
Portland State University
PDXScholar
Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

8-1-2009

Gain Saturation in Gain-Guided Slab Waveguides with Large-
Index Antiguiding
Tsing-Hua Her
University of North Carolina at Charlotte

Xianyu Ao
University of North Carolina at Charlotte

Lee W. Casperson
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/ece_fac

Part of the Electrical and Computer Engineering Commons

This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications
and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Tsing-Hua Her, Xianyu Ao, and Lee W. Casperson, "Gain saturation in gain-guided slab waveguides with large-index antiguiding," Opt.
Lett. 34, 2411-2413 (2009).

http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/ece_fac/47
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


Gain saturation in gain-guided slab waveguides
with large-index antiguiding

Tsing-Hua Her,1,* Xianyu Ao,1 and Lee W. Casperson2

1Department of Physics and Optical Science, and Center for Optoelectronics and Optical Communications,
The University of North Carolina at Charlotte, 9201 University City Boulevard,

Charlotte, North Carolina 28223, USA
2Department of Electrical and Computer Engineering, and Center for Optoelectronics and Optical Communications,

The University of North Carolina at Charlotte, 9201 University City Boulevard,
Charlotte, North Carolina 28223, USA
*Corresponding author: ther@uncc.edu

Received April 12, 2009; accepted June 17, 2009;
posted July 20, 2009 (Doc. ID 109606); published August 4, 2009

We investigate numerically and analytically the effects of gain saturation on the propagation of the funda-
mental mode in a gain-guided index-antiguided slab waveguide. The propagating mode adapts to gain satu-
ration by becoming less confined, while at the same time its peak intensity increases more slowly. At steady
state, both the mode shape and the power remain constant. © 2009 Optical Society of America

OCIS codes: 140.3280, 230.7400.

Waveguides with large mode area are highly desired
for high-power laser oscillators and amplifiers to
mitigate optical nonlinearity and damage. Research
on this subject remains active, and many new ap-
proaches have been pursued [1–4]. Siegman proposed
the use of gain guiding (GG) in index-antiguided
(IAG) waveguides to achieve large-area single-
transverse-mode propagation [5,6], and single-mode
laser oscillation in GG-IAG fibers with core diam-
eters up to 400 �m has been experimentally demon-
strated [7,8]. In GG-IAG waveguides, all modes are
intrinsically leaky with higher loss for higher-order
modes. To achieve single-transverse-mode operation,
an optical gain that is higher than the threshold gain
of the fundamental mode but below those of higher-
order modes is provided such that only the funda-
mental mode is confined and amplified [5].
Waveguides (fibers) with strong index antiguiding
are particularly attractive, because they substan-
tially reduce the gain threshold for gain guiding [6],
thus making GG more practical in terms of fabrica-
tion and pumping requirements.

Extensive analysis has been performed for GG-IAG
waveguides with constant and uniform gain in the
core [6]. In practical high-power laser amplifiers and
oscillators, however, gain is subject to saturation ef-
fects in both longitudinal and transverse directions,
whether the gain medium is homogeneously or inho-
mogeneously broadened [9]. Since GG relies on gain
to sustain a confined mode [10], it is important to un-
derstand the effect of gain saturation on the modal
stability in GG-IAG waveguides. In this Letter, we
investigate the propagation characteristics of the
fundamental mode in an IAG slab waveguide with
gain saturation of homogeneous line broadening in
the core.

Consider a GG-IAG slab waveguide with a core
width 2a and a refractive index n1 that is slightly
smaller than that of the cladding n2. The waveguide
extends infinitely along the z direction and has a uni-
form small-signal (unsaturated) power gain coeffi-

cient gss only inside the core. The complex refractive
index profile ñ�x ,z� at line center is given by

ñ�x,z� = �n1 − j
nss

1 + sI�x,z�
��x� � a�

n2 ��x� � a�
� , �1�

where I�x ,z� is the intensity, s is the saturation pa-
rameter defined as the inverse of the saturation in-
tensity, nss is related to gss by gss=2konss, and ko is
the free-space wavenumber. For weak index contrast,
we may consider only the scalar electric field
Ẽ�x ,z , t�. When the signals are small such that gain
saturation is negligible, the waveguide is longitudi-
nally uniform, and its eigenmodes �̃�x�, defined by
Ẽ= �̃�x�exp�j��̃z−�t�� where �̃=�r+ j�i is the complex
propagation constant and � is the frequency, can be
solved analytically [5]. The fundamental mode bears
the following form:

�̃�x� = �cos�ũx/a� ��x� � a�

cos�ũ�e−w̃��x�/a−1� ��x� � a�	 , �2�

where ũ=a
k0
2�n1− jnss�2− �̃2 and w̃=a
�̃2−k0

2n2
2 are

the modal parameters in the core and cladding, re-
spectively. As the signal intensity increases, gain de-
creases and the complex index profile ñ�x ,z� becomes
nonuniform in both transverse and longitudinal di-
rections. We solve for the envelope function �̃�x ,z� of
the electric field Ẽ= �̃�x ,z�exp�j�k̄z−�t�� where k̄ is
the reference wavenumber, using a finite-difference
beam-propagation method (BPM) with perfectly
matched layers as boundary conditions [11,12]. The
launch field is the unsaturated fundamental mode
�̃�x� with unit amplitude, and k̄ is taken to be �r.
During the propagation, the gain profile in Eq. (1) is
updated using the intensity of the previous z step.
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Below we consider a numerical example with n1
=1.469, n2=1.470, 2a=100 �m, 	=1.53 �m, and
sI�x ,z�=0.0025��̃�x ,z��2. Such a waveguide has a di-
mensionless index parameter −
N=120, where 
N is
defined in [6], which corresponds to reasonably
strong index-antiguiding. The effective index of the
fundamental mode of this (passive) waveguide is
1.46898+ j3.51�10−6, and the imaginary part corre-
sponds to a loss coefficient 0.288 cm−1. In the BPM
simulation, a step size of 0.1 �m is used for both x
and z directions.

Figure 1(a) shows the evolution of the field over a
distance of 500 mm for gss=1.0 cm−1 (i.e., nss
=1.2175�10−5). In the first 100 mm, the peak ampli-
tude increases exponentially with distance and then
saturates to a constant value at around 200 mm. Be-
yond saturation, the field amplitude in the cladding
is nearly constant in the x direction, mimicking a
cutoff-like mode. To examine the field evolution
closely, the normalized field amplitudes at propaga-
tion distances of 25, 100, and 200 mm are shown in
Fig. 1(b), with their corresponding gain profiles
shown in Fig. 1(c). The latter clearly indicates a dip
in the center of the gain profile due to gain satura-
tion, and this dip increases with distance as a result
of gain saturation. We calculate the net gain coeffi-
cient from successive traces in Fig. 1(a), defined as
gm=Pc

−1
Pc /
z, where Pc is the power inside the core
and 
z is the step size, as a function of propagation
distance. Shown as a black solid line in Fig. 2, the
net-gain coefficient is nearly constant before 50 mm,
beyond which gain saturation depletes the gain expo-
nentially. This can be understood by considering the
net-gain coefficient of a plane wave in the presence of
gain saturation and loss,

g�z� =
1

I�z�

dI�z�

dz
=

gss

1 + sI�z�
− �, �3�

where � is the distributed loss coefficient. For small
signals, g�gss−� is a constant, while at large inten-
sity the net-gain coefficient is shown to decay expo-
nentially according to

1

g�z�

dg

dz
� −

gss�

gss − �
. �4�

At different stages of gain saturation, Fig. 1(b) in-
dicates that the field profiles still bear the same form
as Eq. (2). In particular, the (normalized) field pro-
files inside the core have a nearly identical shape as
the unsaturated mode, while those in the cladding
become less confined with increasing propagation
distance. The decay length of the cladding field is
proportional to the real part of the cladding mode pa-
rameter wr�=Re�w̃�� and can be calculated from Fig.
1(a) as a function of propagation distance (dotted line
in Fig. 2). As indicated, wr is linearly proportional to
the net gain coefficient gm over the entire distance up
to 500 mm. As gain saturation depletes the net gain,
the field in the cladding becomes less confined, lead-
ing asymptotically toward a cutoff-like mode as the
net gain approaches zero. This linear relationship
can be explained by expanding the phase-matching
condition in the cladding with large −
N to be

wr

a
�

a�r�i


− 
N
�

koan1

2
− 
N
gm. �5�

Expression (5) indicates that the decay of field ampli-
tude in the cladding is intrinsically proportional to
its gain coefficient. This is different from conven-
tional index-guided waveguides where the field decay
in the cladding is determined solely by the index con-
trast.

The above observation indicates that the gain-
guided fundamental mode in a strongly IAG wave-
guide is robust against gain saturation. This is con-
sistent with the previous report that the field
distribution in a GG-IAG fiber is largely determined
by the index antiguiding if the dimensionless index
parameter −
N�100 [6]. As gain saturation becomes
significant, the field in the cladding adapts to lower

Fig. 1. (Color online) (a) Evolution of the electric field am-
plitude in a GG-IAG waveguide as described in the text. (b)
Normalized field amplitudes and (c) the corresponding gain
profiles at several distances along the waveguide.

Fig. 2. (Color online) Net-gain coefficient and modal pa-
rameter wr in the cladding as functions of propagation
distance.
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gain by becoming less confined. When the gain is
completely depleted, the cladding field stays cutoff-
like without turning into a mode with diverging am-
plitude in the cladding.

One important parameter in a laser amplifier is its
maximum output power. Expression (3) describes the
intensity evolution of a plane wave in a single-pass
amplifier. For a nonuniform field, Expression (3) can
be modified to calculate the total power along the
propagation direction, provided that the normalized
transverse profile remains constant [13]. Although
the gain-guided mode in an IAG waveguide evolves
continuously toward a cutoff-like mode, its shape in
the core remains nearly constant. We can calculate
the total power contained in the core, Pc�z�
=�−a

a I�x ,z�dx, as follows:

1

Pc�z�

dPc�z�

dz
= gss


−a

a fc�x�

1 + sPc�z�fc�x�
dx − �, �6�

where fc�x� is the normalized intensity profile inside
the core, defined by �−a

a fc�x�dx=1. The first term in
the right-hand side of Eq. (6) can be regarded as the
effective gain of the mode in the waveguide. In the
current example, �̃�x�=cos�ũx /a� in the core where
ũ=1.55755− j0.139, and Eq. (6) can be solved analyti-
cally if we substitute fc�x����̃�x��2 /a�cos2�
x /2a� /a
(the details will be reported elsewhere). The result is
shown as the solid curve in Fig. 3, where � is re-
placed by the loss coefficient of the fundamental
mode in the passive waveguide, which has been
shown to be approximately equal to the threshold
gain gth for a strongly IAG waveguide [6]. As a com-
parison, the evolution of power in the core as a func-
tion of propagation distance obtained from BPM is
also shown (circles). The two methods are consistent
(to within about 1.5%), which suggests that the pas-

sive modal loss in a strongly antiguided waveguide,
which is due to diffraction of the wave away from the
core, can be fairly accurately treated as the distrib-
uted loss of the waveguide in the presence of gain.
With this approximation, other aspects of the fields
and gain profiles can also be calculated analytically,
and as an important brief example the maximum
limiting power in the core is found to be

Pc,max =
2a

s �� gss

gth
−

1

4� −
 gss

2gth
+

1

16� . �7�

In conclusion, we have investigated numerically
and analytically the effects of gain saturation on GG
in a strongly IAG waveguide. We show that gain
saturation has little effect on the field distribution in
the core, whereas this saturation causes exponential
decay of both the modal gain and the mode confine-
ment. Steady state is reached when the effective gain
balances the diffraction loss, where the mode be-
comes cutoff-like and maximum power is reached.
Because the field distribution in the core is almost
unchanging, the power and gain profiles can also be
modeled analytically.
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