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Use of a copula for generating a sequence of correlated speckle patterns is introduced. The chief characteristic
of this algorithm is that it generates a continuous speckle sequence with a specified evolution of the correlation
and does so with just two arrays of random numbers. Thus, physically realistic temporally varying speckle
patterns with proper first- and second-order statistics are easily realized. We illustrate use of the algorithm for
generating sequences with prescribed Gaussian, exponential, and equal-interval correlations and demonstrate
how correlation times can be specified independently. This approach to generating sequences of random real-
izations with prescribed correlations should prove useful in modeling such phenomena as dynamic light scat-
ter, flow-dependent laser speckle contrast, and propagation of spatial coherence. © 2007 Optical Society of

America

OCIS codes: 030.6140, 030.6600, 110.4500, 110.6150, 120.6150, 300.6480.

1. INTRODUCTION

The speckle phenomenon is observed in any coherent im-
aging modality such as synthetic aperture radar, optical
coherence tomography, ultrasound, or any number of non-
imaging measurement schemes involving laser illumina-
tion. Quantitative interpretation of the data from such
measurement schemes (whether imaging or nonimaging)
often hinges on accurate knowledge of the statistical be-
havior of the speckle phenomenon. To complement experi-
mental measurements, researchers often turn to com-
puter simulation of the phenomenon of interest. One
important situation is the temporal decorrelation of a
speckle pattern. Such a behavior is of interest, for ex-
ample, in the use of laser speckle dynamics to assess fluid
flow or in quasi-elastic light scatter to determine molecu-
lar mass.

Various means of generating dynamic speckle pattern
sequences have been proposed. For example, Rabal et al.
[1] used a fast Fourier transform (FFT) technique involv-
ing manipulation of the phase of the scattering particles.
Specifically, they explored the effects of coordinated and
uncoordinated out-of-plane motion. Other authors have
used a similar approach using the FFT but taking a sta-
tistical approach to the generation of speckle sequences
[2,3]. These authors based the evolution of the speckle
patterns on manipulating the variance of the phase. The
basis for their approach was the complex Gaussian mo-
ment theorem [4], and thus only speckle pattern se-
quences with monotonically decreasing correlations could
be synthesized.

Here, we take a different approach that provides for the
generation of a sequence of speckle patterns with an ar-
bitrary (not necessarily monotonic) correlation function.
This approach, based on a statistically rigorous evolution
between two statistically independent speckle patterns,

1084-7529/08/010231-7/$15.00

uses the concept of a copula [5]. We discuss the theory of
such a concept and illustrate its use in producing speckle
decorrelation sequences that correspond to unordered
(e.g., Brownian) as well as ordered motion [6].

2. THEORY

The word “copula” is from the Latin meaning “to bond.” In
the context of probability theory it has come to be defined
as a function that links individual marginal distributions
into a joint, multivariate distribution. The basis for this
idea is Sklar’s theorem [5], which states that given a joint
(cumulative) distribution function, H(x,y), and the mar-
ginal (cumulative) distribution functions, F(x) and G(y),
there exists a (copula), C, such that

H(x,y) = C[F(x),G(y)]. 1)

The copula plays the role of linking two marginal distri-
bution functions into a prescribed joint distribution func-
tion. Sklar’s theorem [5] further states that if the distri-
bution functions are continuous, then the copula is
unique.

In the material that follows, we use a Gaussian copula
(there are many other types [5]) to correlate two initially
statistically independent (S.I.) uniformly distributed ran-
dom variables (RVs), and subsequently use the resulting
correlated samples to create sequences of correlated
speckle patterns.

A. Phase Generation

We begin with two uniformly distributed, statistically in-
dependent RVs, X; and X,. From this pair, the Box—
Mueller transformation [7] produces a new pair of RVs,

Yl =ptoy— 2 lnXl COS(27TX2),

© 2008 Optical Society of America
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Yy =p+o0y-21InX; sin(27X,), (2a)
such that the means and variances are given by
E{Y}=p, E{Y;-E{Y})?}=0% (2b)

and E denotes expectation. From this it follows that Y;
and Y are jointly normal, i.e., their joint probability den-
sity function is

v, = N1, po; 01,0957) = N(p, 3 0,0350), (3)

and because the correlation, r, is zero, they are S.I. (of
course this statistical independence because of zero corre-
lation is unique to the Gaussian distribution [7]). If we
choose the specific case of ©=0, o0=1 and use the following
operations,

1 -1
1 1

\e"1+r 0
0 \“’1_’.

Yy

v, @

we find that the RVs Z; and Z, are bivariate normal with
correlation coefficient r: le,ZZ=N(O,0; 1,1;r). The Box—
Mueller transformation and the scaling and rotation con-
stitute the copula that links the marginal distributions on
X1 and X, into the bivariate distribution on Z; and Z,. Fi-
nally, we use the percentile transformation [7]

T1=Fz(Zy), Ty=FyZy), (5)

where F; is the normal cumulative distribution function.
From these operations we obtain the RVs 77 and T%,
which are uniformly distributed on the unit interval and
are no longer S.I. but have correlation coefficient r.

B. Speckle Generation
Having described a method by which one can arrive at a
pair of uniformly distributed random variables with arbi-
trary correlation coefficient, we now proceed with a de-
scription of the generation of correlated objective (nonim-
aged) speckle patterns.

A spatially band-limited speckle pattern [8] can be syn-
thesized easily by the following algorithm: Fill a circular
region of diameter D of a square matrix of dimension L
X L with complex numbers of unity amplitude and with
phases uniformly distributed over (0,27) (see Fig. 1).
Upon Fourier transforming the L X L array and multiply-
ing point-by-point by the complex conjugate, one arrives
at a synthetic speckle pattern with exponential probabil-
ity distribution. The position of the circular region within
the larger array is irrelevant, as the Fourier shift theo-
rem attests, and the ratio of L to D sets the minimum size

D

Fig. 1. Illustration of the synthetic speckle algorithm. Shaded
region of the matrix is filled with complex numbers of unity am-
plitude and phases uniformly distributed over (0,2).
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of the speckles. For example, if L/D=2, the Nyquist crite-
rion is met and the smallest speckle is two pixels wide.
This algorithm obviously results in a speckle pattern that
fills the L XL array, but one typically uses only the D
X D portion of it. Application of the FFT in this algorithm
accomplishes the many-to-one mapping observed in objec-
tive laser speckle patterns. Choice of a circular fill region
within the larger array produces a statistically isotropic
speckle pattern, but other patterns may be used as well.

Use of the phases ¢;=27t1; dg=27ty in this procedure,
where t; and ¢, are uniformly distributed samples (in-
stantiations of the corresponding RVs, T and T5) as in
the preceding discussion, produces a pair of correlated
speckle patterns. The actual correlation between these
two speckle patterns is given by

p=exp{- 0%}, (6)

where o »=var{e¢;— ¢o} is the variance of the phase differ-
ence. This result follows from the complex Gaussian mo-
ment theorem [4].

The evolution between the pair of speckle patterns as
the correlation, r, is varied over the interval (1,-1) is il-
lustrated in Fig. 2. As shown in this sketch, for a specified
correlation of r=1, the resulting phases are perfectly cor-
related and as a result, the two speckle patterns are iden-
tical. When r=0 the phases are uncorrelated and so too
are the resulting speckle patterns. Interestingly, for nega-
tive correlations, r=0, the phases display an anticorrela-
tion, but because of the complex symmetric nature of the
Fourier transform, the resulting speckle patterns are un-
correlated. Note that in the limit, r=-1, the phases are
perfectly anticorrelated (a phase conjugate relationship
between 27t; and 27ty) and the resulting L X L speckle
patterns (see discussion associated with Fig. 1) are 180°
rotations of one another.

As suggested by Fig. 2, we wish to create a sequence of
speckle realizations over the interval —-1=r=1, but our
real interest is in the morphing of Z; from Y; to —Y5 or of
Zoy from Y, to Ys. For that we need to know the relation-
ship between the specified correlation between 71 and Ty
and the correlation between the realizations in the se-
quence, e.g., T1(1),...,T(r),...,T1(-1). We denote the
phase realizations in this sequence as T,,k=1,2,...,N,
and find that this correlation is given by

1 k N
Z, =¥, Z, ==Y,
. e e cee 1
T 7
r=1
Z,=Y Z,=Y,
{ 1
) .

Fig. 2. Illustration of evolution of a correlated sequence of V
speckle patterns. Phase arrays T, and Ty with degree of correla-
tion r are generated from bivariate Gaussian arrays Z; and Z,,
which in turn are generated from S.I. arrays Y; and Y.
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E{(T11 = p10)(Typ, = p1z)} 1+r
T = = . (7)
01101z 2

To provide the link between the specified correlation be-
tween the phase realizations and the speckle correlation
coefficient, we inspect the variance of the phase difference
[see Eq. (6)],

var{¢; — ¢o} = 2 E{[(T11 - pa1) = (T1r — 1) %}
= 2m*ol; - 20110071 + 0T}
= (2m)*207(1 - 1)
= (2m)*(1 - ry,)/6, (8)

where we have made use of the fact that 7' is uniformly
distributed and thus o%=1/12.

From the previous discussion we see that the speckle
correlation coefficient is given by

(2m)?
P1 = €XP) ~ (L=7) (s 9)

where we have denoted explicitly that the speckle corre-
lation is referenced to the first realization in the se-
quence. If we wish the argument of the exponential to
take the form of a power law,

kE-1\"
1—r1k=<m> , (10)

we must specify the correlation coefficient for the phase
realization pair as

|: (k_l)yj|2
r=2l1-(——| | -1. (11)
N-1

The speckle correlation coefficient then becomes

k-1\"
p1r =€xp) —2 ,
c

c=(N-1)3/7)". (12)

To better understand the generation of correlated
phase, we rewrite the intermediate result before the per-
centile transformation [Eq. (5)] to the unit interval:

Zy=+-21InX; cos(27X; + ¢),

\J’l —r)

\”1 +r

(13)

b= tan‘1<

Here, it is perfectly clear that the RV, Z; as r evolves be-
tween +1 and -1 is a pure sinusoid whose initial and final
values are, respectively,

Zl = \J’— 2 1nX1 COS(27TX2),

Z,=+-2InX; cos(2mX, + 7/2). (14)

If we inspect the specific case where r is specified to give
equal decorrelation increments,

Vol. 25, No. 1/January 2008/J. Opt. Soc. Am. A 233

k-1
r=cos| m—— |, (15)
N-1
then the incremental phase is given by
k-1
=——. 16
@ aN_1 (16)

Thus, the formula for generating a sequence of Z values is

mk-1
Zi(k)=1-2InX 2aXo+ —— |. 17
1(R) \ n 1005( TA g 2N—1) 7

Upon performing the percentile transformation for the ac-
tual phase value and generation of the speckle pattern as
prescribed earlier, one arrives at a sequence of patterns

with correlation
mh-1
= — . 18
ru=cos| 5 (18)

From this, one observes that the algorithm produces
physically realistic, continuous phase trajectories be-
tween the two limits of r=1 and r=-1 and that it requires
only two arrays of random numbers to do so. This asser-
tion follows from Eq. (17), and the subsequent step of the
(continuous) percentile transformation [Eq. (5)]. As a re-
sult of this phase continuity, the evolution of the speckle
pattern is also continuous, as one would expect from a
real physical process [9]. Thus the procedure is distinct,
for instance, from the algorithm of Federico et al. [2] and
Rabal et al. [3], which adds a S.I. phase increment at each
step in the sequence. Because the phase increment is dis-
continuous, so too is the evolution of the speckle pattern
sequence.

3. RESULTS

Having described the procedure for generating a sequence
of speckle patterns with prescribed correlation, we next
proceed with a number of examples. In each case we gen-
erate a sequence of N=50 speckle patterns, each of 256
X 256 pixels, and for a sampling L/D=4 that is twice the
Nyquist criterion.

A. Gaussian Speckle Correlation Coefficient
For an exponent of v=2, Eq. (12) yields a sequential cor-
relation function of

E-1\2
p1r=€xpy -2 ;
C

c=(N-1)(3/7*)"2. (19)

Results are shown in Figs. 3-6. Figure 3 is a display of
the observed speckle pattern correlation coefficient, py;,
versus the prediction based on Egs. (7) and (9). An alter-
native display of the observed speckle pattern correlation
coefficient versus realization number is given in Fig. 4
along with the best-fit Gaussian and resulting parameter
estimate, ¢=26.59. Note that this sequence is based on a
single pair of random S.I. phase realizations and that the
theoretical value of the parameter is ¢=27.02. Shown in
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0.9 4 4

0.6+ ° o

0.3+ q

speckle correlation coefficient, P1k
= 3
(4]
1

0.2

0.9 1

0 L L L L L L L
0 0.1 0.2 03 04 05 06 07 08

exp(-oi ¢), using model for phase difference

Fig. 3. (Color online) Calculated speckle correlation coefficient
versus the model based on variance of the phase difference, for
the specified Gaussian sequential correlation function.

speckle correlation coefficient, p 1K

L i L | L
5 10 15 20 25 30 35 40 45 50
speckle realization number, k

-0.2 L :
0

Fig. 4. (Color online) Speckle correlation coefficient as a func-
tion of sequence number, for the specified Gaussian sequential
correlation function.

0.999 - q
0.998 - q

0.997 1 R i 1S 1
eeeo® o.......

0.996 - e, ,
0.995 T
0.994 4

0.993 - q

sequential speckle correlation coefficient, p, | .,

0992 1 L i 1 4 L L L L
0 5 10 15 20 25 30 35 40 45 50

speckle realization number, k
Fig. 5. (Color online) Sequential speckle correlation coefficient,
for the specified Gaussian sequential correlation function.
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50 100 150 200 250

time

0.05 01 015 02 025 03 035 04 045 0.5
(b)
Fig. 6. (Color online) (a) First frame from the speckle realiza-
tion cube. (b) Slice through the central row in the speckle cube
illustrating the temporal continuity of the speckle pattern. The
spatial dimension is along the horizontal axis, and time is along
the vertical axis.

Fig. 5 is the observed speckle pattern correlation coeffi-
cient between successive realizations. A reasonable esti-
mate of the mean value of the sequential speckle correla-
tion coefficient was found to be given by

E{ppn}=1-10N"2. (20)

The estimate so produced is 0.9960 versus the observed
value of 0.9962. Figure 6(a) shows the initial speckle im-
age from the cube of realizations, and Fig. 6(b) is a slice
through this cube such that the spatial dimension is along
the horizontal axis and time is along the vertical. This
type of display seems to date to Oulamara et al. [9] and
has been called the time history of the speckle pattern
(THSP) [1] and, earlier, a stacked speckle history [10]. In
other fields, notably radiography and fluorescence speckle
microscopy [11], such a spatio-temporal display is called a
kymograph. The specific results of Fig. 6(b) illustrate the
claimed temporal continuity of the speckle pattern.



D. D. Duncan and S. J. Kirkpatrick

B. Exponential Speckle Correlation Coefficient
Repeating the above procedure for v=1, we obtain the re-
sults shown in Figs. 7-9. Also shown in Fig. 8 is the best-
fit exponential model with parameter ¢c=14.84 versus the
model-based value of ¢=14.89.

C. Constant Speckle Correlation Coefficient
An empirically derived correlation specification of

k-1
r=cos| m—— |, (21)
N-1

which yields a model-based estimate of the speckle corre-
lation coefficient of

(2m)? m( k-1
P1r=€Xp) = — sin? I\vo1 , (22)

produces the results shown in Figs. 10-12. Note that the
earlier comment about the phase realizations being 180°

0.9+ B

0.6+ 5

0.3+ :

speckle correlation coefficient, Pk
o
(4]
|

0.2+ ° -

L L

O 1 L 1 L L L 1
0 0.1 0.2 03 04 0.5 06 07 0.8 0.9 1

eXp(-ci ¢), using model for phase difference

Fig. 7. (Color online) Calculated speckle correlation coefficient
versus the model based on variance of the phase difference, for
the specified exponential sequential correlation function.

speckle correlation coefficient, p 1k

_02 L L L L L 1 L L
0 5 10 15 20 25 30 35 40 45 50

speckle realization number, k
Fig. 8. (Color online) Speckle correlation coefficient as a func-
tion of sequence number, for the specified exponential sequential
correlation function.
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sequential speckle correlation coefficient, Pr i+
o
©
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Fig. 9. (Color online) Sequential correlation coefficient for the
exponential model, for the specified exponential sequential corre-
lation function.

rotations of one another for r=-1 gives a hint for the form
of relationship in Eq. (21). Also shown in Fig. 11 is the
best-fit Gaussian model with parameter ¢=24.60.

In the previously discussed algorithm, the random pha-
sor was of the form

exp{i2#T}, (23)

where T was uniformly distributed on (0,1). Invoking the

complex Gaussian moment theorem leads to the expres-

sion for the correlation between the first speckle realiza-

tion in the sequence and the kth realization, Eq. (9).
Now consider a random phasor of the form

exp{i2mmT}, (24)

where m is a multiplicative factor and 7' is uniformly dis-
tributed on the unit interval as before. The resulting se-
quential correlation behavior is

0.9 ® q

0.8 $ g

0.6 . E

0.5 1

speckle correlation coefficient, Pk

0.2 1

0.1+ B

0 L L L L L L L L 1
0 0.1 02 03 04 05 06 07 08 09 1

exp(-ci ¢), using model for phase difference

Fig. 10. (Color online) Speckle correlation coefficient versus the
model based on variance of the phase difference, for the specified
constant sequential correlation function.
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speckle correlation coefficient, [

-0.2 I I I I L
0 5 10 15 20 25 30 35 40 45 50
speckle realization number, k
Fig. 11. (Color online) Speckle correlation coefficient as a func-

tion of sequence number, for the specified constant sequential
correlation function.

(27m)?

pir = €xpy — T(l —711)

(25)

This approach allows for the generation of a speckle se-
quence that decorrelates from the initial realization
within a prescribed time in a specified manner but retains
a particular correlation between sequential realizations.
As an example, consider the specification

m=3,

Wk—l)
. (26)

riyp=cCOS| ——/——
1 <2N—1

Results are shown in Figs. 13 and 14. As seen from these
results, the multiplicative factor of 3 has shortened the
correlation time by the corresponding amount (compare
Figs. 11 and 13, for which the best-fit Gaussian param-
eters are, respectively, 24.60 and 8.43), but the desired se-
quential behavior is retained (compare Figs. 12 and 14).
For this generalization, a reasonable estimate of the

0.999 -

0.998 -

0.997

0.996

0.995

0.993

sequential speckle correlation coefficient, p, , .4

0.992
0

Fig. 12.

! I

L L 1
5 10 15 20 25 30 35 40 45 50

speckle realization number, k

(Color online) Sequential speckle polarization coeffi-

cient (mean is 0.9962), for the specified constant sequential cor-
relation function. Note the constant observed value for this case.
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T T T T

reference frame, i = 1

reference frame, i = 25

speckle correlation coefficient, Pik

| 1 ! i

0.2 I I I 1
0 5 10 15 20 25 30 35 40 45 50
speckle realization number, k
Fig. 13. (Color online) Speckle correlation coefficient as a func-

tion of sequence number for the multiplicative factor of m =3. Re-
sults are shown for frames 1 and 25 chosen as the reference, for
the specified constant sequential correlation function.

0.95+

0.94 -

sequential speckle correlation coefficient, p, \ . 4

093» L L L L L 1 L
0 5 10 15 20 25 30 35 40 45 50

speckle realization number, k
Fig. 14. (Color online) Sequential speckle polarization coeffi-
cient (mean is 0.9673), for the specified constant sequential cor-
relation function and multiplicative factor of m=3.

mean sequential correlation is given by

E{pj 1} = 1~ 100n/N)”. (27)

4. DISCUSSION AND CONCLUSIONS

We have illustrated the use of the concept of a copula to
generate two representative functional forms for the deco-
rrelation of an objective speckle sequence, Gaussian and
exponential. The approach, however, is not limited to
monotonically decreasing functions such as these. More-
over, much more complex dependencies could be imag-
ined. As an example, for the case in which both ordered
and unordered motion of the scatterers is present, one
could expect to see the product of these two functional
forms. Note that the exponential corresponds to a Lorent-
zian temporal power spectrum (homogeneously broad-
ened line), while a Gaussian correlation function of course
corresponds to a Gaussian (inhomogeneously broadened
line). The product of the exponential and Gaussian forms
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corresponds to a convolution of the line profiles, producing
a Voigt profile [12]. Such a functional form is easily pre-
scribed using the procedures established herein.

Extensions. An effect seen in OCT images of highly
scattering media is the slow depolarization with depth.
Near the surface, the speckle statistics are exponentially
distributed, as one would expect for polarized speckle. As
the depth increases, however, scatter produces an or-
thogonally polarized component of the measured signal.
As a result, the speckle statistics become Rayleigh-
distributed (due to the incoherent addition of two uncor-
related speckle patterns, one for each of the polarization
components). A simple way to simulate this effect is to use
the preceding algorithm to generate a pair of speckle im-
age cubes such that [see Eq. (13)]

cubel: Z; = \-21InX; cos(27X, + ¢),

cube2: Z; = \-21InX; cos(2mX3 + ¢),

Vl—r
, (23")

= n_l
d) t ( \,’1 +r

where X1, X,, and X3 are mutually S.I. and uniformly dis-
tributed. In this manner, each cube begins with the same
speckle pattern but each evolves toward a different (S.I.)
pattern. If one adds the two image cubes frame by frame,
then the first frame of the resulting cube is simply the
single (exponentially distributed) speckle pattern. The
last frame in the sequence is the sum of two S.I. speckle
realizations and is thus Rayleigh-distributed. The frames
in the sequence slowly evolve from the initial exponential
to the final Rayleigh distribution. A slice through this
cube for a given column or row would then constitute
what is commonly referred to as an OCT image or B-scan
[13].

This study has been restricted to the generation of ob-
jective speckle patterns. A similar approach [14] can be
used to generate subjective speckle patterns via the algo-
rithm

I=|F{H - Flexp( )}, (24')

where F denotes the Fourier transform, H represents the
pupil of the imaging system, and ¢ is the random phase
realization. The issue with subjective speckle is that it is
not obvious that the complex Gaussian moment theorem
holds for such a few-to-one mapping. It is valid for a sta-
tistical average, but even if one invokes ergodicity, the
few-to-one mapping makes this a questionable argument.
It should be clear from the theory described herein, how-
ever, that an appeal to ergodicity has not been made.
Rather, the algorithms put forth generate a single sample
function of the random speckle process. As such, one could
imagine a numerical study in which these issues might be
explored.

Vol. 25, No. 1/January 2008/J. Opt. Soc. Am. A 237

As a general comment about the use of the copula con-
cept, we note that the final step in the algorithm for gen-
erating uniformly distributed phases [Eq. (5)] is arbitrary.
One could just as easily use two different (non-Gaussian)
cumulative distribution functions to generate arbitrarily
distributed (but correlated) instantiations. Such a proce-
dure has been used for example, in Monte Carlo studies
involving finance [15]. Perhaps it is time for the optics
community to embrace this concept.
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