer-
ences are updated appropriately. Because they stay out of your way, X-develop
refactoring tools adhere to Principles 2 and 4.

To avoid modal configuration dialogs, and yet retain the flexibility of con-
figuring a refactoring, we have built (in Eclipse) a tool called Refactoring Cues
that presents configuration options non-modally [10]. To use Refactoring Cues,
you ask Eclipse to display a refactoring view adjacent to the program code. You
then select the desired refactoring in this view, and also configure it there, as
shown in Figure 7. Because the Refactoring view is not modal, you can use
other development tools at the same time. Moreover, because you select the
refactoring before the code to which you wish to apply it, the tool can help you
with the selection task, which can otherwise be surprisingly difficult [5]. Thus,
this tool adheres to Principles 2, 3, and 5.

Rather than displaying a refactoring preview in a separate difference view,
Refactor! Pro (http://www.devexpress.com/Products/NET /Refactor) marks the
code that a refactoring will modify with preview hints. Preview hints are editor
annotations that let you investigate the effect of a refactoring before you commit
to it. Because you don’t have to leave the editor to see the effect of refactoring,
preview hints adhere to Principles 3 and 5.
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7 Conclusion

We have explained what refactoring is and why it’s important in modern soft-
ware development. Refactoring is mainstream; Fowler’s book [2] is the best
starting point for those who want to know more. Our own contribution is the
distinction between floss and root canal refactoring and our claim that floss
refactoring is and should be the dominant strategy. We think that this dis-
tinction, and the observation that many tools are more suitable for root canal
refactoring than for floss refactoring, helps to explain why refactoring tools
have not had the impact that one might expect. We hope that our principles
for building floss refactoring tools will serve two purposes.

First, the principles can help programmers to choose a refactoring tool that
suits their daily programming tasks. If you are a programmer who usually
performs floss refactoring, then you should choose tools that adhere to these
principles. Second, the principles can help toolsmiths build better interfaces
for refactoring tools. Because floss refactoring is the dominant strategy, tools
that adhere to our principles should be useful to more programmers. This is
true not just of refactoring tools themselves, but of any tool (such as a smell
detector [11]) that is intended to help programmers keep their code clean as
they work on it.

Our message, then, is that refactoring tools, like refactoring itself, have no
intrinsic value. A tool is valuable only in so far as it “helps you do that other
thing”: develop better software.
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