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Abstract. Pulsed laser ablation of blood clots in a fluid-filled blood ves-
sel is accompanied by an explosive evaporation process. The resulting
vapor bubble rapidly expands and collapses to disrupt the thrombus
(blood clot). The hydrodynamic pressures following the bubble expan-
sion and collapse can also be used as a driving force to deliver clot-
dissolving agents into thrombus for enhancement of laser thrombolysis.
Thus, the laser-induced bubble formation plays an important role in the
thrombus removal process. We investigate the effects of boundary con-
figurations and materials on bubble formation with time-resolved flash
photography and high-speed photography. Potential applications in drug
delivery using microsecond laser pulses are also discussed. © 1998 So-
ciety of Photo-Optical Instrumentation Engineers. [S0091-3286(98)00108-1]

Subject terms: laser-induced cavitation bubble; localized drug delivery; high-
speed photography; hydrodynamic pressure.
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1 Introduction

Interest in cavitation bubbles in liquids initially arose from
their destructive action on ship propellers and in hydraulic
machinery. Cavitation erosion is attributed to the action of
acoustic transients emitted during bubble collapse and to
the impingement of the high-speed liquid jet that develops
when a bubble collapses in the vicinity of a solid
boundary.1 It was shown soon after the invention of the
laser that cavitation can also occur in a liquid when irradi-
ated with pulsed laser light.2 This form of cavitation is
called optical cavitation.

Laser-induced cavitation bubbles have been used in oph-
thalmology, urology, and cardiology. For example, laser
pulses produce a plasma with subsequent bubble formation
for ocular surgery by photodisruption.3 Laser lithotripsy
fragments kidney stones through cavitation erosion.4 Laser
pulses have been used to remove thrombus in obstructed
arteries.5 In a previous study, we demonstrated that the
laser-induced hydrodynamic pressures arising from cavita-
tion bubble expansion and collapse could also drive drug
into the thrombus.6 This technique is termed photome-

chanical drug delivery.7 It has been found that the cavita-
tion bubble formation is the governing mechanism for this
technique.

A cavitation bubble can be generated at a fiber tip or on
an ablation target, depending on where the laser energy is
absorbed. The cavitation bubble is formed at the fiber tip
when a laser pulse is delivered into an absorbing liquid
~e.g., blood!. The bubble can also be formed on a sub-
merged target~e.g., blood clot! if a fluid-core catheter is
used to wash away ambient blood, and, for example, a 480
or 577 nm laser pulse can be absorbed by the blood clot.8,9

Although several studies have focused on the laser-
induced cavitation bubble dynamics,10–12 little work has
been done on the dynamic behavior of laser-induced cavi-
tation bubbles formed in absorbing liquids with different
physical properties or on ablation targets with different me-
chanical strengths with the pulsed dye laser. The aims of
this study are

1. to study the boundary effects of the fiber and con-
tainer on the bubble formation to simulate the effect
of clinically relevant boundary conditions~vessel
walls and laser catheter! on cavitation bubble forma-
tion

2. to investigate the material effects on the bubble for-
*Permanent address: Portland State University, Department of Electrical
Engineering, P.O. Box 751, Portland, Oregon 97207-0751.
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mation; specifically, how the different liquids sur-
rounding a fiber tip or on a target surface affect the
bubble formation and also how mechanical strength
of thrombus affects the bubble dynamics.

2 Materials and Methods

2.1 Sample Preparations

2.1.1 Absorbing liquids

Two liquids ~water and mineral oil from Paddock Lab!
were used in this study. Dyes~Direct Red 81 from Sigma
and D&C Red no. 17 from Warner-Jenkinson! were added
to water and oil, respectively, to achieve the desired ab-
sorption. Both of these dyes were photostable and had a
peak absorption around 504 nm. The absorption coeffi-
cients of the solutions had a nearly linear relationship with
the concentration of dye in the solutions: 0.0837 g of Direct
Red 81 in 30 mL water gave an absorption coefficient of
300 cm21, while 0.0367 g of D&C Red no. 17 was added
into 30 ml oil to obtain the same absorption. Direct Red 81
dye was easily dissolved in water after stirring several min-
utes at room temperature (;25°C). Heating was needed to
make the oil solutions. The dye-oil mixture was heated to
100°C with stirring until the appearance became uniform,
and it was then cooled down to room temperature before
the experiments.

2.1.2 Absorbing soft targets

Thrombus was simulated using 3.5 to 5% gelatin~60 to 300
bloom, Sigma Chemicals!. The percentage was determined
by the weight ratio of gelatin to water. The bloom number
is the standard method for indicating the toughness of gela-
tins and is a measure of surface tension. Higher bloom
numbers indicate stronger gelatins. No attempt was made to
correlate the bloom number with the strength of any spe-
cific clots in this study, although the range studied was
similar to that of typical clot toughness. The gelatin-water
mixture was heated to 60°C with stirring until it became
clear. Liquid gelatin samples were poured into 1-cm cu-
vettes and molded to form 2 to 3 cm-thick thrombus models
with flat surfaces. Dye solution~0.07 g of Blue 15 from
Sigma in 40 mL water! was placed on the gelatin surface
for 5 min and a blue layer~;300mm thick with an
;100 cm21 absorption coefficient at 577 nm! was formed.
This blue layer enabled the boundaries of the cavitation
bubble to be seen, even when they otherwise would have
been hidden by a light absorbing gelatin substrate. At 504
nm, 300 cm21 gelatin samples were made by adding 0.3 g
of Direct Red 81 from Sigma in 100 mL of liquid gelatin
~3.5% 175 bloom!.

2.2 Laser Irradiation

Laser irradiation at 504 or 577 nm was provided by
flashlamp-excited dye lasers~Palomar Medical Technolo-
gies!. The pulse duration was;1.3ms ~full width at half
maximum!. The laser pulses were delivered into absorbing
liquids or through clear liquids onto thrombus phantoms via
a fused-silica fiber with 300 or 1000mm diameter. The
energy per pulse was measured with a joulemeter~Molec-
tron!. Pulse-to-pulse energy variation was less than 5%.

2.3 Photographic Systems

Two photographic systems were used to visualize the
bubble formation. A time-resolved flash photographic setup
provided a series of single stroboscopic pictures, while a
high-speed framing camera captured 12 images for a single
event. The bubble sizes were measured directly from the
images by using the optical fiber in each image as a scale
factor. The images were analyzed using NIH Image or IP
Lab software.

2.3.1 Flash photography

The microsecond time-resolved flash photography setup is
shown in Fig. 1. The processes taking place at the fiber end
or on the gelatin surface were photographed using a trig-
gerable CCD camera~CV-251, Protec!. A stereomicro-
scope~SZ60, Olympus! was used for magnification. Each
picture was a single event and was repeated three times for
each parameter set. The bubble size was reproducible to 5%
before the bubble collapse. The appearance of the cavita-
tion bubbles varied widely after the bubble collapse. A
strobe ~MVS–2601, EG&G! with a 5ms pulse duration
~full width at half maximum! was used for illumination.
The delay times were controlled by a digital delay genera-
tor ~DG535, Stanford Research Systems!. The generator
was triggered by the laser pulse by using a photodiode
~UDT Instruments! that was attached to the laser delivery
fiber, and flash photographs were taken at variable delay
times of 5 to 500ms after the laser pulse. A laser filter was
positioned in front of the microscope to avoid blinding the
CCD camera.

2.3.2 High-speed shadowgraph

Figure 2 shows a schematic of the high-speed photographic
system. A cw argon ion laser at 514 nm was used for illu-
mination. The argon beam was expanded to 10 mm diam-
eter using a 33 beam-expanding telescope for illuminating
the sample area. A shadowgraph of the sample surface and
optical fiber was imaged on the input of an electronic fram-
ing camera~FS501, Ultranac!. By properly timing the
pulsed-dye laser and argon ion laser with the triggering of
the electronic framing camera, multiple exposures of the
interaction of the laser pulse with the thrombus could be

Fig. 1 Schematic of experimental setup for flash photography.
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realized. The ablation process could be examined from as
early as several hundred nanoseconds to several hundred
microseconds after the laser pulse. The electronic framing
camera captured 12 pictures with an adjustable interframe
time. The photographs were taken with 1ms exposure time
and 25ms interframe time. The 12 frames were captured on
a 11523 770 pixel CCD chip with the image read directly
into a PC for data analysis. The illumination light was ad-
justed using a neutral density wheel~50G00AV.2, New-
port!.

2.4 Experiments

2.4.1 Boundary effect

It has been shown that similar maximum cavitation bubble
sizes can be produced by different sets of laser parameters.6

For example, a cavitation bubble 3.2 mm in diameter can
be produced in unbounded colored oil (300 cm21) by a
300mm fiber at 33 mJ, by a 600mm fiber at 50 mJ, or by a
1000mm fiber at 100 mJ, with an error estimate of less than
5%. It is unclear, however, whether the bubble generated
by a smaller fiber can produce the same hydrodynamic
pressure as that created by a larger fiber with higher energy
when the bubble diameters are similar. Thus, an experiment
was performed in a silicone tube~3 mm inner diameter and
a wall thickness of 0.4 mm! as a blood vessel model using
energies that could create bubbles of the same width for a
300mm fiber and a 1000mm fiber. The mechanical prop-
erties of the silicone tube differed from those of human
arteries; the Young’s modulus of the silicone tube was
8 N/mm2, whereas it is 2 to 5 N/mm2 for human vessels.13

The effects of boundaries were also investigated by com-
paring the bubble dimensions generated in absorbing liq-
uids with different boundary conditions~i.e., a 523 52
3 50 mm bottle and 3-mm silicone tube!.

2.4.2 Material effect

Three experiments were performed to investigate the ef-
fects of materials:

1. Does the viscosity and density of absorbing liquids
affect the size of bubbles formed in the liquids?

2. What are the differences when the bubble forms on a
soft target immersed in the liquids?

3. Does the mechanical strength of the ablation targets
affect the bubble dynamics?

In the first experiment, single pulses of 100 mJ were
delivered into an oil solution or water solution through a
1000mm fiber. The absorption coefficient for both solu-
tions was 300 cm21. The solutions filled a 3 mm-diameter
silicone tube and the fiber was centered inside the tube. The
laser emitted light with a wavelength of 504 nm.

In the second experiment, two sets of experiments were
performed. The first set used single pulses of 50 mJ deliv-
ered onto 100 cm21 gelatin through clear water or clear oil
via a 300mm fiber placed 1 mm above the gelatin surface.
The bubble formation was visualized using flash photogra-
phy and high-speed shadowgraphy. The laser emitted
577 nm light. The second set used 100 mJ laser pulses to
irradiate the gelatin sample (300 cm21) through clear wa-
ter, clear mineral oil~USP, Paddock Lab!, and clear con-
trast medium~MD-76, Mallinckrod Medical, Inc.! using a
1000mm fiber that was 1 mm away from the gelatin sur-
face. The bubble width was measured 300ms after the laser
pulse with flash photography. The laser operated at 504 nm.
The density and viscosity for water, mineral oil, and con-
trast medium are summarized in Table 1.

The third experiment visualized the bubble formation on
100 cm21 gelatin with different mechanical strengths.
Single pulses of 50 mJ were delivered via a 300mm fiber
onto a gelatin sample (100 cm21) with varied hardness
~3.5% 60 bloom and 5% 300 bloom! under water. The fiber
tip was 1 mm above the gelatin surface and centered inside
the 1 cm cuvette. The laser operated at 577 nm.

3 Results

3.1 Boundary Effect

Figures 3 and 4 show the bubble evolution in a 300 cm21

oil solution confined in a 3 mm silicone tube. The bubbles

Fig. 2 Schematic of high-speed shadowgraph system.

Table 1 Variation in maximum bubble size when formed in
300-cm21 liquids or under clear liquids on 300-cm21 gelatin.

Liquid
Density

(mg/mm3)
Viscosity

(cP)

Bubble Width

In Liquid
(mm)

On Gelatin
(mm)

Water 0.992 0.653 3.9 5.560.2

Mineral oil 0.86 29.67 2.2 5.460.2

Contrast medium 1.411 13.34 — 5.260.3

Note that the bubbles formed in liquids were confined by a 3-mm
tube, and consequently are smaller than bubbles formed in 1-cm
cuvettes because of the presence of tube boundaries. The errors
are the standard deviation of three measurements.
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were created by delivering single pulses of 33 mJ via a
300mm fiber ~Fig. 3! or 100 mJ via a 1000mm fiber ~Fig.
4!, respectively. There were no differences in the maximal
tube wall diameter due to the bubble expansion and mini-
mal diameter caused by the collapse between the two cases.
In both cases, the bubble reached its maximum size 50ms
after the laser pulse and dilated the tube wall by 10%. The
subsequent bubble collapse caused a 4% invagination of the
tube wall. Figure 5 shows the bubble expansion and col-
lapse in an unbounded 300 cm21 water solution~top panel!
and in the silicone tube~bottom panel!. The bright spot in
the second frame~top panel! was the flash of light from the
strobe. The maximal dilation of 29% was at 60ms and the
tube diameter was reduced by 16% at 900ms due to the
collapse.

3.2 Material Effect

The cavitation bubble dimensions were significantly differ-
ent when the bubbles were formed in the 300 cm21 oil
solution ~Fig. 4! compared with those formed in the
300 cm21 water solution~Fig. 5!. The maximum bubble
width formed in the water solution was larger than that
formed in the oil solution by a factor of 1.8~i.e., 3.9 mm in
water and 2.2 mm in oil! using the same laser energy~in
this case, 100 mJ! and resulted in significant differences in
the dilation and invagination of the tube wall.

Figure 6 shows the bubble width generated on the ab-
sorbing gelatin surface under clear water and oil. There

were no significant differences in bubble sizes formed on
the gelatin under water or oil. The bubble heights did not
differ significantly from the widths. The bubble in water
grew faster initially (;25ms), while at 50ms they had the
same size. Flash photographs revealed that the bubble di-
mensions formed under water, oil, and contrast medium
were quite similar to each other. The measurements are
summarized in Table 1. We observed that a stream of color
was released from the absorbing gelatin surface when the
contrast medium interacted with the gelatin samples. This
was not observed for water or oil.

Figures 7 and 8 show in side view the behavior of a
bubble generated on an absorbing gel surface with different
mechanical strengths using the flash photography setup.
Two series of high-speed shadowgraphs are shown in Figs.
9 and 10. In the case of soft 3.5% 60 bloom gelatin, the
bubble shape was spherical during expansion and contrac-
tion. The bubble reached its maximal dimension about 100
ms after the laser pulse, and then started to contract slowly
~Fig. 7!. The collapse occurred about 300ms after the laser
pulse. The bubble shape became elliptical between 150 and
200 ms after the laser pulse when the harder 3.5% 300
bloom gelatin was used~Fig. 8!. The first collapse was
observed at about 250ms and then slightly rebounded. The
second collapse occurred between 400 and 450ms. The
gelatin was ejected from the surface afterward. Similar
bubble behavior was observed from the high-speed shad-
owgraphs. The bubble widths measured from Figs. 9 and

Fig. 3 Side view of bubble formation in a 300-cm21 oil solution confined in a 3-mm silicone tube.
Single pulse of 33 mJ was delivered via a 300-mm fiber.
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10 are plotted as a function of delay time in Fig. 11. These
shadowgraphs confirmed that the series of isolated strobo-
scopic pictures could be used to characterize the bubble
formation even though the process may vary from shot to
shot and from sample to sample.

4 Discussion

We investigated the effects of boundary and materials on
the bubble formation, which are of potential clinical inter-
est, for photomechanical drug delivery in particular. To
simulate the effect of clinically relevant boundary condi-
tions ~e.g., vessel walls and laser catheters! on the bubble
formation, the absorbing liquids were confined in a 3 mm
silicone tube as a vessel model and the laser light was de-
livered through optical fibers with different diameters. The
use of liquids with different physical properties or gelatin
samples with different mechanical strengths provided a
simple way to elucidate how the materials affect the dy-
namic behavior of the bubbles in absorbing liquids and on
soft targets, as may occur in the process of photomechani-
cal drug delivery or laser thrombolysisin vivo. Two photo-
graphic techniques, time-resolved flash photography and
high-speed shadowgraphy, were used to visualize the
bubble formation. The bubble dimensions measured with
both techniques were quite similar to each other, although
the flash photographic setup provided a series of single

stroboscopic pictures, while the high-speed framing camera
captured 12 images for a single event. The differences were
within 5%.

This study showed that bubbles of the same size could
be created using different fibers with different energies.
These equal sized bubbles had the same mechanical effects
on dilation and invagination of a 3 mm silicone tube wall.
This finding suggests that photomechanical drug delivery
can be achieved by use of smaller fiber with lower energy.
The results of the present study also demonstrated that the
bubble formation was affected by the surrounding space.
The bubbles formed in the semi-infinite medium, i.e., in a
52 3 52 3 50 mm bottle, were larger than those formed in
a 3 mm tube~Fig. 5!. About 34% of the bubble energy was
dissipated in the dilation of the tube wall. This estimation
was made using Rayleigh’s bubble formula3,4,14: Ebubble

54/3pRmax
3 Dp, whereEbubble is the energy of the bubble

andDp is the difference between inner and outer pressure,
by assumingDp51000 kPa~the hydrostatic pressure! in
both the plastic bottle and tube.

Photomechanical drug delivery uses the hydrodynamic
pressure following the laser-induced bubble expansion and
collapse to deliver the drug into the thrombus during the
laser thrombolysis procedure. The bubble is formed on the
thrombus covered with clear fluids~e.g., saline and con-
trast!. One concern is whether the density and viscosity
affect the bubble dynamics. This study demonstrated that

Fig. 4 Side view of bubble formation in a 300-cm21 oil solution confined in a 3-mm silicone tube.
Single pulse of 100 mJ was delivered via a 1000-mm fiber.
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the effects of density and viscosity of the liquids above the
target on the bubble formation are negligible when the
bubble is formed on an ablation target~Fig. 6 and Table 1!,
but the bubble dynamics strongly depended on the physical
properties of the absorbing liquid when the bubble is
formed in an absorbing liquid~Figs. 4 and 5!. These find-
ings suggest that the properties of the liquids dominate the
bubble formation as the laser energy is absorbed by the
absorbing liquids, while the bubble formation is governed
by the properties of the targets if the laser energy is ab-
sorbed by the target. In brief, the dynamics of bubble for-

mation depends on where the bubble is formed. Moreover,
photomechanical drug delivery may be achieved by using
any drugs that are suitable for dissolving the thrombus dur-
ing laser thrombolysis regardless of the density and viscos-
ity of the drug.

The flash photographs revealed that larger bubbles
formed in water could cause greater dilation of the tube
wall ~Figs. 4 and 5!. A study by de la Torre and Gregory
suggested that laser-induced cavitation bubbles could cause
dissections in vascular tissue during pulsed-dye laser
angioplasty.15 Reducing bubble dimensions has been pro-
posed to minimize the dissections.11,12,16 This study sug-
gests that the bubble size may be reduced by using a liquid
such as oil in which small bubbles are formed rather than
water.

Previous studies have demonstrated that the mechanical
properties of tissue significantly affect the ablation rate and
the bubble formation.12,17 There is no available evidence,
however, to show that the mechanical strength of the
thrombus affects the bubble dynamics. This study provided
evidence that the mechanical strength of the ablation targets
affects the bubble dynamics and suggests that the mechani-
cal strength of the thrombus should be considered when
modeling the bubble dynamics during laser thrombolysis
and photomechanical drug delivery.

The bubble behavior becomes closer to that formed on
solid targets.4 Bubble oscillation was observed for bubbles
formed on a harder gelatin as shown for a 3.5% 300 bloom
gel in Fig. 8. The ejection of materials always followed the
bubble collapse for bubbles formed on a soft gelatin~e.g.,
3.5% 60 bloom gel!, as shown in Fig. 7. The bubble shape
was also affected by the mechanical strength. For example,

Fig. 5 Side view of bubble formation in a semi-infinite space (top panel) and in a 3-mm tube (bottom
panel). Single pulses of 100 mJ were delivered into a 300-cm21 water solution via a 1000-mm fiber.
The maximal bubble diameter and dilation of the tube wall were observed at 300 and 60 ms, respec-
tively, after the laser pulse. The invagination of the tube was 84% of the initial value about 900 ms after
the laser pulse.

Fig. 6 Measured bubble diameter as function of time. Single pulses
of 50 mJ were delivered onto the absorbing gelatin surface
(100 cm21) through clear water and oil via a 300-mm fiber. The fiber
tip was 1 mm above the gelatin surface. Error bars represent the
standard deviation of three measurements.
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bubbles formed on soft gelatin kept an almost spherical
shape until collapse~Fig. 9!, and those formed on harder
gelatin were pushed back to the surface due to the resis-
tance from the gelatin~Fig. 10!. The maximal bubble vol-
ume was similar for both cases although the bubble dynam-
ics were significantly different. A possible explanation for
these phenomena was that the bubble had enough energy to
overcome the resistance from the harder gelatin during the
expansion phase, and then the pressure inside the bubble
decreased rapidly and eventually became smaller than the
resistance and pressure of the surrounding liquid. Conse-
quently, the bubble was pushed back to the surface, since
the resistance from the water above the gelatin surface was
much smaller than that from the gel.

5 Implications

This study suggests that photomechanical drug delivery can
be achieved selectively by using different strategies to gen-
erate the laser-induced hydrodynamic pressures in fluid-
filled vessels. One strategy is to generate bubbles on the

thrombus due to the absorption of laser energy by the
thrombus in coincidence with the injection of drug. In this
case, the effect of drugs with different physical properties
on the bubble formation will be negligible. The other
method is to create bubbles in surrounding liquids~saline
or blood!, and the bubble dimension can be controlled by
either the properties of the fluids or by using different laser
parameters.

It has been shown that the rapidly expanding and col-
lapsing bubble induced by pulsed-dye laser radiation can
cause perforation, dissection, and other unwanted tissue
effects.18,15 The hydrodynamic pressures arising for the
bubble expansion and collapse, however, could be har-
nessed under controlled circumstances for photomechanical
drug delivery. Currently, two strategies to reduce the
bubble dimensions are clinically used. One of the strategies
is called multiplexing.19 This method uses a multifiber cath-
eter to generate a number~8 to 12! of smaller laser pulses
~with the same radiant exposure! by consecutively deliver-
ing laser pulses at different sectors of the catheter. The

Fig. 7 Flash photographs in side view of bubble growth and collapse on an absorbing gelatin surface
after the laser pulse. Single pulses of 50 mJ were delivered onto absorbing gelatin surface (3.5% 60
bloom, 100 cm21) through clear water via a 300-mm fiber. The fiber tip was placed 1 mm above the
gelatin surface.
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Fig. 8 Flash photographs in side view of bubble growth and collapse on an absorbing gelatin surface
after the laser pulse. Single pulses of 50 mJ were delivered onto absorbing gelatin surface (3.5% 300
bloom, 100 cm21) through clear water via a 300-mm fiber. The fiber tip was placed 1 mm above the
gelatin surface.

Fig. 9 Shadowgraphs of bubble formation on the 100-cm21 gelatin
sample (3.5% 60 bloom). Single pulses of 50 mJ were delivered
onto the gelatin surface through clear water via a 300-mm fiber. The
fiber tip was 1 mm above the surface.

Fig. 10 Shadowgraphs of bubble formation on the 100-cm21 gelatin
sample (5% 300 bloom). Single pulses of 50 mJ were delivered onto
the gelatin surface through clear water via a 300-mm fiber. The fiber
tip was 1 mm above the surface.
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other method is to dilute the blood by applying a saline
flush during the laser procedure.20 Moreover, a recent study
by Vogel et al. suggested that cavitation-induced dilation of
vessel walls occurring in pulsed laser angioplasty can be
prevented by division of the laser pulse energy into a
prepulse with low energy and an ablation pulse with high
energy.16

This study provides evidence that bubbles of the same
size could result in similar hydrodynamic pressures. This
finding demonstrates that a small fiber could be used to
create the same displacement of intravascular fluids with
lower energy as that created by a larger fiber with higher
energy.

6 Conclusion

Experimental evidence has shown that similar hydrody-
namic pressures could be generated using a small fiber with
lower energy rather than using a larger fiber with higher
energy. The bubble formation was relatively independent of
the liquid properties when the bubbles were formed on the
ablation targets under clear liquids. The bubble formation
in absorbing liquids strongly depended on the material
properties. The mechanical strength of the ablation targets
affected the bubble geometry, and the bubble became more
elliptical after it reached its maximal dimension for the
harder targets. The high-speed shadowgraphs showed that
the series of individual stroboscopic pictures could be used
for the characterization of the cavitation events, although it
took at least 12 times longer to photograph the process
using the flash photographic setup than using a high-speed
electronic framing camera.
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