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Scattering properties of dense media from Monte 
Carlo simulations with application to active 
remote sensing of snow 

L. M. Zurk 1 

Applied Physics Laboratory, University of Washington, Seattle 

L. Tsang 

Electrical Engineering Department, University of Washington, Seattle 

D. P. Winebrenner 

Applied Physics Laboratory, University of Washington, Seattle 

Abstract. Monte Carlo simulations are used to derive the phase matrix, effective 
permittivity, and scattering coefficient for a random medium consisting of densely 
packed spheres up to 5000 in number. The results include correlated scattering 
and coherent wave interaction among the scatterers. The Monte Carlo simulations 
are based on a multiple-scattering formulation of the Foldy-Lax equations. It 
is shown that the derived phase matrix is in good agreement with dense media 
radiative transfer theory for copolarized scattering. The depolarization, however, 
can be substantially larger than conventional theory. Two methods are used to 
analyze the behavior of the coherent wave to obtain the real part of the effective 
permittivity. For the small particle case both methods yield values of permittivity 
that agree with the results of mixing formulas such as the Clausius-Mossoti mixing 
formula. The phase matrix and scattering coefficient obtained by simulation are 
used in a second-order radiative transfer model to predict the amount of backscatter 
from a layer of snow. It is also shown that sticky spheres, which can be used to 
model metamorphosed snow, produce high levels of copolarized and depolarized 
backscatter that can exceed the independent scattering model. 

1. Introduction 

An important feature of a discrete random 
medium with densely packed scatterers (i.e., 
scatterers that occupy more than a few per- 
cent by volume) is that the correlation of the 
particles' positions affects the scattering physics 
and invalidates the independent scattering as- 
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sumption. This has been shown experimen- 
tally [Ishimaru and Kuga, 1982; Koh, 1992]. 
To account for the correlation between parti- 
cles, analytic dense media theory, such as the 
quasi-crystalline approximation (Q'CA) [Tsang 
and Kong, 1980, 1982] and quasi-crystalline ap- 
proximation with coherent potential (QCA-CP) 
[Tsang and Kong, 1980; Tsang et al., 1985], has 
been assumed for the first moment of the field. 

In early work the QCA approximation was ap- 
plied with the hole correction to obtain a set 
of equations for the average field in an ensem- 
ble of scatterers [ Varadan et al., 1979; Varadan 
and Varadan, 1980]. More recently, the Percus- 
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Yevick pair distribution function was used with 
QCA to calculate the extinction coefficient and 
produced good agreement with controlled lab- 
oratory experiments [Mandt et al., 1992; West 
et al., 1994]. Because of the advent of mod- 
ern computers and efficient computational meth- 
ods, Monte Carlo simulations by direct solu- 
tion of Maxwell's equations are receiving nec- 
essary attention. Both rough surface problems 
[Pak et al., 1995] and discrete scatterer prob- 
lems [ Tsang et al., 1992; Zurk et al., 1995] have 
been solved in this manner. However, the final 
results of bistatic scattering are calculated dif- 
ferently between rough surface simulations and 
dense media simulations. In rough surface scat- 
tering one directly solves Maxwell's equations to 
calculate the bistatic scattering coefficients. In 
dense media simulations, because of computer 
limitations, one uses a few thousand particles 
to perform Monte Carlo simulations to simulate 
the extinction coefficient, phase matrix, and ab- 
sorption coefficient. These quantities are then 
used in radiative transfer theory to calculate the 
bistatic scattering properties of the dense me- 
dia. Monte Carlo simulations have been used to 

calculate the extinction rates using up to 5000 
spheres. The numerical procedure is based on 
the multiple scattering equations of Foldy-Lax 
using vector spherical waves as a basis [Tsang et 
al., 1992; Lu et al., 1995]. The results include co- 
herent wave interaction among the spheres. The 
extinction rates derived from the simulations are 

in excellent agreement with QCA-CP. 
To calculate intensities, analytic theory has 

been applied for the second moment of the field 
leading to the Bethe-Salpeter equation. A cor- 
related ladder approximation has been applied 
to the Bethe-Salpeter equation. It has been 
shown that QCA-CP together with the corre- 
lated ladder approximation obeys energy conser- 
vation. The two approximations together also 
lead to the dense media radiative transfer equa- 
tion (DMRT). In the long wavelength limit, the 
phase matrix of the dense media radiative trans- 
fer equation is of the form of the Rayleigh phase 
matrix but with different extinction coefficients 

and albedos from conventional radiative transfer 

theory of independent scattering. 
In this paper we employ Monte Carlo simu- 

lations to calculate the phase matrix and the 
effective permittivity using up to 5000 dielec- 
tric spheres. Numerical results indicate that the 
copolarized parts of the phase matrix are in good 
agreement with those of dense media radiative 
transfer theory under QCA-CP and the corre- 
lated ladder approximation. However, the alepo- 
larized component can be substantially higher. 
The strong alepolarized return is due to coher- 
ent wave interaction among the spheres leading 
to electrical dipole moments of spheres that are 
not parallel to the incident electric field. The 
level of depolarization is still substantially lower 
than that of the copolarized component. Thus it 
has little effect in the energy conservation that 
QCA-CP and the correlated ladder approxima- 
tion obey. 

We next apply results to microwave remote 
sensing of snow-covered regions [Tsang and 
Kong, 1992; Kuga et al., 1991]. The scattering 
coefficient and the phase matrix derived from 
the Monte Carlo simulations are used in a second- 

order radiative transfer model [Shin and Kong, 
1981] to determine the amount of scattering 
from a snow layer overlying a homogeneous half- 
space of soil. These results are compared to 
those obtained using DMRT and the indepen- 
dent scattering assumption. The characteristics 
of a snow layer can also change because of meta- 
morphic forces [Colbeck, 1982] and affect the mi- 
crowave response. In previous work [Ding et al., 
1994] we introduced the use of a sticky particle 
pair function which can be used to model the 
clustering of the snow grains and in the work 
of Zurk et al. [1995] we presented extinction 
and absorption coefficient from sticky particles. 
In this paper we show that the sticky particle 
model used in a radiative transfer model can 

match simultaneously the copolarized and de- 
polarized microwave scatter return of snow. 

Another attribute of a discrete random medi- 

um is its effective permittivity. In this paper we 
compare the response of the coherent wave with- 
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in the Monte Carlo volume to that of a homoge- 
neous volume to determine the effective permit- 
tivity. We also directly obtain the real part of 
the permittivity by tracking the amplitude and 
phase of the average internal electric dipole as 
the coherent wave travels through the medium. 
The results of the effective permittivity are in 
good agreement with Clausius-Mossoti. 

2. Radiative Transfer Equation 

The transport of radiant energy through a 
space of randomly distributed spherical parti- 
cles, as shown in Figure 1, can be expressed by 
the vector radiative transfer (RT) equation for 
the specific intensity I: 

dI(0, •, z) I(0, •, z) = 
+ dc)' ,rdO' sin(O')P(O, c), 0', 

ß I(0, •b, z) , (1) 

0 0 

Z=O 

ß ß e•! e d j ß . .e_-e 

000 *COO* ***-'/O•* * * 
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Region 2 œ2, g2 

Figure 1. Geometry of the radiative transfer prob- 
lem for a planar layer of spherical scatters in region 1 
covering a homogeneous half-space in region 2 where 
Z is normal to the planar interfaces. Elemental vol- 
ume for calculation of radiative transfer parameters 
shown. 

where ne is the extinction coefficient with ne = 
ns + ha, ns and na are the scattering and absorp- 
tion coefficients, respectively, and P(O, •b, 0 t, •b t) 
is the phase matrix describing redistribution of 
scattered energy from direction O, •b into direc- 
tion 0 t, •b t. Application of boundary conditions 
at the planar interfaces z - 0 and z - -d re- 
quires knowledge of the effective permittivity eeff 
in region 1. Thus solution of (1) requires speci- 
fication of he, P(0, •b, 0', •b'), and eett and will be 
influenced by the method with which they are 
obtained. 

To calculate the radiative transfer parameters, 
we consider an elemental volume which con- 

tains many particles, as shown in Figure 1. The 
derivation of the transfer equation is based on 
radiative energy in and out of the volume ele- 
ment. Note that there is not just one particle in 
the elemental volume but there are many parti- 
cles. 

In the following sections we discuss three dif- 
ferent methods of calculating the extinction co- 
efficients and the phase matrix. The meth- 
ods are (1) classical scattering assumption, (2) 
DMRT, and (3) Monte Carlo simulation. 

2.1. Classical Radiative Transfer 

The classical assumption for scattering in a 
collection of randomly distributed spherical scat- 
terers is that of independent scattering. Under 
this assumption the particles in the elemental 
volume scatter and absorb independently. Thus 
if there are N particles in the elemental volume, 
the extinction cross section of all the particles is 

where eye is the extinction cross section of one 
particle. The extinction coefficient is defined 
as the extinction cross section per unit volume. 
Thus if V is the volume of the elemental volume, 
then 

•;ind _ N 
e -- V eye -- 'rl, o eye • (3) 

where no is the number of particles per unit vol- 
ume. 
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Similarly, for a single particle the distribution 
of scattered energy is given by the Stokes ma- 
trix rr. Under the independent scattering as- 
sumption the phase matrix is the average of the 
Stokes matrix over the distribution of particles, 
and for identical particles 

P(0, •b, 0', •b') - noo'(O, qb, 0', qb'). (4) 

For small scatterers this reduces to the Ray- 
leigh phase matrix [Tsang et al., 1985]. 
2.2. DMRT 

The assumption of independent scattering ig- 
nores correlated wave interaction when the scat- 

terers are densely packed. For dense random 
media the effective wavenumber K can be calcu- 

lated using the quasi-crystalline approximation 
with coherent potential [Tsang et al., 1985]. In 
the low frequency limit the dispersion relation is 

- + fv(] - (5) 

ß 1 + - 

{ /o )) ß I q- 4•rn0 dr r2[g(r) - 1] 

'7 - 1+ (ks •- k•)(1- fv)/(3K •) , (6) 

where ks is the wavenumber of the scatterers, k 
is the wavenumber of the background, a is the 
radius of the spheres, fv is the fractional volume 
of the scatterers, and g(r) is the pair distribution 
function. The albedo • = ns/he can be derived 
from the second moment as 

I fva • 
• - 2K"-•-[k•- k•l•no 

ß l+4•rn0 drr•[g(r)-l] ,(7) 

where K" is the imaginary part of the effective 
2K" wavenumber and ne -- . As noted previ- 

ously, DMRT follows from QCA-CP and the cor- 
related ladder approximation. In the long wave- 
length limit the phase matrix of the dense media 
radiative transfer equation is of the form of the 
Rayleigh phase matrix but with the scattering 
coefficient calculated by the above relationships. 

2.3. Simulation 

As an alternative to either the classical model 

or DMRT, Monte Carlo simulations can be used 
to directly determine the extinction coefficient, 
the phase matrix, and the effective permittiv- 
ity. These are calculated by using a large num- 
ber of scatterers in the elemental volume and. 

taking into account their coherent wave interac- 
tions to determine the collective scattering and 
interaction of the N particles in the elemental 
volume. Of course, N has to be a large num- 
ber and convergence with respect to N has to 
be tested. For example, the extinction coeffi- 
cient can be calculated by considering the trans- 
fer of energy within this volume from the co- 
herent wave into the incoherent wave. The ele- 

mental volume must satisfy three criteria. First, 
the volume must be small enough that the at- 
tenuation of energy in the incident wave as it 
travels through cube is small compared to the 
incident energy. Second, the volume must be 
large enough relative to the wavelength so that 
the phase of the wave varies across the volume 
and creates random phase 'situations. Finally, 
the number of scatterers enclosed within the vol- 

ume must be large enough to represent a random 
sampling of scatterers. 

Calculation of the radiative transfer parme- 
ters from Monte Carlo simulation differs from 

the previous approaches in that the N parti- 
cle collective behavior is considered [West et al., 
1994]. The extinction coefficient from this vol- 
ume is derived from the N particle cross section 
per unit volume. The phase matrix is obtained 
from the N particle bistatic cross section per 
unit volume. The effective permittivity is deter- 
mined from calculation of the coherent scattered 

field. The phase and amplitude from the elemen- 
tal volume is compared with a homogeneous vol- 
ume to ascertain the effective permittivity. The 
details of these calculations are described in the 

following two sections. 

3. Monte Carlo Simulations 

The wave propagation and scattering through 
a large number of scatterers is computed using 
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an exact formulation based on Maxwell's equa- 
tions. The advantage of this method is that 
exact values for the extinction coefficient and 

phase matrix can be obtained and then com- 
pared with those obtained from dense media the- 
ory. In this section we discuss how the scat- 
tering and absorption coefficients and the phase 
matrix can be computed from the scattered inco- 
herent fields. We then discuss the case of spheri- 
cal scatterers, where the formulation of the mul- 
tiple scattering equations is in terms of vector 
spherical wave functions, and present the itera- 
tive solution technique for the Monte Carlo sim- 
ulations. 

3.1. Scattering and Absorption 
Coefficients 

The scattering and absorption of radiant en- 
ergy from the incident wave represents transfer 
of energy from the coherent beam into incoher- 
ent power due to the presence of the scatterers. 
To separate the coherent and incoherent compo- 
nents, the scattered field is averaged to give the 
coherent scattered field 

I N• 
< >- (8) o'=1 

where a is the realization index with a = 1, 2, ..., 
Nr realizations. E• is the final scattered field 
from the elemental volume of many scatterers 
and includes their coherent near- and intermedi- 

ate-range interactions. The incoherent field is 
the difference between the total field and the co- 

herent field œ• - E•- < Es >. Calculation of 
the scattering coefficient ns from the incoherent 
scattered field œs can be expressed as 

V leVI . er=l 

The absorption coefficient is due to absorption 
within the particle 

N /V tt œ V t aaN -- • kse r [E/•.(r')[ d , (10) 
fl=l 

where the integration is over the sphere volume 
"is the imaginary part of the relative V and e r 

permittivity for the spheres and rint is the in- 
ternal electric field. 

3.2. Calculation of the Phase Matrix 

An N particle collective scattering amplitude 
9•aZ can be defined for a volume element where 
N is a large number. The subscripts a -1 and 2 
and f• -1 and 2 designate the polarization of the 
incident and scattered waves, respectively, such 
that a,/• - 1 describes a wave polarized perpen- 
dicular to the plane of incidence and a, • = 2 is 
a wave polarized parallel to the plane of inci- 
dence. To determine an expression for •a/•, we 
can use the definition of the incoherent electric 

field œ• - E•- • Es • to write 

eikr 
œa/• = ••a/• (11) 

_= < >], (12) 

where Fa/• is the scattering amplitude of the to- 
tal scattered electric field Es. Multiplying by a 
complex conjugate and taking the ensemble av- 
erage then gives 

1 

< œa/•œ•,/•, >= •-• < Yra•Yra'/•' > , (13) 

where for a = a' and • =/•'. 

< [f'a•3[ 2 >=< [Fa•3[ 2 > -[ < Fa•3 > 12. (14) 

In the Monte Carlo simulations the incident 

wave travels in the • direction and is polarized 
in the • direction (Figure 2). Thus -•11 and -•21 
can be determined by considering the two com- 
ponents of the scattered field that travels in the 
x, z plane or with •bs -- 0. Likewise, •22 and •12 
represent scattering from an incident wave with 
parallel polarization and can be determined by 
consideration of the scattered wave traveling in 
the y, z plane with ;bs = •/2. For example, 
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< > 
R2 N• 

- O, 2 
R 2 Nr 

Nr ••1 œgs(C•s - 0, Os)(15) 
ß - 

where œ•s(q5s - O, Os) • is the horizontal com- 
ponent of the incoherent scattered field of the 
crth realization evaluated at •bs - 0 and for 
0 _< Os _< 2•r. The phase matrix in the plane 
of incidence, Ppoi, is of the form of the Stokes 
matrix (see, for example, Tsang et al. [1985], 
p. 133) but with the single particle scattering 
functions fa• replaced by the N particle collec- 
tive scattering amplitudes ( • ), which are 
functions of the angle between the incident and 
scattered wave, O. 

The full electromagnetic phase matrix over 
all input and output angles can be obtained by 
transformation of Ppoi through rotation angles 
(•1 and •b2. The rotation angles are determined 
by the direction of the vertically polarized wave 
vector with respect to the normal • to the plane 
of incidence. In terms of the incident and scat- 

tered angles they are 

sin •1 -- (•i X •,)' •i 

= [6ix (fcix fCs)/sinO]. 
sin•b2 Z •s'xks•).•s (10) 

= [6sX([cix[%)/sinO].[% 
= 

The phase matrix P is then given by 

P(O, ;b, 0', •b') -- L(-•b•.) Ppoi L(•bl) , (17) 

where L is a the rotation matrix given by [Ishi- 
maru, 1978] 

cos •' 05 sin•' 4) « sin 24) 0 
s ina 4) cos•' 4) -« sin 24) 0 (18) L(4)) - - sin 24) sin 24) cos 24) 0 ' 

0 0 0 1 

s 

X • • 

^ 

,.. . Xs ;s 2 s 

Figure 2. Monte Carlo test volume shown with in- 
cident electric field traveling in the/•i = 2 direction 
and polarized in the •i = • direction. The cubic test 
volume h• a side of len•h s and volume v = s a. 
The scattered fields are in the direction Os and 4s 
and O is the angle between •i and •s. 

3.3. Configuration for Monte Carlo 
Simulations for Spherical Scatterers 

The configuration for the Monte Carlo simula- 
tions is shown in Figure 2. The behavior of the 
incoherent wave in the Monte Carlo simulations 

is considered on a per unit volume basis using an 
elemental volume of Figure 2 and is independent 
of the shape of the volume. In each realization, 
N spheres with permittivity es and radius a are 
randomly deposited [Zurk et al., 1995] into the 
elemental box of volume V = s 3 or sphere with 
v- (4=/a)s a. 

Quantities that are appropriate for use in the 
solution of the radiative transfer equation rep- 
resent statistical averages with respect to the 
scatterer placement. They are obtained from 
Monte Carlo simulations by averaging over real- 
izations where each realization consists of a dif- 

ferent sphere distribution within the test volume 
V. The statistics of the sphere locations can be 
depicted with the bivariate probability measure 
called the pair distribution function. For ran- 
dom deposition of nonoverlapping spheres the 
pair distribution function corresponds to the 
Percus-Yevick pair distribution function. An al- 
ternate deposition method for sticky hard 
spheres [Ding et al., 1994; Zurk et al., 1995] uti- 
lizes a parameter •- which governs the potential 
of spheres to cluster together. Smaller values of 
•- result in more clustering or "sticking" of the 
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spheres and can cause a pronounced increase in 
scattering. 

For all of the simulation results presented in 
this paper a single orientation of the incident 
wave was used and is shown in Figure 2. The 
relationship between the incident field vectors 
and the angles Oi and q•i is 

fci - & sin Oi cos •bi + •) sin Oi sin q•i + • cos Oi (19) 

6i - & cos Oi cos •bi + •) sin Oi sin •bi - • sin Oi (20) 

•i - - & sin q•i q- •) cos •bi. (21) 
The incident wave is an electric field traveling 

in the fci - • direction and polarized in the 9i -- 
• direction, with Oi - 0 and •bi - •r/2. The 
scattered field has components as given above 
with Oi replaced by Os and •bi by q•s. 

3.4. Solution of Multiple-Scattering 
Equations 

Unlike continuous random media, discrete scat- 
terers have well-defined boundaries. Since the 

space occupied by the random scatterers and 
the space occupied by the background are dis- 
tinguishable, with each region having its own 
permittivity, the fields in each region can be ex- 
pressed in a complete vector spherical wave ex- 
pansion and equated at the scatterer boundaries 
using Maxwell equations. For the case of dis- 
crete scatterers in a homogeneous background, 
Maxwell equations can be cast into the Foldy- 
Lax multiple-scattering equations in matrix no- 
tation as [ Tsang et al., 1985] 

N 

a s(a) = • Taa(krar•)a s(•) (22) 
B=I 

+ exp(iki-ra)Taainc, 

where a s(a) is the vector of coefficients for spher- 
ical wave harmonics of the multiple scattered 
field for particle c•, ainc is the coefficient of the 
incident wave, k is the wavenumber of the back- 
ground media, ki is the wavenumber of the in- 
cident wave, N is the number of spheres in 
the containing volume, •r(krar•) is the vector 

spherical wave transformation matrix, T a is the 
T matrix for scatterer c•, and ra and r•3 are the 
centers of particles c• and/•, respectively. Note 
that (23) does not contain a far-field approxima- 
tion and includes near- and intermediate-range 
interactions. 

The final scattered field Es from N spheres at 
an observation point r is 

Es(r) - y• [ar•nM)Mmn(kr, O, •) (23) 
mn 

q- ar•nN) Nmn (kr, 0, q•)] , 
where Mmn and Nmn are outgoing vector spher- 
ical wave functions [Tsang et al., 1985]. 

Equation (23) can be interpreted physically 
as follows. The final scattered field coefficients 

for a particle c• depend on the excitation expe- 
rienced by that particle. This excitation is due 
to both the original incident field ainc as well 
as the radiated field from surrounding particles 
a s(•). The scattered field from other particles 
can be translated from those particles to particle 
c• using Huygen's equivalency principle through 
use of the vector spherical wave transformation 
matrix •r(krar•). Finally, the response of c• to 
the excitation it experiences is specified by its 
T matrix T a. 

The internal electric field appearing in (10) 
can also be written as a sum of spherical wave 
functions as 

rint (•') -- • [c(M)RgMmn(kr, 0, qS) (24) L mn 
mn 

+ c(22 RgNmn (kr, 0, qS)] . 
The relationship between the scattered field 

coefficients s and the internal field coefficients amn 

cron is given by [Tsang et al., 1985; Zurk et al., 
1•] 

c - (-RgQt) -• a •. (25) 

For an N particle system there are N equa- 
tions of the form of (23) which must be solved 
simultaneously. In the iterative approach the 
initial solution is the response of the scatterer 
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to the incident field in the absence of other scat- 

terers. Each successive iteration pertains to a 
higher order of scattering. We continue to iter- 
ate (23) until the maximum change in the field 
coefficients is less than 5%, at which point the 
solution is considered to have converged. The 
number of iterations necessary to achieve con- 
vergence is a direct indicator of the strength of 
the multiple scattering between particles and de- 
pends on fractional volume, dielectric contrast, 
and sphere radius. 

4. Coherent Wave Calculations 

In the following sections we present calcula- 
tions based on the behavior of the coherent wave 

within the Monte Carlo volume. These calcu- 

lations are used to determine (1) the behavior 
of internal dipole moments within the scatterers 
and (2) the real part of the effective permittivity 
for the random medium. 

4.1. Dipole Orientation 

The electric dipole for the jth sphere as calcu- 
lated in Monte Carlo simulations can be written 

P•nt -- (es -- eo)Eint(r)dV , (26) 

where Eint(r) is given by (25) in terms of the 
vector spherical wave functions. The wave func- 
tions can be converted to Cartesian coordinates 

and the integration performed analytically. 
Under the QCA approximation the dipole mo- 

ment can be written as 

QCA _ 3VoeO y Zo e iKr'r • (27) Pint -- I -- fv---• 

- (28) Y- es + 2co ' 

where v0 is the volume of the sphere and Kr is 
the real part of the effective wavenumber whose 
calculation will be discussed later. 

The incident electric field will cause alignment 
of the internal dipoles, and this alignment will 
oscillate with the incident frequency. However, 

there will also be slight misalignment in each 
particle's dipole due to the effect of the scat- 
tered fields from nearby particles. To isolate 
random deviations of the dipole moment, the 
phase dependency of the coherent wave needs 
to be removed. This will be referred to as "de- 

phas!ng" and can be achieved by multiplication 
of Pfnt in (26) for sphere j by the phase factor 
exp(-iKr ß rj). 

The coherent addition of the dipole moments 
will be utilized in section 5.2 and is defined as 

follows. Define the reference point r c as the cen- 
ter of the Monte Carlo test volume (for this cal- 
culation we enhance spherical symmetry by us- 
ing a test volume which is spherical in shape). 
We can then define the coherent dipole sum 
Psum(at) as the addition of the dephased dipoles 
of spheres within a distance al of the reference 
point: 

1•11vl . Psum(C•/) -- •rr I •//Z Pfnt 1 

(29) 

where N• is the number of spheres j that satisfy 
Irj - rcl _• el. The coherent sum can be written 
Psum(C•/) -- px(C•l):• + py(C•l)• + Pz(C•l);•. 

4.2. Effective Permittivity 

The idea of an effective permittivity for a ran- 
dom medium is that if the random medium were 

replaced by a homogeneous medium that re- 
sponds to electromagnetic excitation in an iden- 
tical fashion as the original random medium, the 
permittivity of the homogeneous medium is said 
to be the effective permittivity of the random 
medium. This concept has been explored and 
utilized extensively in the past. 

In the Monte Carlo simulations the coherent 

wave responds to the size, shape, and effective 
permittivity of the test volume. To determine 
the effective permittivity of the collection of 
spherical scatterers, the scattered coherent field 
can be compared with the field scattered from a 
homogeneous volume of the same size and shape 
as the Monte Carlo test volume. The permittiv- 
ity of this homogeneous volume when the scat- 
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tered fields are the same is the effective permit- 
tivity of the random medium. 

The test volume used in the Monte Carlo sim- 

ulations for the effective permittivity calcula- 
tions is a sphere with diameter s. The Mie 
scattering cross section from a sphere with the 
same diameter and with a permittivity eeff is de- 
noted as (Ys,Mie. The permittivity at which the 
Mie cross section is equal to that produced by 
the coherent scattering from the Monte Carlo 
spherical test volume is then, by definition, the 
effective permittivity of the random media. This 
quantity can be determined by varying eeff in the 
calculation of O's,Mi e until the following equality 
is satisfied' 

CYs,Mie -- dos sin(Os) dqSs•r l7l , tr--1 

(3o) 

where E• is the total scattered field. The effec- 
tive permittivity of the Mie sphere contains an 
imaginary component that accounts for the loss 
of energy due to scattering within the medium. 
The imaginary part of the effective permittiv- 
ity can be calculated from its relationship to the 
extinction coefficient under the assumption that 

II I . 
eeff << eeff. 

- 2kolm{ex/•-•e•} 

_ 
V/es s 

"} (•eff (31) + i _-•-- 
(•eff 

ne eel f 
" - , (32) eeff -- 

where t and " eeff eeff are the real and imaginary 
parts of the effective dielectric constant, respec- 
tively. 

5. Results 

In this section we present results from Monte 
Carlo simulations. Section 5.1 discusses the 

ture of the phase matrix obtained from simula- 
tion and section 5.2 gives some physical under- 
standing of the source of the observed depolar- 
ization. Section 5.3 presents the effective per- 
mittivity of the random media and comparisons 
with Clausius-Mossoti and QCA-CP. Section 5.4 
presents the backscatter from a layer of snow 
and comparisons of results of independent scat- 
tering, DMRT, and Monte Carlo simulations. 

5.1. Phase Matrix from Monte Carlo 

Simulations 

The phase matrix was calculated as given in 
section 3.2 for spheres with ka - 0.2, permit- 
tivity es - 3.2e0, and a fractional volume of 
35%. Values for the scattering coefficients can 
be found in Table 1. The independent scatter- 
ing assumption grossly overestimates the scat- 
tering at this fractional volume. QCA-CP pre- 
dicts scattering rates that are lower than those 
calculated with Monte Carlo simulations. This 

discrepancy could be due to the low-frequency 
solution to QCA-CP. 

The elements of the upper corner of the phase 
matrix (i.e., I•1112, 12112, 11212, 1:2212) are 
shown in Figures 3 and 4 as functions of O. 
The solid curve corresponds to nonsticky par- 
ticles and the dash-dotted curve is for particles 
deposited in the test volume with an adhesive 
potential of r = 0.05. The open circles are 

Table 1. Scattering Coefficient for Spheres With 
a - 0.56 mm at 35% Fractional Volume and es = 
3.2e0 

Simulation x 10 -a/cm 

Independent 3.36 
Quasi-crystalline approximation 0.23 
Quasi-crystalline approximation, 0.38 

with coherent potential 
Monte Carlo 0.54 

Monte Carlo, 0.87 
r = 0.20 

Monte Carlo, 1.17 
r = 0.05 

Monte Carlo, 9.38 
r = 0.01 
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Figure 3. Elements of the phase matrix for an in- 
cident wave polarized perpendicular to the plane of 
incidence as a function of 13. Results for spheres with 
es - 3.2e0, 35% fractional volume, and a - 0.6 mm 
at 16 GHz. Monte Carlo results shown for nonsticky 
spheres (solid curve) and sticky spheres with r - 0.05 
(dash-dotted curve). Independent scattering shown 
as open circles. Top panel shows < I.•'1112 •. Bottom 
panel shows < I.•'2112 •. 

the Rayleigh phase matrix elements where the 
scattering coefficient is computed with the inde- 
pendent scattering assumption. Depolarization 
from spheroids with an axial ratio of c/a = 1.70 
is shown as crosses in Figure 4. 

Several characteristics of the Monte Carlo 

phase matrix can be immediately noticed. The 
copolarized intensities ([•'11[ 2 and 1•'22[ 2) have 
the same angular dependency as the Rayleigh 
matrix, but the overall intensity is lower because 
of the more realistic scattering coe•cient. As 
discussed by Zurk et al. [1995], the sticky parti- 
cles have scattering levels that are much greater 
than the nonsticky particles because of the effec- 

tively larger particle size. For spherical particles 
the off-diagonal terms (1•1212 and 1•2112) of the 
Rayleigh matrix are zero. Monte Carlo simula- 
tions of both sticky and nonsticky particles give 
nonzero depolarized intensities that are approx- 
imately 2 orders of magnitude lower than the 
copolarized intensities. The level of depolariza- 
tion calculated in the Monte Carlo simulations 

for the nonsticky spheres is comparable to the 
depolarization resulting from spheroids with ax- 
ial ratios of 1.70. 

Figures 5 and 6 are plots of the depolariza- 
tion to copolarization ratios ( f• (Y21/f(9 (Yll and 
fe (Y12/fe rY22) as a function of permittivity and 

X 10 -6 
J I I I I/ _ -- I I ' 

6 /// \ 

%4 •-----" 

'• // / 
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Figure 4. Elements of the phase matrix for an in- 
cident wave polarized parallel to the plane of inci- 
dence as a function of 13; parameter values the same 
as Figure 3. Monte Carlo results shown for nonsticky 
spheres (solid curve) and sticky spheres with r = 0.05 
(dash-dotted curve). Independent scattering shown 
as open circles and spheroids with c/a = 1.70 shown 
as crosses. Top panel shows < 1•1212 >. Bottom 
panel shows < l.Z'2212 >. 
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Depolarization level •'•/•'• (asterisks) 
and •2/a22 (crosses) as a function of the spheres' 
relative permittivity 

fractional volume, respectively. The ratio is 
larger for parallel polarization because of the 
lack of copolarized energy as • approaches •/2. 

5.2. New Depolarization Versus Classical 

For a single sphere in the presence of plane 
wave excitation the dipole moment within the 
sphere is exactly aligned with the incident polar- 
ization, and the scattered field in the scattering 
plane will not undergo any depolarization. Since 
in classical radiative transfer theory the phase 
matrix depends only on single-particle scatter- 
ing quantities, the phase matrix contains zero 
depolarization components in the plane of inci- 
dence. The reason for this thinking was the be- 
lief that the effect of any small misalignment of a 
sphere's internal dipole (relative to the incident 
field) due to the presence of scattered fields from 
surrounding spheres will cancel. This cancella- 

tion is due to the random, isotropic nature of the 
relative locations of the spheres, which causes a 
randomness in the perturbation of the dipole ori- 
entation. For the case of a large enough number 
of spheres the net depolarization was thought to 
be zero. 

A central assumption of this idea is that the 
wave will continue to add the dipole moments 
coherently over a large enough distance for this 
cancellation to occur. If the distance required 
is large in comparison to the electromagnetic 
wavelength, the wave will decorrelate and the 
dipole moments separated by wavelengths apart 
will not be added coherently. In other words, 
there is an intrinsic length scale over which co- 
herent addition of dipole radiation is achieved by 
the electromagnetic wave. If there are enough 
random, isotropically positioned spheres within 
this length scale, there will be no depolarization. 

0.14 , , , , , , , , 
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0 • 
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Figure 6. 

+ 

+ 

0,15 0.2 0.25 0.3 0.35 0,4 0.45 0.5 
FV 

Depolarization level 0'21/0'11 (asterisks) 
and o'•2/o'22 (crosses) as a function of fractional vol- 
ume. 
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If, however, only a few hundred spheres are en- 
countered before the wave decorrelates, then the 
cross-dipole moment will not be zero. If we de- 
fine the length scale for the correlated addition 
of dipoles as Aeff, then the number of spheres 
contained within a volume Ae•ff must be large for 
the cross dipole to go to zero. 

In an attempt to quantify the concept of a 
length scale for the electromagnetic wave we 
used (29) to calculate explicitly the orientation 
of the internal electric dipole for 2500 spheres 
with fractional volume of 20% and permittiv- 
ities of 3.2 e0 and 2.2 e0. The magnitude of 
px and pz relative to IPsuml (i.e., those com- 
ponents misaligned with the incident y polar- 
ization) for es - 3.'2e0 is shown in a log scale 

-15 

•-20 

•. -25 

•-30 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

as a function of at/Ao in the top of Figure 7. 
The figure shows that the level of the depo- 
larization decreases as more and more spheres 
are introduced into the sum in (29). The resul- 
tant net depolarization from the Monte Carlo 
simulations of-17 dB in the phase matrix im- 
plies that the electromagnetic wave only adds 
coherently within the spherical region of diam- 
eter d• = 2c• = 0.27A0. For a permittivity of 
2.2 e0 (shown in the bottom of Figure 7) the de- 
polarization drops more quickly because of the 
diminished influence of the scattered fields rela- 

tive to the incident excitation. The depolariza- 
tion from the simulations corresponds to coher- 
ent addition within a distance of dt = 0.36A0. 
The effective wavelengths for es = 3.2e0 and 
es - 2.2e0 are Aeff - 0.88A0 and Aeff -- 0.92A0, 
respectively, where the effective media calcula- 
tion is described in the next section. These dis- 

tances indicate that the electromagnetic wave 
adds the dipoles coherently over roughly a quar- 
ter of an effective wavelength. Any existing de- 
polarization within -• ¬Aeff will be added co- 
herently and incoherently outside that distance. 
This concept has important relevance to the dis- 
tance scale over which coherent averaging is to 
be performed. 

5.3. Effective Media Calculations 

-15 

\ \ 

\ 

0.1 0.2 0.3 0.4 0.5 0.6 

sphere radius (in wavelengths) 

Figure 7. Magnitude of the x (dot-dashed curve) 
and z (dashed curve) components of the internal 
dipole normalized to IPyl and computed as specified 
in (29). Results shown for 20% fractional volume 
with 2500 spheres for (top) es = 3.2e0 and (bottom) 
es = 2.2eo. The x axis is the radius al/Ao of the 
spherical volume over which the sum is computed. 

As outlined in section 4.2, the coherent scat- 
tering from the Monte Carlo volume can be used 
to calculate the effective permittivity of a collec- 
tion of particles within the volume. This calcula- 
tion was tested by comparing the coherent field 
scattering pattern as a function of angle from 
cubes of lengths s = 1.27, s = 1.39, and s = 1.50 
containing 3000, 4000, and 5000 spheres, respec- 
tively, of permittivity e = 3.2e0 at 20% fractional 
volume. Since the size of the Monte Carlo vol- 

ume varied, the coherent scattering pattern did 
as well. Scattering from the three cubes was 
then calculated with the Born approximation 
and an effective permittivity with the real part 
ranging between ee• = 1.1 and ee• = 1.35. For 
all three sized cubes at an effective permittivity 
of eeff = 1.27 the magnitude of the forward scat- 
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tering peak and the fine structure of the side- 
lobes agreed well with that obtained from the 
Monte Carlo simulations. For higher fractional 
volumes a spherical test volume was used for 
the Monte Carlo simulations, and the coherent 
scattering was calculated exactly from the Mie 
scattering. Figure 8 shows the real part of the 
effective permittivity as a function of fractional 
volume. Also shown is the permittivity calcu- 
lated from the Clausius-Mossoti mixing formula 
and the quasi-crystalline approximation with co- 
herent potential. It is interesting to note that 
the Monte Carlo results agree quite well with 
those obtained from the mixing formula but are 
slightly below the values predicted by QCA-CP. 
In recent work [Zurk et al., 1995] we showed 
that the extinction rates calculated from Monte 

Carlo simulations agreed with those produced 
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Figure 8. Real part of the effective permittivity 
eefr versus fractional volume calculated from Monte 
Carlo simulations (asterisks) and compared with 
Clausius Mossotti (dashed curve) and QCA-CP (dot- 
ted curve). 
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Figure 9. Re(pu) versus z/Ao, where pu is aver- 
aged over constant z planes. Monte Carlo results (as- 
terisks) shown for 20% fractional volume with 5000 
spheres with es = 3.2e0 in a cubic test volume. Also 
shown is cos(Krz) for Kr = k0• (dotted curve) 
and Kr = k0 (dashed curve). 

from QCA-CP but were higher than those pro- 
duced from QCA. 

An alternate method of obtaining the real part 
of the effective permittivity is to plot Re(py) as 
a function of z. The coherent plane wave travels 
in the z direction through the Monte Carlo cu- 
bic volume with a phase determined by e -iKrzj . 
This excites a dipole moment polarized in the 
y direction whose amplitude traces out a co- 
sine curve with a wavelength of Aeff = A0/evr•e•. 
The asterisks in Figure 9 represent the average 
of Re(py) computed along planes orthogonal to 
the z direction (i.e., x, y planes) for spheres at 
35% fractional volume and with e = 3.2e0. The 
dipole oscillation as predicted by the QCA ap- 
proximation in (27) is shown as a dotted curve 
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for eeff = 1.27 and as a dashed curve for free 
space propagation with eeff = 1.00. The inter- 
nal dipoles in the Monte Carlo simulation follow 
closely those predicted by the effective permit- 
tivity calculation. There are slight discrepancies 
close to the ends of the volume (at z = 0 and 
z = 1.5A0 planes), since these planes are not 
completely embedded in the effective medium. 

5.4. Active Remote Sensing from a Layer 
of Snow 

The radiative transfer model can be applied to 
determine the effect of volume scattering within 
a layer of discrete spherical scatterers overlying a 
homogeneous half-space. The results depend on 
the method in which the scattering coefficient, 
the phase matrix, and the effective permittiv- 
ity are determined. In this section we present 
the results from the classical model, the DMRT 
model, and the Monte Carlo model. All three 
models are applied to the geometry shown in 
Figure 1, where the bottom layer has a permit- 
tivity of e2 = (6.0 + i0.6)e0, a typical value for 
soil. Region i is composed of scatterers with 
es = 3.2e0 in a background of air el = e0. The 
scatterers occupy 35% by volume and have a ra- 
dius of 0.6 mm at 16 GHz. 

Figure 10 shows the backscattering cross sec- 
tion as a function of snow thickness d for an inci- 

dent angle of 19.31 ø , as calculated with the three 
models. In Figure 10 the copolarized backscat- 
ter crvv is shown as a dashed curve and the depo- 
larized any backscatter as a solid curve. Results 
from the classical model (top left) have very high 
copolarized and depolarized levels because of the 
overestimation of the scattering coefficient from 
the independent scattering assumption. For the 
depolarized backscatter the first-order RT so- 
lution is zero when the Rayleigh phase matrix 
is used. The second-order solution is nonzero 

.(2) . with I•nv I•- ns2d 2 Thus in the top left and top 
right plots the copolarized backscatter is a first- 
order effect and the depolarization is second- 
order. For scatterers at 35% by volume, DMRT 
predicts a more reasonable estimate of the scat- 
tering coefficient and gives a copolarized level 
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Figure 10. Backscattering as a function of snow 
depth for 16 GHz at Oi = 19.31 ø from a layer of snow 
with a = 0.6 mm, es = 3.2e0, and 35% fractional 
volume. The dashed curve is crvv, and the solid curve 
is crnv. The four plots show results of the radiative 
transfer theory for the (top left) classical model, (top 
right) dense media radiative transfer model, (bottom 
left) Monte Carlo simulations, and (bottom right) 
sticky particles with r = 0.01. 

that is 10 dB down and a depolarized level that 
is 13 dB down relative to the classical model. 

The backscattering cross sections from the 
Monte Carlo model are shown in the bottom two 

plots. For the nonsticky case (bottom left) the 
extinction coefficient calculated from the Monte 

Carlo simulations is not significantly larger than 
riDMaT and the level of the copolarized return 8 • 

is comparable to that from the DMRT model. 
However, the depolarized backscatter is much 
greater, particularly at small snow depths such 
as 10 cm, where it is more than double that 
predicted by DMRT. This is because the phase 
matrix from the Monte Carlo simulations has 
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nonzero off-diagonal terms, and thus the de- 
polarization has nonzero first-order as well as 
second-order contributions. The first-order con- 

tribution is linearly dependent on d and will 
therefore be greatest in comparison to the second- 
order when the snow depths are small. 

In the bottom right plot the backscattering 
cross sections from the Monte Carlo model are 

shown when the particles were deposited with 
a sticking potential of • = 0.01. This sce- 
nario could represent snow that has been on the 
ground long enough for metamorphic forces to 
cause the grains to become rounded, cluster to- 
gether, and bond. The effects of this clumping 
are to increase the effective particle size and thus 
increase the scattering coei•icient to a value ap- 
proximately 3 times as large as that predicted 
under the independent scattering assumption for 
nonsticky particles [Zurk et al., 1995]. Both 
the copolarized and alepolarized backscattering 
from a layer of clustered snow grains are higher 
than that calculated under the classical model 

for nonsticky particles. For these very sticky 
particles the level of the alepolarized backscatter 
is due mainly to the second-order contributions. 

The bistatic cross sections computed using the 
Monte Carlo model show even greater increases 
in alepolarization relative to conventional the- 
ory. Figure 11 shows the bistatic scattering at 
•)s = 59 ø for spheres with • = 0.2 and the same 
parameters as the previous plots. The first- 
order copolarized return is shown as a dotted 
curve, the first-order depolarization is shown as 
a dashed curve, and the second-order depolariza- 
tion is shown as a dash-dotted curve. The first- 

order alepolarization, which would be zero un- 
der conventional theory, is 7 dB higher than the 
second-order at shallow snow depths and reaches 
-22 dB at depths of 90 cm. 

The increased extinction predicted from sticky 
particles can be used to explain the higher lev- 
els seen in backscattering data. Results from 
Monte Carlo simulations of sticky particles are 
compared with active microwave measurements 
made on December 16, 1979, at a test site in Col- 
orado [Stiles et al., 1981]. Figure 12 shows the 
backscattering at 17 GHz for a 47.5-cm layer of 
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Figure 11. Bistatic cross sections for the same 
parameters as in Figure 10 except Os - 59 ø and 
r = 0.20. The first-order copolarized return is shown 
as a dotted curve, the first-order alepolarization is 
shown as a dashed curve, and the second-order de- 
polarization is shown as a dash-dotted curve. 

snow with grain radius of a - 0.56 mm and frac- 
tional volume of 20% as a function of incidence 

angle. The copolarized backscatter (shown as 
a dotted curve) and the depolarized backscatter 
(shown as a solid curve) were computed using 
the extinction coefficient and phase matrix for 
spheres with • = 0.1. 

6. Discussion and Conclusions 

The Monte Carlo simulations provide a valu- 
able tool for testing our understanding of elec- 
tromagnetic wave propagation through dense 
media. The simulations take into account corre- 

lated scattering and coherent wave interaction. 
The coherent and incoherent field distributions 
can be used to calculate the extinction coeffi- 

cient, phase matrix, and effective permittivity of 
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Figure 12. Backscattering cross section for 17 GHz 
compared with data for a 47.5 cm deep snow cover 
with grain radius a - 0.56 mm and fractional volume 
fv - 0.2. Data shown as circles (copol) and asterisks 
(depol); radiative transfer model with sticky spheres 
•- - 0.1 shown as a dotted curve (copol) and solid 
curve (depol). 

the discrete random medium. These quantities 
are necessary for solution of the radiative trans- 
fer equation. The extinction coefficient from 
Monte Carlo simulations is significantly lower 
than that predicted by independent scattering 
but is comparable with QCA-CP. 

The copolarized elements of the phase matrix 
from the Monte Carlo simulations agree with 
that obtained from DMRT. However, the off- 
diagonal elements are nonzero but are 2 orders of 
magnitude smaller than the copolarized energy. 
The presence of this depolarization is due to the 
random organization of the spheres, which can 
give rise to perturbations in the internal dipole 
alignment. For very low frequencies the random, 
isotropic arrangement of spheres causes cancella- 

tion of these deviations. For higher frequencies, 
since the wave will only add the dipole moments 
coherently over scales of the order of 1/4 of a 
wavelength, the depolarization in the scattered 
field will remain. 

Application of a radiative transfer model can 
yield different results, depending on the assump- 
tions used in calculation of the extinction coef- 

ficient, phase matrix, and effective permittivity. 
The independent scattering assumption gives ex- 
cessively high levels of backscatter because of 
overestimation of scattering. DMRT gives more 
realistic scattering coefficients but neglects the 
first-order depolarization effect. First-order de- 
polarization arises from coherent near-field in- 
teraction among the spheres that creates non- 
alignment of dipole moments. Using the phase 
matrix and scattering coefficient obtained from 
Monte Carlo simulations can produce copolar- 
ized backscattering that is comparable to QCA- 
CP but also much higher levels of depolarized 
backscatter as a result of nonzero contributions 

from both first- and second-order effects. This 

combination results in a different snow depth 
and frequency dependence than indicated by 
conventional theory. Large increases in both 
copolarized and depolarized backscatter can be 
achieved by including the clustered nature of 
metamorphosed snow in a sticky particle model. 

The effective permittivity of snow can be de- 
rived from the results of Monte Carlo simu- 

lations. The imaginary part of the effective 
wavenumber is related to the extinction coeffi- 

cient for the incoherent wave, and the real part 
corresponds to the phase progression of the co- 
herent wave. The phase information is available 
both in the coherent scattering from the Monte 
Carlo volume as well as the oscillation of the in- 

ternal dipole within the scatterers. The effective 
permittivity obtained from simulation yields an 
imaginary part that is in agreement with that 
predicted by QCA-CP. The real part of the per- 
mittivity agrees with that obtained from mixing 
formulas such as the Clausius-Mossoti formula 

but is slightly lower than that predicted from 
QCA-CP. 
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