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EXECUTIVE SUMMARY 

There is a growing concern about the costs of congestion on urban mobility, urban air quality, 
and greenhouse gas emissions. The full effects of traffic congestion on motor-vehicle emissions 
are still not well quantified because of interactions and impacts on many scales, from vehicle 
maintenance to land use. This research provides a new understanding of the tradeoffs between 
travel-time reliability, congestion mitigation and emissions. We develop a model to study the 
impacts of travel-time reliability costs in terms of delays, fuel and emissions costs. We apply our 
model to: (a) a congested freeway corridor in Portland, OR. and (b) six distinct urban areas in the 
U.S. In the freeway case, results clearly indicate that travel time is the dominant cost, followed 
by fuel costs. For a given value per trip (in dollars/mile), the traffic-flow volume that maximizes 
social benefits decreases as travel-time reliability decreases. Comparing six distinct U.S. urban 
areas, of varying size and density, using macroscopic peak-period traffic characteristics we see 
that the impact of travel-time reliability is significant for larger and denser urban areas. 

This research also analyzes capacity-, demand- and efficiency-based emissions-reduction 
strategies. A novel, parsimonious, methodological framework is developed to estimate these 
strategies on different pollutants. Several interesting results are found by employing aggregate 
data representing U.S. congestion and vehicle-fleet conditions to estimate emissions changes for 
greenhouse gases (CO2e), carbon monoxide (CO), nitrogen oxides (NOx), fine particulate matter 
(PM2.5), and hydrocarbons (HC). First, congestion mitigation does not inevitably lead to 
reduced emissions. The net effect of congestion mitigation depends on the balance of induced 
travel demand and increased vehicle efficiency – which, in turn, depend on the pollutant, 
congestion level and fleet composition. In general, capacity-based congestion improvements 
within certain speed intervals (e.g., 30 to 40 mph) can reasonably be expected to increase total 
emissions of CO2e, CO and NOx in the long run through increased vehicle-travel volume. Better 
opportunities for emissions reductions exist for HC and PM2.5 emissions, and on more heavily 
congested arterials. Efficiency- and demand-based reduction strategies provide attractive 
alternatives to capacity-based strategies. Still, reducing light-duty vehicle emissions alone has 
only a limited impact – especially on PM2.5 emissions. Advanced-efficiency vehicles with 
emissions rates that are less sensitive to congestion than conventional vehicles generate less 
emissions co-benefits from congestion mitigation.  

In conclusion, reducing travel-time variability is essential to reduce unnecessary delays, fuel 
costs and emissions. However, increasing travel speeds (e.g., from 30 to 40 mph) can lead to 
higher total emissions because there are complex interactions between travel demand, fleet 
composition,and pollutant type.   
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1.0 INTRODUCTION 

1.1 BACKGROUND 

There is a growing concern about the costs of congestion on urban mobility, urban air quality, 
and greenhouse gas emissions. The full effects of traffic congestion on motor-vehicle emissions 
are still not well quantified because of interactions and impacts on many scales, from vehicle 
maintenance to land use. This research provides a new understanding of the tradeoffs between 
travel-time reliability, congestion mitigation and emissions.  

Traffic congestion impacts urban areas throughout the world with varying economic, social and 
environmental costs. Policymakers, researchers and activists often assume that unreliability and 
congestion reductions inevitably lead to reduced vehicle emissions. In many cases, emissions 
reductions are cited as an implicit benefit of congestion mitigation without proper justification or 
quantification of the benefits. For example, the U.S. Federal Highway Administration’s 
Congestion Mitigation and Air Quality (CMAQ) Improvement Program suggests a clear co-
beneficial relationship between the two.  Excess travel time is consistently the largest estimated 
social cost of congestion,  but comprehensive attempts to quantify total congestion impacts suffer 
from challenges such as estimating the extent of higher-order, indirect effects (e.g., congestion 
impacts on land use) and quantifying intangibles (e.g., traveler stress levels). Too often, 
congestion cost analyses do not even go as far as to estimate driver-behavior responses to 
congestion (such as mode shift).   

1.2 RESEARCH GOALS AND REPORT ORGANIZATION 

This research tackles the problem of congestion, travel-time reliability and emissions tradeoffs.  
Several questions are answered:  

(1) What are the relative short-term impacts of travel-time reliability on travel time, fuel and 
greenhouse gas emissions? What are the impacts of travel-time reliability across different 
cities, in terms of total travel demand and density, in the U.S.?  

(2) What are the long-term impacts of strategies that aim to reduce congestion (i.e., increase 
travel speed)? Are travel speed increases always beneficial across different fleet 
compositions and emission types? 

Section 2.0 presents a methodology to study the short-term costs of freeway travel-time 
unreliability in terms of delays, fuel and emissions costs. This methodology is applied in Section 
3.0 to study (a) a congested freeway corridor in Portland, OR., and (b) six distinct urban areas in 
the U.S. Section 4.0 discusses potential long-term impacts of congestion-reduction strategies and 
different strategies that can be applied either in terms of capacity changes, vehicle-technology 
changes, or using demand-management strategies. A methodology to study the long-term 
impacts of congestion-reduction strategies on emissions is developed in Section 5.0. Sections 
6.0, 7.0 and 8.0 discuss the impacts of capacity, vehicle technology and demand-based strategies, 
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respectively. Section 10.0 discusses the impacts of fleet composition (i.e., percentage of 
passenger vehicles and heavy-duty vehicles) on total emissions. Section 11.0 ends with 
conclusions.  
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2.0 METHODOLOGY TO STUDY THE IMPACT OF 
RELIABILITY ON COSTS 

Traffic congestion is increasing around the world, particularly on urban freeways (European 
Conference of Ministers of Transport (ECMT), 2007; Schrank and Lomax, 2009).  Congestion 
has enormous social and financial impacts related to travel time, air pollution, fuel consumption, 
freight costs and safety costs, among others (Goodwin, 2004; HDR, 2009; Kriger et al., 2007; 
Weisbrod, Vary and Treyz, 2001). In terms of travel time and freight costs, we also now 
appreciate that it is not only average conditions, but unreliable/variable conditions that increase 
total costs of congestion (Brownstone and Small, 2005; Danielis, Marcucci and Rotaris, 2005).  

One of the causes of unreliability is instability in a traffic stream as it nears some maximal 
throughput capacity (Kerner, 1999; May, 1989). Minor disturbances or perturbations can cause 
unstable traffic streams to break down into queued or bottleneck conditions, with the 
accompanying heavy-congestion costs. But the traffic volume at which flow breaks down is not a 
certainty, motivating past research to model networks as having uncertain traffic-volume 
capacity (Boyles, Kockelman and Travis Waller, 2010; Lam, Shao and Sumalee, 2008; Lo, Luo 
and Siu, 2006; Chen et al., 2002). Lo and Tung (2003) modeled link capacities as uniformly 
distributed random variables, while Brilon (2005) modeled traffic capacity as a stochastic 
variable following a Weibull distribution. Since traffic-flow breakdown is a stochastic event, it 
should also be treated as such in traffic management. In an effort to better utilize existing 
roadway capacity, many metropolitan areas have established advanced traffic management 
systems (ATMS). These systems employ various traffic-control techniques such as ramp 
metering, variable speed limits, dynamic congestion pricing, and dynamic traveler guidance 
(U.S. Department of Transportation, n.d.).  

The proliferation of ATMS provides opportunities to better manage traffic flows. We propose 
that traffic flows can be better managed if the impacts of stochastic freeway capacity on delays, 
fuel consumption and emissions are properly modeled. We apply a stochastic freeway-capacity 
model of traffic-flow social benefits and costs to a congested freeway corridor in Portland using 
archived traffic data. Finally, we make comparisons across a diverse set of urban areas to 
illustrate relationships between urban density, trip length and congestion levels.  

We contrast the models that result from assuming (a) constant freeway capacity (reliable travel 
times) and (b) a stochastic freeway-capacity model (unreliable travel times).     
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2.1 CONSTANT FREEWAY CAPACITY   

Notation.  

  traffic demand or vehicle arrival rate [vehicles/hour] :ߣ

 ௖: roadway capacity  [vehicles/hour]ߣ

 [hour/mile] ߣ ሻ: travel rate, time to travel one mile with demand rateߣሺݐ

ሻߣሺݒ ൌ  ሻ: average travel speed [miles/hour]ߣሺݐ/1

݁ሺߣሻ: marginal emissions rate, with demand rate ߣ [kg/veh-mile] 

݂ሺߣሻ: fuel consumption rate, with demand rate ߣ [gallons/veh-mile] 

݈: length of the freeway section under study [miles]  

ce: cost of emissions (of pollutant in ݁ሺߣሻ)  [$/kg] 

ct: value of time [$/hour] 

cf: cost of fuel [$/gallon] 

 

Travel Rate. Using the well-known Bureau of Public Roads (BPR) volume/travel-time function 
(1964), the travel rate as a function of arrival rate ߣ (assumed constant over the analysis period) 
is: 

 ࢚ሺࣅሻ ൌ ࢕࢚ ൬૚ ൅ ࢇ ቀࣅ ൗࢉࣅ ቁ
࢈
൰ ൌ ࢕࢚ ൅ ࢇ࢕࢚ ቀࣅ ൗࢉࣅ ቁ

࢈
 (1) 

where ݐ௢ is the free-flow travel rate and ܽ and ܾ are parameters.  

 

Emissions and Fuel Rates. For emissions we estimate a function of λ per vehicle, per mile,݁ሺߣሻ.  
The CO2 emissions estimates used for fitting in this study are from Bigazzi and Figliozzi (2011) 
and are based on the Motor Vehicle Emissions Simulator (MOVES) 2010 emissions model with 
a 2010 mixed-light/heavy-duty fleet in Portland. In the present study, we estimate only CO2, but 
other pollutants can be similarly modeled. For the base emissions rates we use ݐሺߣሻ as above (the 
BPR model) to relate λ to average speed – which is the input for the average-speed emissions 
model – with ݐ௢ ൌ 60mph ௖ߣ , ൌ 2,200	vehicles	per	hour	per	lane	ሺvphpl ), ܽ ൌ 0.15  and 
ܾ ൌ 7. 

We then apply a new emissions formulation which is similar to ݐሺߣሻ, using four positive fitted 
parameters:	ߙ଴, ,ଵߙ ,ଶߙ ݊, and nominal capacity ߣ௖: 

ሻࣅሺࢋ  ൌ ૙ࢻ ൅ ૚ࢻ ቀࣅ ൗࢉࣅ ቁ ൅ ૛ࢻ ቀࣅ ൗࢉࣅ ቁ
࢔
 (2) 
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The fitted parameters are estimated by minimizing the square error of emissions rates with 
respect to base rates using λ as the independent variable, from 0 to 3,630 vehicles/hour/lane. This 
range of λ covers an average speed range from 10 to 60 mph. Fitting this curve, we find n to be 
about 10. This fitting gives us an R2 of 0.996. Similar fitting is obtained for another emission 
model proposed by Barth and Boriboonsomsin (2008). The fitted parameters are shown in Table 
1, and the fits are illustrated in Figure 1. The difference in magnitude of modeled emissions is to 
be expected, as the MOVES model includes heavy vehicles while the Barth model does not. Still, 
the ݁ሺߣሻ formulation fits well for each modeled fleet.  

Table 1. Fitted CO2 Emissions Equation Parameters 

Parameter MOVES Estimate Barth Estimate 

 ૙ 0.4043 0.3253ࢻ

 ૚ 0.02793 0.0000ࢻ

 ૛ 0.003650 0.002641ࢻ

 9.992 9.993 ࢔

 

Assuming CO2 emissions are directly proportional to fuel consumption, we can use the CO2 
emissions formulation to estimate both CO2 emissions and fuel consumption. Using a fuel carbon 
intensity F of 10kgCO2/gallon fuel (U.S. Environmental Protection Agency, 2009a), we have the 
fuel consumption ݂ሺߣሻ, in gallons/vehicle mile:  

ሻࣅሺࢌ  ൌ ሻࣅሺࢋ ⁄ࡲ ൌ ቂࢻ૙ ൅ ૚ࢻ ቀࣅ ൗࢉࣅ ቁ ൅ ૛ࢻ ቀࣅ ൗࢉࣅ ቁ
࢔
ቃ ൗࡲ  (3) 

Alternatively, fuel consumption could be modeled as a function of average travel speed and fit 
with a new set of parameters, as was done for emissions above.  
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Figure 1. Emissions fit for MOVES (black) and Barth (grey) models 

 

Total Costs and Benefits. Accounting for time, fuel and emissions costs, the total costs per unit 
of analysis time of flow rate λ are, in dollars/hour:  

ሻࣅሺ࡯ࢀ   ൌ ࣅ࢒ሻࣅሺ࢚࢚ࢉ ൅ ࣅ࢒ሻࣅሺࢌࢌࢉ ൅  (4)  ࣅ࢒ሻࣅሺࢋࢋࢉ

  

Introducing an inelastic demand function such that each trip on the segment has an associated 
benefit ݈ߚ [dollars/vehicle] where ߚ ൐ 0 [dollars/vehicle mile], we can calculate the net social 
benefit per unit time of flow rate λ as: 

ሻࣅሺ࡮ࡺ   ൌ ࣅ࢒ࢼ െ ࣅ࢒ሻࣅሺ࢚࢚ࢉ െ ࣅ࢒ሻࣅሺࢌࢌࢉ െ  (5)  ࣅ࢒ሻࣅሺࢋࢋࢉ

in dollars/hour. If we define a modified emissions cost coefficient ܿఌ ൌ ܿ௘ ൅ ௙ܿ ⁄ܨ , we can notate 

the net benefits simply as ܰܤሺߣሻ ൌ ߣ݈ߚ െ ܿ௧ݐሺߣሻ݈ߣ െ ܿఌ݁ሺߣሻ݈ߣ. The cost coefficient ܿఌ  could 
also be further modified to take into consideration the cost of local pollutants (assuming their 
emissions are roughly proportional to CO2 emissions).  

 

2.2 STOCHASTIC FREEWAY CAPACITY  

The previous analysis assumes the travel speed is a function of the volume of vehicles, but that 
traffic does not break down at any moment. Research has shown that after flow breakdown (a 
stochastic event), the traffic-flow characteristics are altered (Zhang and Levinson, 2004). Here 
we consider the case of a probabilistic breakdown in flow as traffic nears the roadway capacity. 
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Probability of Breakdown. We define ݌ሺߣሻ  as the traffic-flow breakdown, Bernoulli-
probability function, where the mean of the probability of failure is a function of ߣ. From Brilon, 
Geistefeldt and Regler (2005), we can formulate the relationship as a Weibull-distributed 
cumulative distribution function: 

ሻࣅሺ࢖  ൌ ૚ െ ࢋ
ିቀࣅ

࣐
ቁ
࣓

 (6) 

where ߱ and ߮ are shape and scale parameters, respectively. They studied a three-lane German 
motorway and found ߱ ൎ 13 consistently, while ߮ ranged from about 1,650 to 2,200 vphpl for a 
one-hour, steady-flow interval. This agrees with recent research on flow breakdown on an urban 
freeway in Portland (Figliozzi and Saberi, 2011) – see Figure 2.  

   

(a)                                                                                   (b) 

Figure 2. Comparison of empirical breakdown probabilities from a) Brilon, et al. (2005) and b) 
Figliozzi and Saberi (2011) 

 

Bottleneck Analysis. Assume that once flow breakdown occurs, a bottleneck is activated behind 
which a queue of slow-moving vehicles forms. This queue persists partly because of reduced 
throughput capacity after flow breakdown. If we assume a simple triangular shape on the space-
time (x-t) plane for the extent of the bottleneck, we can estimate delay, fuel consumption and 
emissions after flow breakdown using some additional parameters. We define the following 
parameters, illustrated in Figure 3:  

T: duration of time where a bottleneck (bn) is present, from ݐ ൌ 0 

vf : free-flow traffic speed outside the queue (equal to ݒሺߣሻ	for ߣ ൏  (௖ߣ

vb: traffic speed in the queue, where ݒ௙ ൐  ௕ݒ

vw: speed of queue propagation  (a negative number) 

vw’: speed of queue dissipation  

݈: length of the freeway section under study  
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The dashed lines in Figure 3 are idealized vehicle trajectories, representing average traffic speed 
as constant-speed vehicles.  

Assume that a vehicle starts at the upstream end of the freeway section under consideration at a 
time ߬ with respect to the start of a bottleneck at the downstream end of the section, such that 

0 ൑ ߬ ൅ ݈ ௙ൗݒ ൑ ܶ in order to encounter the queue. The vehicle that reaches the queue at the 

initial activation of the bottleneck departs at time ߬ ൌ െݐ௙, where ݐ௙ ൌ ݈ ௙ൗݒ  . The vehicle that 

reaches the queue at the transition from formation to recovery wave of the bottleneck departs at 

time ߬ ൌ ௥ݐ ௥, whereݐ ൌ
்௩ೢᇲ൫௩ೢି௩೑൯

௩೑ሺ௩ೢି௩ೢᇲሻ
െ ௟

௩೑
 . The last vehicle to encounter the bottleneck departs at 

time ߬ ൌ ௘ݐ ௘, whereݐ ൌ ܶ െ ݈ ௙ൗݒ  . 

 

Figure 3. Illustrated breakdown flow parameters on the space-time plane 

The travel time over the freeway segment for vehicles encountering the queue during formation 
(the propagation wave), where െݐ௙ ൑ ߬ ൑  :௥, isݐ

  ࢚૚ ൌ
࢒

࢈࢜
∙ ࢝࢜ି࢈࢜
࢝࢜ିࢌ࢜

൅ ࣎ ∙ ࢜࢝
࢈࢜
∙
ࢌ࢜ି࢈࢜
࢝࢜ିࢌ࢜

 (7) 

and the travel time for vehicles encountering the queue during dissipation (the recovery wave), 
where ݐ௥ ൑ ߬ ൑   :௘, isݐ

  ࢚૛ ൌ
࢒

࢈࢜
∙ ᇲ࢝࢜ି࢈࢜
ᇲ࢝࢜ିࢌ࢜

൅ ሺࢀ െ ࣎ሻ ∙ ࢜࢝ᇲ
࢈࢜
∙
࢈࢜ିࢌ࢜
ᇲ࢝࢜ିࢌ࢜

 . (8) 

The travel time during the queue existence is then a piecewise linear function of the vehicle’s 
departure time from the start of the section, with a maximum travel time for vehicles departing at 

tr. These vehicles experience the maximum delay ܦ௠௔௫ ൌ ݈௤_௠௔௫ ൬
ଵ

௩್
െ ଵ

௩೑
൰, where max queue 
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length  ݈௤_௠௔௫ ൌ
்௩ೢ௩ೢᇲ
௩ೢି௩ೢᇲ

, and a travel time of ݐ௠௔௫ ൌ ௙ݐ ൅ ௠௔௫ܦ . The delay in the queue, 

averaged over time for vehicles encountering the queue, is ܦഥ ൌ ௠௔௫ܦ
2ൗ .  

Assume that if there is a bottleneck, the duration of the bottleneck ܶ ൌ  Δ where Δ is the timeߜ
period of study with constant demand ߣ maintained, and 0 ൑ ߜ ൑ 1 is a coefficient that indicates 
the relative duration of the bottleneck in the period of study Δ . The average travel rate 
(time/distance) during Δ accounting for bottleneck delay is then: 

ሻࣅሺ࢈࢚   ൌ ࢚ሺࣅሻ ൅ ࢾ ഥࡰ

࢒
ൌ

࢞ࢇ࢓_ࢗ࢒∙ࢾ
૛࢈࢜࢒

൅ ࢚ሺࣅሻ ቀ૚ െ
࢞ࢇ࢓_ࢗ࢒∙ࢾ

૛࢒
ቁ  (9) 

since ݒ௙ ൌ 1
ሻൗߣሺݐ . Substituting for ݈௤_௠௔௫, ܶ, and ݐሺߣሻ we get: 

ሻࣅሺ࢈࢚  ൌ ࢕࢚ ൅
ሻ࢈࢜࢕૛ઢ࢜࢝࢜࢝ᇲሺ૚ି࢚ࢾ

૛࢈࢜࢒ሺ࢜࢝ି࢜࢝ᇲሻ
൅ ࢇ࢕࢚ ቂ૚ െ

૛ઢ࢜࢝࢜࢝ᇲࢾ
૛࢒ሺ࢜࢝ି࢜࢝ᇲሻ

ቃ ቀࣅ ൗࢉࣅ ቁ
࢈
 (10) 

which is a function of  , with parameters ݈, ,ߜ ∆, ,௪ݒ ,௪ᇱݒ ,௕ݒ ,௢ݐ ܽ, ܾ,  and ߣ௖  and physical 

constraints ݈௤_௠௔௫ ൑ ݈ (the queue must be contained in the segment) and 1 ௕ൗݒ ൒  ሻ (the queueߣሺݐ

speed must be less than the un-queued speed). We can simplify the notation with a new 
dimensionless parameter:  

ࣂ  ൌ
࢞ࢇ࢓_ࢗ࢒ࢾ

૛࢒
ൌ ૛ઢ࢜࢝࢜࢝ᇲࢾ

૛࢒ሺ࢜࢝ି࢜࢝ᇲሻ
   (11) 

which indicates the fractional effective bottleneck length in the context of the study period and 
road-segment length. Using ߠ: 

ሻࣅሺ࢈࢚  ൌ
ࣂ

࢈࢜
൅ ሺ૚ െ ሻࣂ ∙ ࢚ሺࣅሻ (12) 

and the average travel rate if flow breakdown occurs is a function of ߣ  with parameters 
,ߠ ,௕ݒ ,௢ݐ ܽ, ܾ, and ߣ௖.  

Using (1) and (2), the average emissions rates ݁௤ (per vehicle, per mile) for vehicles inside a 

queue with average speed ݒ௕ can be estimated as: 

ࢗࢋ  ൌ ࢉࣅቆࢋ ቀ
૚ି࢜࢕࢚࢈
ࢇ࢕࢚࢈࢜

ቁ
૚
ൗ࢈ ቇ ൌ ૙ࢻ ൅ ૚ࢻ ቀ

૚ି࢜࢕࢚࢈
ࢇ࢕࢚࢈࢜

ቁ
૚
ൗ࢈ ൅ ૛ࢻ ቀ

૚ି࢜࢕࢚࢈
ࢇ࢕࢚࢈࢜

ቁ
࢔
ൗ࢈
 (13) 

with parameters ܽ, ܾ, ,௢ݐ ,଴ߙ ,ଵߙ  ଶ, and ݊. The emissions for vehicles outside the queue is theߙ
same as ݁ሺߣሻ . Neglecting the transitions in/out of the queue, by a parallel process as the 
development of (12) we can estimate the emissions when a bottleneck occurs as:  

ሻࣅሺ࢈ࢋ  ൌ ࣂ ∙ ࢗࢋ ൅ ሺ૚ െ ሻࣂ ∙  ሻ (14)ࣅሺࢋ
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If we estimate the excess queue-transition emissions for a vehicle entering and exiting the queue 
as ࢚ࢋ  in mass per vehicle encountering the queue, then the average emissions rate after 
breakdown (per vehicle, per mile) becomes: 

ሻࣅሺ࢈ࢋ  ൌ ࣂ ∙ ࢗࢋ ൅ ሺ૚ െ ሻࣂ ∙ ሻࣅሺࢋ ൅ ࢾ

࢒
∙  (15) ࢚ࢋ

The equations for ݁௕ሺߣሻ and ݐ௕ሺߣሻ are linear functions of ݁ሺߣሻ and tሺߣሻ. We can estimate the 
size of ݁௧ using an assumption of constant deceleration/acceleration for vehicles encountering the 
queue. Let the emissions rates (per vehicle mile) with constant acceleration ܽ  and constant 
deceleration ݀  be ݁௔  and ݁ௗ , respectively, and free-flow emissions be ௙݁ . Then the excess 

emissions in mass per vehicle during the transitions are: 

࢚ࢋ   ൌ
࢈࢜
૛ି࢜ࢌ

૛

૛ࢊ
൫ࢊࢋ െ ൯ࢌࢋ ൅

ࢌ࢜
૛ି࢜࢈

૛

૛ࢇ
൫ࢇࢋ െ  ൯.  (16)ࢌࢋ

Long (2000) discusses various acceleration characteristics of vehicles, and cites NCHRP 
(National Cooperative Highway Research Program) Report 270 for average accelerations around 
2 mph/second in the 30-60 mph speed range (Olson et al., 1984). Assuming this value for both 
transition accelerations and decelerations, we modeled constant accelerations and decelerations 
in the 30-60 mph speed range using the project-level methodology of the MOVES 2010 
emissions model (U.S. Environmental Protection Agency, 2009b), with the same fleet and other 
characteristics as above from Bigazzi and Figliozzi (2011). MOVES outputs for CO2 generated, 
on average, ݁௔ ൌ 0.957  kg/vehicle mile and ݁ௗ ൌ 0.156  kg/vehicle mile. Using ௙݁ ൌ 0.404 

kg/vehicle mile at 60 mph free-flow speed (see Table 1), these lead to: 

࢚ࢋ   ൌ ૛. ૚૛ ൈ ૚૙ି૞൫࢜ࢌ
૛ െ ࢈࢜

૛൯	 (17) 

with speeds in mph and ݁௧ in kg/vehicle. For free-flow speed of 60 mph and queued speeds in the 

10-40 mph range, this results in an equivalent emissions-distance penalty of ݀௘ ൌ
௘೟
௘೑
ൌ 0.10 to 

0.18	miles (the distance at free-flow speed that produces the same amount of excess emissions 
as those produced by the queue transition).  

 

Modified Cost Functions. Utilizing the probabilistic function ݌ሺߣሻ we generate the revised 
travel rate function: 

࢚ᇱሺࣅሻ ൌ ሻࣅሺ࢖ ∙ ሻࣅሺ࢈࢚ ൅ ൫૚ െ ሻ൯ࣅሺ࢖ ∙ ࢚ሺࣅሻ 

 ൌ ࢚ሺࣅሻ ൅ ࣂሻࣅሺ࢖ ቂ ૚
࢈࢜
െ ࢚ሺࣅሻቃ (18) 

Similarly, the revised average emissions rate function is:  

ሻࣅᇱሺࢋ  ൌ ሻࣅሺ࢖ ∙ ሻࣅሺ࢈ࢋ ൅ ൫૚ െ ሻ൯ࣅሺ࢖ ∙  ሻࣅሺࢋ

 ൌ ሻࣅሺࢋ ൅ ሻࣅሺ࢖ ቂࣂ ቀࢗࢋ െ ሻቁࣅሺࢋ ൅ ࢾ

࢒
 ቃ (19)࢚ࢋ
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The fuel-consumption estimate can also be revised as per (3) using ݁ᇱሺߣሻ for ݁ሺߣሻ. For net social 
benefits considering probabilistic flow breakdown, we then have: 

ሻࣅሺ′࡮ࡺ  ൌ ࣅ࢒ࢼ െ ࣅ࢒ሻࣅሺ′࢚࢚ࢉ െ  (20) ࣅ࢒ሻࣅሺ′ࢋࢿࢉ

where ܿఌ ൌ ܿ௘ ൅ ௙ܿ ⁄ܨ .    

 

The value of reliability (or cost of unreliability) with respect to traffic-flow instability is defined 
as the decrease in social benefit due to stochastic freeway capacity. In units of dollars/hour of 
analysis: 

ሻࣅሺࡾࢂ   ൌ ሻࣅሾ࢚ᇱሺࣅ࢒࢚ࢉ െ ࢚ሺࣅሻሿ ൅ ሻࣅᇱሺࢋሾࣅ࢒ࢿࢉ െ  ሻሿࣅሺࢋ

 ൌ ሻࣅሺ࢖ࣂ࢒ࣅ ቈ࢚ࢉ ቂ
૚

࢈࢜
െ ࢚ሺࣅሻቃ ൅ ࢿࢉ ቂࢗࢋ െ ሻࣅሺࢋ ൅ ࢾ

࢒ࣂ
 ቃ቉ (21)࢚ࢋ

This can be put into units of dollars/vehicle mile by dividing by ݈  and ߣ . So the value of 
reliability (related to stochastic capcity) can be estimated as a function of ߣ with parameters of 
section length, the cost coefficients (except ߚ ), the breakdown-probability function, the 
bottleneck parameters, the BPR parameters, the emissions-formulation parameters, and the 
queue-transition emissions. 
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3.0 CASE STUDY 

We now present a case-study application using archived loop-detector data from OR 217, a 
congested freeway corridor in the Portland metro region. The parameter values for use in the 
above equations and their sources are shown in Table 2.  Much of the data come from PORTAL, 
a transportation data archive at Portland State University: http://portal.its.pdx.edu. The freeway 
stochastic-capacity data come from Figliozzi and Saberi (2011), who recently analyzed traffic 
characteristics on this corridor utilizing PORTAL data.   

From (6), we can estimate ߮ to make the likelihood of breakdown at nominal capacity a certain 

value ݌௖ ௖ሻߣሺ݌  , ൌ ௖݌  using ߮ ൌ ௖ߣ ቂ݈݊ ቀ1 1 െ ௖ൗ݌ ቁቃ
ିଵ ఠൗ

. For a median value of ݌௖ ൌ 0.5 , 

߮଴.ହ ൌ ௖݌ ௖, forߣ1.0286 ൌ 0.90, ߮଴.ଽ ൌ  ௖. Here we assume the nominal capacity (usedߣ0.9379
in the BPR equation) equates to a 90% likelihood of flow breakdown, ݌௖ ൌ 0.90.  We initially 
assume travel benefits ߚ ൌ $0.50 per vehicle mile. Theta, a function of the breakdown flow 
parameters (Δ, δ, vw,and vw’) and segment length l – see (11), is calculated from the parameters in 
Table 2 as 0.27; the corresponding maximum queue length is 4.8 miles. 

 

 

Table 2. Parameters Used in the Case Study 

Parameter Value Units Source 

l 7 mi Roadway 

Δ 1 hours approximated from PORTAL data 

δ 0.8 - approximated from PORTAL data 

FFS 60 mph approximated from PORTAL data 

a 0.15 - (Figliozzi and Saberi, 2011) 

b 7 - (Figliozzi and Saberi, 2011) 

 vphpl (Figliozzi and Saberi, 2011) 2200 ࢉࣅ

vb  26 mph (Figliozzi and Saberi, 2011) 

vw -12 mph (Lu and Skabardonis 2007; Castillo and Benítez 1995) 

vw’ 12 mph assumed to be the same as vw 

࣓ 13 - (Brilon, Geistefeldt, and Regler 2005) 

࣐ 2063 vphpl Makes ߣ௖ the 90th percentile from (6), see above 

et Eq’n (17) kg/veh MOVES2010 modeling (see above) 

ct 15 $/veh-hr assumed from (Schrank and Lomax 2009) 

ce 0.02 $/kg CO2 assuming US$20/tonne CO2, from EU ETC 

cf 3 $/gal assumed from (Schrank and Lomax 2009) 

F 10 kgCO2/gal (U.S. Environmental Protection Agency 2009a) 
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 veh-mi Assumed/$ 0.50 ࢼ

 

3.1 NET BENEFITS, OPTIMAL FLOW, AND THE VALUE OF 
RELIABILITY 

The results of applying the parameters in Table 2 to calculate net benefits as embodied in (20) 
are shown below. The cost components, total costs, benefits, and net benefits are illustrated in 
Figure 4. The total costs are dominated by travel-time costs, and emissions costs are negligible. 
All cost components increase more rapidly as the flow approaches capacity and the likelihood of 
flow breakdown increases. The optimal flow here to maximize net benefits is 1,658vphpl (75% 
of ߣ௖).  

 

Figure 4. Case-study cost and benefit curves 

The parameter with the highest uncertainty is ߚ, which would require some knowledge of the 
trips and travelers to estimate accurately. This parameter impacts both net benefits and the 
optimal flow rate. Given this uncertainty, it is interesting (and perhaps most useful) to look at 
how optimal flows vary with ߚ. To this end, Figure 5 illustrates the impacts of varying ߚ on 
optimal flow. Figure 5 also shows the impacts of the probabilistic breakdown formulation with 
two different optimal-flow curves – with and without considering ݌ሺߣሻ.  
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Figure 5. Impact of considering probabilistic breakdown on optimal flows 

Here we see that there is an initial per-mile benefit threshold, below which auto travel is not 
worthwhile. For ߚ just above this threshold, optimal flows quickly rise to the lower probabilities 
of breakdown flow, around 1,400 vphpl (which equates to ݌ሺ1400ሻ ൌ 0.01). As ߚ increases, 
higher flows are optimal because the value of additional trips outweighs the increased marginal 
costs for all vehicles. Optimal flows increase more slowly with ߚ when using the probabilistic 
formulation, which considers the possibility of flow breakdown below capacity. Using stochastic 
costs, a doubling of the benefits of travel from $0.40 to $0.80/vehicle mile results in an optimal 
flow increase of only about 30%, while the deterministic curve increases to capacity (more than 
45%). Lower optimal flows reduce the likelihood of flow breakdown at the sacrifice of 
additional throughput; up to ߚ ൌ	$0.80/vehicle mile the optimal flow is still below ݌ሺߣሻ ൌ 0.27. 
The optimal flow difference between the curves in Figure 5 shows that reducing ݌ሺߣሻ is a key 
factor to increasing optimal traffic-flow volumes.  

As the optimal flow rates approach the roadway capacity where breakdown is nearly certain, 
there is a “Capacity Point” for ߚ at which, despite the increased costs of queued conditions, the 
value of travel supersedes flow restrictions. This occurs at around $0.70/vehicle mile considering 
deterministic costs and $1.06/vehicle mile considering stochastic costs. The “Capacity Point” 
considering probabilistic breakdown is 50% greater than for deterministic conditions – indicating 
that trip values must be much higher in order to warrant high volumes if we consider traffic 
instability below the capacity threshold. For probabilistic breakdown, there is a sudden change in 
the optimal flow curve as traffic flows near capacity that reflects the flattening of the Weibull 
distribution near capacity flows (see Figure 2).  

The value of reliability (or cost of unreliability), here computed by (21), increases with ݌ሺߣሻ as 
we approach the roadway capacity. The marginal social value of reliability increases from 
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essentially zero at flows below 1,500 vphpl to about $0.08/vehicle mile at flows just below 
capacity. This value of reliability is about 16% of total estimated stochastic costs (per vehicle 
mile) near capacity for the study corridor. The value of reliability is alternatively expressed as 
$0.56 per vehicle throughput on the segment, since it is negligibly sensitive to segment length. 
As a reminder, this is only the unreliability due to stochastic capacity, not due to crashes or other 
incidents.  

Finally, Figure 6 presents optimal flows versus ߚ when considering different combinations of 
cost components. While emissions costs are negligible (at present valuations), the impacts of 
considering fuel costs are substantial. For example, the “Capacity Point” for total costs is about 
20% higher than when neglecting fuel costs. In the other dimension, at ߚ ൌ	$0.80/vehicle mile 
the optimal flow is about 5% lower when considering fuel costs as compared to neglecting them. 

 

Figure 6. Optimal flow versus ࢼ, with different cost components  

3.2 CASE-STUDY SENSITIVITY 

Elasticities of net benefits, optimal flows, and the value of reliability to changes in various 
parameters were calculated, as presented in Table 3. The elasticity is the percent change in the 
dependent variable (benefit/flow/reliability) with each percent change in the parameter value, 
with respect to initial parameter values from Table 2. The initial optimal flow is 1,658 vphpl with 
the initial net benefit of $1,323/hour estimated at this optimal flow. The initial value of reliability 
is estimated at capacity flow (2,200 vphpl) as $1,273/hour.  

The cost coefficient for time and the benefits per mile (ct and ߚ) are important factors for net 
benefits. The free-flow speed is also important for net benefits as it greatly impacts the travel 
time on the segment. Optimal flow is generally much less sensitive to parameters than net 
benefits are, though ct and ߚ are still among the more important factors. The scale parameter of 
the breakdown probability function ߮ is the most important factor for optimal flow, which is to 
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be expected from the importance of flow-breakdown likelihood illustrated in Figure 5. The value 
of reliability is most impacted by bottleneck characteristics such as δ and vb, as well as the 
breakdown-probability scale parameter ߮. 

 

Table 3. Elasticities of Net Benefits, Optimal Flow, and the Value of Reliability to Parameters 

Parameter Net Benefit 
Elasticity 

Optimal Flow 
Elasticity 

Value of Reliability 
Elasticity 

L 1.00 0.06 0.00 

Δ -0.05 -0.07 0.90 

δ -0.09 -0.13 1.66 

FFS 2.00 0.17 0.83 

a -0.04 -0.03 -0.11 

b 0.08 0.03 0.00 

 0.76 0.20 0.32 ࢉࣅ

vb 0.08 0.11 -1.67 

vw -0.03 -0.04 0.47 

vw’ -0.03 -0.04 0.47 

࣓ 0.12 0.10 0.00 

࣐ 0.55 0.71 -2.50 

et 0.00 0.00 -0.02 

 0.90 0.07- 0.05- ࣂ

ct -2.00 -0.28 0.83 

ce -0.07 0.00 0.01 

cf -1.00 -0.10 0.13 

 0.00 0.38 3.33 ࢼ

 

3.3 AGGREGATE ANALYSIS ACROSS URBAN AREAS   

Our final analysis applies the previous concepts to urban areas. This aggregate or macro analysis 
attempts to find a relationship between urban congestion characteristics, size, density and traffic 
flows. To do this, we gather macroscopic characteristics of peak-period freeway volumes in 
different cities from the data tables of the Texas Transportation Institute’s 2009 Urban Mobility 
Report (UMR) (Schrank and Lomax, 2009). The urban areas selected are the most and least 
“traveler-dense” urban areas in the three top size categories: “Medium” (0.5-1 million people), 
“Large” (1-3 million), and “Very Large” (>3 million). Traveler density is assessed as the number 
of peak-period travelers per square mile, easily extractable from the UMR data tables.  
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From the UMR data tables we can estimate average peak-period trip distance on major facilities 
by dividing total peak-period freeway and arterial vehicle miles traveled (VMT) by the number 
of peak-period travelers. Since the number of travelers will exceed the number of vehicles, this is 
a low-end approach to estimating miles per person, per day. We also use the UMR data to 
calculate average congested, peak-period freeway volumes, in vehicles per hour per lane (vphpl), 
by assuming the portion congested (in VMT and lane miles) is equivalent on freeways and 
arterials, and an even directional split. For each urban area, the UMR provides estimates of 
freeway and arterial VMT and lane miles, fractions of VMT and lane miles congested, and 
number of “rush hours” - assumed to be congested. By assuming even distributions, this is a 
conservative approach to volume estimates. These assumptions provide an admittedly rough 
approximation, but one which can be used to illustrate the differences among urban areas. Table 
4 shows the six urban areas analyzed along with their population, peak-period traveler density, 
percent of lane miles congested, average peak-period trip distance, and average congested peak-
period freeway volume – all extracted or calculated from the UMR data tables for 2007.  

Table 4. Urban Areas’ Average Characteristics 

Urban Area Population 
Peak 
Traveler 
Density 

Lane-mi 
Congested 

Peak 
Trip 
Distanc
e 

Peak 
Freeway 
Volume 

(1,000's) (per mi2) (%) (mi) (vphpl) 

Atlanta 4,440 771 58 19.5 1,570 

Los Angeles 12,800 3,087 61 19.2 2,098 

Raleigh-Durham 1,025 671 53 20.6 1,089 

Las Vegas 1,405 2,539 53 16.4 1,700 

Nashville 995 725 43 23.8 1,061 

Honolulu 705 2,771 51 12.2 1,174 

 

We use the urban area and congestion data to calculate the per-traveler dollar values per mile (ߚ) 
that would justify capacity flows under deterministic and stochastic conditions. In addition, we 
calculate the per-traveler dollar values per mile (ߚ) that would justify an optimal flow under 
deterministic and stochastic conditions. For ߠ  in each urban area (the effective fraction of 
roadway in queued conditions after flow breakdown), we assume a value equal to the percent of 
lane miles congested during the peak period (Table 4), and for vb we assume a value of 35 mph 
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(from the UMR methodology – see Appendix A of the UMR (Schrank and Lomax, 2009)). The 
other parameters for cost coefficients, ݐሺߣሻ, ݁ሺߣሻ, and ݌ሺߣሻ are assumed to be the same as above 
for the case study (bottleneck parameters do not apply since we are using ߠ). 

Per-traveler dollar values per mile (ߚ) that would justify capacity and optimal flows under 
deterministic and stochastic conditions are shown in Table 5. The per-traveler dollar values that 
justify capacity flows under deterministic conditions are the same across urban areas. However, 
if the costs associated to stochastic capacity are taken into account, the per-traveler dollar values 
increase with the urban area size and density. Percentagewise, the increase between deterministic 
and stochastic conditions ranges from 28-38%. To optimize existing flows, the per-traveler dollar 
values also increase with urban size and density. However, the increase associated with 
stochastic capacity is significant in the very large, high-density urban area. The increase between 
deterministic and stochastic conditions ranges from 0-46%.  Hence, to optimally control traffic 
flows, it is especially important to consider stochastic capacity in large urban areas with high 
traffic density.  

Table 5. Comparison of Per-Traveler Dollar Values Per Mile (ࢼ) Across Urban Areas  

Urban Area 
Urban 
Area 
Size 

Traveler 
Density 

 to justify capacity flow ߚ 
 .to optimize existing avg ߚ 
peak-period freeway flows 

Det. Sto. 
% 
Change Det. Sto. 

% 
Chang
e 

Atlanta Very 
Large 

Low $0.70 $1.10 36.4% $0.41  $0.46  10.9% 

Los Angeles High  $0.70 $1.13 38.1% $0.60  $1.12  46.4% 

Raleigh-Durham 
Large 

Low $0.70 $1.06 34.0% $0.38  $0.38  0.0% 

Las Vegas High  $0.70 $1.06 34.0% $0.43  $0.54  20.4% 

Nashville 
Mid 
Size 

Low $0.70 $0.98 28.6% $0.38  $0.38  0.0% 

Honolulu High  $0.70 $1.04 32.7% $0.38  $0.38  0.0% 

 

Per-traveler dollar values (݈ߚ) of daily peak-period trips that would justify capacity and optimal 
flows under deterministic and stochastic conditions are shown in Table 6.  Less-dense urban 
areas require higher trip values to warrant capacity flow since the trip lengths tend to be longer 
(which lowers value per mile). Conversely, for a given peak-period trip value, denser areas will 
have higher optimal flow rates because the ߚ value is larger. This is particularly true for mid-
sized urban areas, since the larger the population the less of a difference in trip distance is 
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observed for areas with different traveler densities. Though the changes in trip value that justify 
capacity flows are somewhat similar across urban areas, the change in trip value that justifies 
optimal flows is considerably larger in very large areas with high density.  

Table 6. Comparison of Per-Traveler Trip Dollar Values (࢒ࢼ) Across Urban Areas 

Urban Area 
Urban 
Area 
Size 

Travele
r 
Density 

 to justify capacity flow ݈ߚ 
݈ߚ  to optimize existing avg. 
peak-period freeway flows 

Det. Sto. 
$ 
Change Det. Sto. 

$ 
Change 

Atlanta Very 
Large 

Low $13.68  $21.49  $7.81  $8.01  $8.99  $0.98  

Los Angeles High  $13.43  $21.68  $8.25  $11.51  $21.49  $9.98  

Raleigh-Durham 
Large 

Low $14.44  $21.87  $7.43  $7.84  $7.84  $0.00  

Las Vegas High  $11.46  $17.35  $5.89  $7.04  $8.84  $1.80  

Nashville 
Mid 
Size 

Low $16.67  $23.33  $6.66  $9.05  $9.05  $0.00  

Honolulu High $8.52  $12.66  $4.14  $4.62  $4.62  $0.00  

These trip values can be interpreted as the “break-even” trip values, above which increasing 
freeway flows are still warranted, but below which the observed flows are inefficiently high. 
Again, the impact of stochastic capacity is significant in larger urban areas with higher traffic 
density.  Finally, urban areas with low peak volumes (below 1,200 vphpl) have no observable 
difference between probabilistic and deterministic conditions, while those very near capacity 
(e.g., Los Angeles) are greatly affected by the uncertainty of breakdown conditions. The high 
likelihood of traffic-flow breakdown combined with long trip lengths makes the break-even trip 
value for existing conditions in Los Angeles double that of any other urban area when 
considering stochastic capacity. 

As stated above, these comparisons by urban area are based on a set of some aggregate 
characteristics of the urban areas and peak-period travel. To see the sensitivity of these results, 
we varied these assumptions and the key parameters, as indicated by Table 3. Using the Portland 
case-study values for ߠ and vb (both of which are lower) has no large impact on the results. 
Decreasing ߠ reduces stochastic costs at capacity and for high-volume areas, but decreasing vb 
has the opposite (and, here, offsetting) effect. This suggests that these results are intuitive and 
consistent with varying thresholds of congestion.  

Increasing the roadway capacity (or scale parameter of the probability of breakdown function) 
reduces the stochastic costs for high-volume areas since they are less exposed to congestion or 
flow breakdown. On the other hand, assuming less-homogenous flow distribution increases the 
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costs for higher-volume urban areas. Varying other parameters such as free-flow speed and cost 
coefficients has little to no effect on the comparison among urban areas. The ratio of stochastic 
to deterministic costs for each urban area similarly increases with parameters that increase 
congestion penalties. For observed volumes the stochastic/deterministic cost ratio ranges from 
1.0 for low-volume areas to 1.9 for Los Angeles. This ratio tends to increase with higher 
volumes (which themselves increase with traveler density). Given the uncertainty in parameter 
estimation, the above results comparing urban areas are presented as conservative estimates, with 
the caveat that they are highly sensitive to assumptions about ߠ, vb, and the directional split. The 
estimates are conservative in that they will tend to underestimate trip distances, peak volumes, 
and stochastic costs, as explained above. While the absolute cost estimates are highly sensitive to 
the assumptions, the same general trends in the results hold (though possibly magnified) for 
varying parameter values. 

 

3.4 DISCUSSION  

In the first section of this report, we model the costs and benefits of freeway traffic flows as a 
function of travel-time reliability (i.e., stochastic capacity). We apply this model to: (a) a 
congested freeway corridor in Portland using real-world archived traffic data and (b) six distinct 
urban areas across the U.S.  

The freeway case-study results show that unreliability decreases optimal traffic-flow volume – 
and increases travel value that is required to justify flow at capacity. Travel time is the dominant 
cost, followed by fuel costs; emissions costs are negligibly small at present valuations. The value 
of reliability is most sensitive to the breakdown-flow characteristics, such as bottleneck travel 
speed, bottleneck duration, and the probability of traffic breakdown. A sensitivity analysis 
indicates that net social benefits and optimal flow are most sensitive to the travel-time cost 
coefficient, the travel benefit coefficient, and the free-flow speed.  

Comparing macroscopic peak-period traffic characteristics among urban areas of varying size 
and density, results are intuitive and consistently indicate that the impacts of stochastic capacity 
are more significant in larger and denser urban areas. The large and dense urban areas have 
markedly higher flows, which increase the marginal costs of travel and can offset shorter trip 
lengths when estimating net benefits. These results indicate that there is a tradeoff between trip 
length and traffic intensity in urban areas with different density.   
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4.0 STRATEGIES TO MITIGATE CONGESTION AND 
EMISSIONS 

Policymakers, researchers and activists often assume that congestion reductions inevitably lead 
to reduced vehicle emissions. In many cases, emissions reductions are cited as an implicit benefit 
of congestion mitigation without proper justification or quantification of the benefits. For 
example, the U.S. Federal Highway Administration’s Congestion Mitigation and Air Quality 
(CMAQ) Improvement Program suggests a clear co-beneficial relationship between the two. The 
CMAQ program has provided over $14 billion in funding since 1991 for transportation projects 
to improve air quality and reduce congestion (Federal Highway Administration, 2010) – one 
third of it for traffic-flow improvement projects (Transportation Research Board, 2002; Grant et 
al., 2008). If congestion mitigation is to be tied to air-quality goals, we need a better 
understanding of total congestion impacts on motor-vehicle emissions.  

Vehicle emissions have an established role in decreasing urban air quality and increasing 
atmospheric greenhouse gases. Concurrently, roadway congestion impacts urban areas 
throughout the world with varying economic, social and environmental costs. But the full effects 
of traffic congestion on motor-vehicle emissions are still not well quantified due to the existence 
of feedback effects and complex interactions. Potential changes in travel behavior or vehicle 
technology are two factors that complicate the evaluation of congestion-mitigation effects on 
future emissions.  

 An important consideration to evaluate the impact of congestion-mitigation measures on 
emissions is the effect of induced travel-demand volume resulting from travel-time savings.  A 
report by Dowling (2005) used travel-demand modeling to estimate the air-quality effects of 
traffic-flow improvements. The conclusion of the report states that more research is needed “to 
better understand the conditions under which traffic-flow improvements contribute to an overall 
net increase or decrease in vehicle emissions.” Other, more focused research on a limited spatial 
scale has shown that induced demand from individual traffic-flow improvements can entirely 
offset emissions-rate reductions (Stathopoulos and Noland, 2003; Noland and Quddus, 2006).  

Capacity-based strategies (CBS) for reducing emissions ease congestion by increasing a 
roadway’s vehicle throughput capacity and increasing vehicle operating efficiency. CBS can 
increase capacity by increasing lane miles or by increasing existing roadway utilization through 
traffic-flow improvements. The desired emissions benefit of congestion mitigation through CBS 
is reduced marginal emissions rates at higher average traffic speeds.  However, CBS have the 
potential to generate induced vehicle-travel demand. 

Alternative strategies for reducing emissions can be based on more efficient vehicles – 
efficiency-based strategies (EBS) – or on reduced vehicle travel demand – demand-based 
strategies (DBS). EBS directly target emissions through cleaner vehicles and fuels or more 
efficient driving. DBS, such as road pricing, reduce emissions by reducing vehicle-travel volume 
and can reduce congestion simultaneously.  
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In this paper we investigate the broad conditions in which emissions co-benefits can be expected 
from congestion mitigation and compare capacity-, efficiency-, and demand-based emissions 
reduction strategies. In particular, the paper studies the effects of travel-demand elasticity, the 
consequences of more efficient vehicles in the fleet, and the role of light-duty and heavy-duty 
vehicles across different types of pollutants. The methodological framework used in this paper 
allows for a parsimonious estimation of net emissions effects at the aggregated level. This 
framework is presented in the next section.  
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5.0 METHODOLOGICAL FRAMEWORK TO COMPARE 
STRATEGIES 

This section describes the notation and equations used in this paper to investigate tradeoffs 
among travel speed, travel volume and total emissions. The concept of elasticity is employed to 

set up the conditions that lead to positive or negative net emissions changes. The elasticity, ߝ௘̅
௩ത , of 

average emissions rate, ݁̅, to average travel speed, ̅ݒ, is expressed: 

തࢋࢿ
ഥ࢜ ൌ

ഥ࢜

തࢋ
∙ ࢋࣔ

ത

ࣔഥ࢜
. (22) 

 

The average vehicle-emissions rate in mass per unit distance of travel is denoted as ݁̅, and total 
emissions from all on-road vehicles in mass per unit length of road, per unit of time is denoted as 
 ,(in vehicle throughput per unit time) ݍ If the total travel-demand volume on a roadway is .ܧ
then	ܧ ൌ ݍ ∙ ݁̅. The average travel speed on the roadway is denoted as ̅ݒ, in distance traveled per 
unit time.  

The long-term elasticity of travel-demand volume ݍ	to average speed ̅ݒ	is expressed: 

ഥ࢜ࢗࣁ   ൌ
ഥ࢜

ࢗ
∙ ࢗࣔ
ࣔഥ࢜

 . (23) 

 

The value of ߟ௤௩ത	represents the percentage change in vehicle miles traveled (VMT) with a 1% ̅ݒ 

change on a roadway of arbitrary length. The elasticity of ܧ to ̅ݒ	is then: 

ࡱࢿ
ഥ࢜ ൌ

ഥ࢜

ࡱ
∙ ࡱࣔ
ࣔഥ࢜
ൌ

ഥ࢜

തࢋ∙ࢗ
ቀ૒ࢗ
ࣔഥ࢜
∙ തࢋ ൅ ࢗ ∙ ࢋࣔ

ത

ࣔഥ࢜
ቁ ൌ ഥ࢜ࢗࣁ	 ൅ തࢋࢿ

ഥ࢜. (24) 

 

This relationship, ߝா
௩ത ൌ ௤௩തߟ ൅ ௘̅ߝ

௩ത , is the central equation of the methodological framework; it 

expresses the elasticity of total emissions to average travel speed as the combined effects of 
changes in travel-demand volumes and emission rates. The break-even demand elasticity to 

speed, denoted	γ௤௩ത , that produces the condition ߝா
௩ത ൌ 0 is γ௤௩ത ൌ െߝ௘̅

௩ത .  It follows that: 

ாߝ 
௩ത ൌ ௤௩തߟ െ 	γ௤௩ത ,       (25) 

 

the difference between true demand elasticity and break-even demand elasticity is the total 
emissions elasticity to speed.  

The preceding equations are for an aggregate vehicle fleet; to understand the impacts of different 
vehicle classes, additional notation and formulae are needed. For vehicles of class	݆  (in the 
mutually exclusive and exhaustive set of vehicle classes	ܬ), the average emissions rate is ௝݁ and 

travel-demand volume is	ݍ௝ . The fraction of on-road vehicles that are of class ݆ (by distance 
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traveled) is ௝݂ , so that ௝݂ ൌ
௤ೕ
௤

. Class-total emissions are ௝ܧ	 ൌ ௝ݍ ∙ ௝݁ ൌ ݍ ∙ ௝݂ ∙ ௝݁ , and the 

elasticities	ߝாೕ
௩ೕ, ߟ௤ೕ

௩ೕ, and ߝ௘ೕ
௩ೕ are similar to the ones defined previously, but only for vehicles of 

class ݆. Total emissions, ܧ, from on-road vehicles of all classes in ܬ, per unit length of road per 

unit time, are the sum of each class’s total emissions ܧ ൌ ∑ ௝୨∈୎ܧ ൌ ∑ ൫ݍ௝ ∙ ௝݁൯୨∈୎ . From this: 

ࡱ ൌ ࢗ ∙ ∑ ൫࢐ࢌ ∙ ۸∋ܒ࢐൯ࢋ ൌ ࢗ ∙  ത . (26)ࢋ

 

Employing ߝாೕ
௩ೕ ൌ

௩ೕ
ாೕ
∙
డாೕ
డ௩ೕ

, the elasticity of	ܧ to ̅ݒ	considering distinct vehicle classes is: 
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If we assume that speed changes proportionally for all vehicle classes, 
డ௩ೕ
డ௩ത

ൌ
௩ೕ
௩ത
	∀	j ∈ J, then: 

ࡱࢿ
ഥ࢜ ൌ ૚

തࢋ
∙ ∑ ቂ࢐ࢋ ∙ ࢐ࢌ ∙ ࢐ࡱࢿ

࢜࢐ ቃ۸∋ܒ ൌ ∑ ቂ
࢐ࡱ
ࡱ
∙ ࢐ࡱࢿ

࢜࢐ ቃ۸∋ܒ  . (28) 

 

From this equation, emissions break-even conditions can also exist when decreased emissions 
from one vehicle class offset increased emissions from another, in addition to the general (trivial) 

case where ߝாೕ
௩ೕ ൌ 0	∀	݆ ∈    .ܬ

Following previous emissions research (Sugawara and Niemeier, 2002; Barth and 
Boriboonsomsin, 2008), the functional form for ݁̅ ൌ ݂ሺ̅ݒሻ employed in this paper is: 

തሺഥ࢜ሻࢋ ൌ ∑ሺܘܠ܍ ሾ࢏ࢇ ∙ ഥ࢜࢏ሿ
࢔
ୀ૙࢏ ሻ ,  (29) 

 

where 	ܽ௜  are fitted parameters and ݊ ൌ 4 . Similarly, class-average emissions rates, ௝݁ , as a 

function of 	ݒ௝	are: 

࢐൫࢜࢐൯ࢋ ൌ ∑൫ܘܠ܍ ࢐,࢏ࢇൣ ∙ ൧࢏࢐࢜
࢔
ୀ૙࢏ ൯ . (30) 
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The curves defined by equations Error! Reference source not found. and 30 are henceforth 
referred to as emissions-speed curves (ESC). By differentiating these ESC:  

തࢋࢿ
ഥ࢜ ൌ ∑ ሺ࢏ࢇ࢏ഥ࢜࢏ሻ

૝
ୀ૚࢏    and   ࢐ࢋࢿ

࢜࢐ ൌ ∑ ൫࢐࢜࢐ܑ,࢏ࢇ࢏൯
૝
ୀ૚࢏  . (31) 

 

Note that	ߝ௘̅
௩ത , and γ௤௩ത , are independent of ݍ as long as ݁̅ ൌ ݂ሺ̅ݒሻ; the same independence from ݍ 

holds for the class-specific variables. 

ESC parameters ܽ௜ and ܽ௜,௝  are estimated using data points generated from the Motor Vehicle 

Emissions Simulator (MOVES) 2010 model from the U.S. Environmental Protection Agency 
(EPA, 2009a). The pollutants modeled are CO2e (greenhouse gases in carbon-dioxide equivalent 
units), CO (carbon monoxide), NOx (nitrogen oxides), PM2.5 (particulate matter smaller than 2.5 
microns), and HC (hydrocarbons). Emissions rates are modeled at 16 discrete average speeds (in 
5-mph increments), and the parameters ܽ௜ and ܽ௜,௝  are estimated by minimizing squared error, 

with ݁̅ and	 ௝݁ in grams per vehicle mile and ̅ݒ and ݒ௝ in miles per hour. Note that ̅ݒ and	ݒ௝ do not 

represent constant-speed driving, but are instead facility-specific average speeds representing 
archetypal driving-speed profiles.  

The fitted ESC obtain ܴଶ ൐ 0.96 for all five pollutants.  Fitted parameters ܽ௜ and ܽ௜,௝ are shown 

in Table 7 for the full vehicle fleet and for light-duty (LD) and heavy-duty (HD) portions of the 
vehicle fleet on freeways for April 2010. The modeled full fleet is composed of 8.9% HD 
vehicles. Details of the MOVES model inputs and ESC fits are in Bigazzi (2011).  



 

30 
 

Table 7. MOVES Emissions-Speed Curve Fit Parameters for ࢋത and ࢐ࢋ 

  CO2e CO PM2.5 NOx HC 

Full Fleet 

ܽ଴ 8.191 2.885 -1.223 1.897 0.3352 

ܽଵ -0.1826 -0.1788 -0.1769 -0.1656 -0.2040 

ܽଶ 0.006339 0.006629 0.006640 0.005830 0.006643 

ܽଷ -9.690E-05 -1.092E-04 -1.127E-04 -8.928E-05 -1.012E-04 

ܽସ 5.357E-07 6.518E-07 6.724E-07 4.936E-07 5.674E-07 

LD 
Vehicles 

ܽ଴,௟ 7.987 2.788 -2.856 0.3239 -0.2644 

ܽଵ,௟ -0.1856 -0.1760 -0.2000 -0.1152 -0.1878 

ܽଶ,௟ 0.006352 0.006535 0.007365 0.004155 0.006173 

ܽଷ,௟ -9.550E-05 -1.077E-04 -1.157E-04 -6.270E-05 -9.570E-05 

ܽସ,௟ 5.210E-07 6.460E-07 6.560E-07 3.440E-07 5.510E-07 

HD 
Vehicles 

ܽ଴,௛ 9.254 3.541 1.005 4.124 2.059 

ܽଵ,௛ -0.1748 -0.1900 -0.1740 -0.1839 -0.2206 

ܽଶ,௛ 0.006307 0.006843 0.006599 0.006461 0.006967 

ܽଷ,௛ -1.007E-04 -1.097E-04 -1.141E-04 -1.003E-04 -1.018E-04 

ܽସ,௛ 5.740E-07 6.201E-07 6.870E-07 5.599E-07 5.380E-07 

 

The next section applies these ESC parameters and the preceding equations to estimate the total 
emissions impacts of capacity-based congestion-mitigation strategies. 
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6.0 EMISSIONS IMPACTS OF CAPACITY-BASED 
CONGESTION MITIGATION (CBS) 

The long-term net emissions effects of CBS can be estimated as ߝா
௩ത  from Equation Error! 

Reference source not found., with modeled values for ܽ௜	and an expected value for travel-
demand elasticity, ߟ௤௩ത  (which is highly uncertain). However, to estimate only the sign of net 

changes in emissions, it is only necessary to determine the value of the break-even demand 
elasticity  γ௤௩ത , which is dependent on average travel speed, vehicle-fleet composition, and ESC 

parameters. Three distinct scenarios are possible: (a) if ߟ௤௩ത ൏ γ௤௩ത  then CBS will likely decrease 

total emissions, (b) if ߟ௤௩ത ൐ γ௤௩ത  then CBS will likely increase total emissions, and (c) if  ߟ௤௩ത ൌ γ௤௩ത  
then total emissions are likely to be unaffected by changes in capacity and congestion in the long 
term.  

The literature suggests that likely values of induced demand from capacity increases are in the 
range: 0.2 ൏ ௤௩തߟ ൏ 1.0 1. Using this range of likely elasticity values, Figure 7 shows qualitative 

characterizations of expected emissions effects of CBS for each pollutant over a range of speeds 

for the full modeled fleet on freeways – based on γ௤௩ത ൌ െ∑ ൫݅ܽ௜̅ݒ௜൯
ସ
௜ୀଵ  and ܽ௜ from Table 7. As 

an emissions-reducing strategy, CBS are “not recommended” for γ௤௩ത ൏ 0.25; CBS are suggested 

to “apply with caution” for 0.25 ൑ γ௤௩ത ൏ 0.5; CBS have “potential benefits” for 0.5 ൑ γ௤௩ത ൏

0.75; and CBS provide “good opportunity” for emissions reductions for 0.75 ൑ γ௤௩ത . These are 

subjective, qualitative labels based on the demand-elasticity literature – see Bigazzi (2011) for an 
extensive discussion.  

                                                 
1 The reader may wish to refer to meta-reviews on demand elasticity such as Goodwin et al., (2004) and Graham and 
Glaister (2004); also see Bigazzi (2011) for an extensive discussion. 
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Figure 7. Characterization of CBS for emissions reductions 

Beyond the potential subjectivity of the classification, it is evident from Figure 7 that CBS will 
have significantly different net impacts across pollutants. PM2.5 and HC have the widest range of 
speeds for which CBS are likely to reduce total emissions. The other pollutants are only 
classified as “potential benefits” or better at speeds of about 20 mph and below. CBS are “not 
recommended” for all pollutants at speeds above 65 mph, showing the emissions benefits from 
limiting free-flow speeds to below 65 mph.   

The characterizations in Figure 7 assume similar responses by vehicle type. Now consider a 
binary segmentation of the vehicle fleet where ݆ ൌ ݈  is all LD vehicles and ݆ ൌ ݄  is all HD 

vehicles: ܬ ൌ ሼ݈, ݄ሽ . If we assume the extreme case of ߟ௤೓
௩೓ ൌ 0  (inelastic HD-vehicle travel 

demand to travel speed), then from Equation Error! Reference source not found., ߝா
௩ത ൌ 0 when 

௤೗ߟ
௩೗ ൌ െቀ௘೓∙௙೓

௘೗∙௙೗
∙ ௘೓ߝ

௩೓ ൅ ௘೗ߝ
௩೗ቁ. Based on this net break-even demand elasticity for LD vehicles, 

Figure 8 shows a similar characterization of CBS to Figure 7, but assuming ߟ௤೓
௩೓ ൌ 0	(with initial 

௛݂ ൌ 0.09 and ܽ௜,௝ from Table 7).  
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Figure 8. Characterization of CBS based on break-even demand elasticity for LD vehicles, 
assuming inelastic HD demand 

The demand elasticity of HD vehicles is a major factor to determine net emissions changes. In 
Figure 8 there is a wider array of speeds for all pollutants that present opportunities for emissions 
reductions through CBS than in Figure 7. For PM2.5 and HC, good opportunities exist for 
emissions reductions from CBS all the way up above 60 mph. Although this is perhaps an 
extreme value of demand elasticity for HD vehicles, it demonstrates that even at only 9% of the 

fleet, ߟ௤೓
௩೓  is an important consideration for predicting total emissions effects of congestion 

mitigation. 

For this analysis to apply, CBS are not necessarily additional lane miles. Capacity or throughput 
can also be increased by various traffic-management strategies that target roadway efficiency and 
utilization, such as lane-change restrictions on freeways or effective management of variable 
speed limits. The key to the effects demonstrated here is an increase in average travel speed with 
baseline or higher traffic volumes.   

Some traffic-management techniques could have implications for vehicle-speed profiles that 
would affect estimates of ܽ௜,௝	(we assumed ܽ௜,௝ parameters do not change in Figure 7 and Figure 

8). For example, a significant “smoothing” of vehicle speeds could reduce the average emissions 
rate at a given average travel speed by reducing engine loads (Barth and Boriboonsomsin, 2008). 
This change in the ESC parameters would have to be considered in concert with any changes in 
average travel speed or travel-demand volume, but the same methodology can be applied to 
estimate long-term emissions impacts of CBS.  
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Similarly, emissions rates are expected to trend downward over time. If the shape of the ESC 

(i.e. ߝ௘̅
௩ത) do not change, then the analysis is unaffected. If, on the other hand, advances in vehicle 

technology lead to vehicles that are less sensitive to congestion (i.e., flatter ESC), then the 
prospects of CBS are affected. This possibility is considered in the next section.  
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7.0 THE IMPACTS OF MORE EFFICIENT VEHICLES (EBS) 

The results in Section 6.0 are for conventional internal combustion engine (ICE) vehicles only – 
the vast majority of the existing on-road fleet (U.S. Environmental Protection Agency, 2009b). 
We now examine the effects of introducing advanced vehicles in the fleet, a form of EBS. By 

reducing ݁̅, EBS decrease total emissions as 
డா

డ௘̅
ൌ  from Equation Error! Reference source) ݍ

not found.), and thus  ߝா
௘̅ ൌ 1. But EBS can also impact the efficacy of CBS for emissions 

reductions. Let vehicle class ݆ ൌ ܿ  be all conventional ICE vehicles, vehicle class ݆ ൌ ݁  be 
electric vehicles (EV), and vehicle class ݆ ൌ ܽ be other advanced efficiency (AE) vehicles. This 
is the complete set of vehicles, ܬ ൌ ሼܿ, ܽ, ݁ሽ, with total emissions of ܧ ൌ ௖ܧ ൅ ௔ܧ ൅  ௘. The totalܧ
emissions elasticity to speed, from Equation 28, is then: 

ࡱࢿ
ഥ࢜ ൌ ࢉࡱ

ࡱ
ࢉࡱࢿ
ࢉ࢜ ൅ ࢇࡱ

ࡱ
ࢇࡱࢿ
ࢇ࢜ ൅ ࢋࡱ

ࡱ
ࢋࡱࢿ
ࢋ࢜  .   (32) 

 

The AE vehicle class contains vehicles (such as many gas-electric hybrids) with regenerative 
braking and other improvements that render them less sensitive or insensitive to low-speed 

inefficiencies: i.e. หߝ௘ೌ
௩ೌห ൏ หߝ௘೎

௩೎ห. Then, because ߝ௘೎
௩೎ is expected to be negative through most of 

the range of feasible speeds according to the MOVES-based ESC, ߝ௘೎
௩೎ ൏ ௘ೌߝ

௩ೌ ൑ 0. Considering 

only emissions from ICE and AE vehicles (ܧ ൌ ௖ܧ ൅  ௔), Equation Error! Reference sourceܧ
not found. reduces to: 

ࡱࢿ
ഥ࢜ ൌ ࢉࡱ

ࡱ
ࢉࡱࢿ
ࢉ࢜ ൅ ࢇࡱ

ࡱ
ࢇࡱࢿ
ࢇ࢜ ൌ ࢉࡱࢿ

ࢉ࢜ െ ࢇࡱ
ࡱ
ቀࢉࡱࢿ

ࢉ࢜ െ ࢇࡱࢿ
ࢉ࢜ ቁ .  (33) 

 

If we assume that travel-demand elasticity is unaffected by vehicle type,	ߟ௤ೕ
௩ೕ ൌ  ݆, then using	∀	௤௩തߟ

ாೕߝ
௩ೕ ൌ ௤ೕߟ

௩ೕ ൅ ௘ೕߝ
௩ೕ, Equation Error! Reference source not found. further reduces to: 

ࡱࢿ
ഥ࢜ ൌ ࢉࡱࢿ

ࢉ࢜ െ ࢇࡱ
ࡱ
൫ࢉࢋࢿ

ࢉ࢜ െ ࢇࢋࢿ
 ൯ . (34)ࢇ࢜

 

The value of ߝ௘೎
௩೎ െ ௘ೌߝ

௩ೌ  is expected to be negative because it is assumed that ߝ௘೎
௩೎ ൏ ௘ೌߝ

௩ೌ ൑ 0. 

Thus, with an increase in ܧ௔  (because of higher 	 ௔݂  or ࢇࢋ ாߝ ,(
௩ത  increases, too (becomes more 

positive or less negative). In other words, total emissions are more likely to increase with speed 
when there are more or higher-emitting AE vehicles in the fleet. The change can be explained by 
lower emissions-rate sensitivity to speed for AE vehicles: AE vehicles have less efficiency 
improvement than ICE vehicles with increasing speed, but still are subject to increased total 
emissions through induced demand.  
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From Equation Error! Reference source not found., total emissions break-even conditions 

ாߝ)
௩ത ൌ 0) exist when:  

ࢉࡱࢿ
ࢉ࢜ ൌ ࢇࡱ

ࡱ
൫ࢉࢋࢿ

ࢉ࢜ െ ࢇࢋࢿ
 , ൯ࢇ࢜

or substituting and combining terms: 

ഥ࢜ࢗࣁ ൌ
ࢉࡱ
ࡱ
ࢉࢗࢽ
ࢉ࢜ ൅ ࢇࡱ

ࡱ
ࢇࢗࢽ
 (35) . ࢇ࢜

 

Because  ߝ௘೎
௩೎ ൏ ௘ೌߝ

௩ೌ ൑ 0 , we expect that  ߛ௤೎
௩೎ ൐ ௤ೌߛ

௩ೌ ൒ 0 , and thus the break-even demand 

elasticity with AE vehicles present is smaller than for ICE vehicles alone ൫ߛ௤೎
௩೎൯. In the extreme 

case, AE vehicles have emissions rates that are non-zero (݁௔ ് 0), but that are insensitive to 

congestion level and average speed,  ߝ௘ೌ
௩ೌ ൌ ௤ೌߛ

௩ೌ ൌ 0. Then Equation Error! Reference source 

not found. reduces to ߟ௤௩ത ൌ
ா೎
ா
௤೎ߛ
௩೎ and the break-even demand elasticity is smaller in proportion 

to the fractional ICE emissions out of total emissions. Smaller values of break-even demand 
elasticity suggest less potential for emissions benefits from congestion mitigation. More AE 
vehicles are expected to decrease total emissions as they replace ICE vehicles, as long as ݁௔ ൏
݁௖; but efficiency gains through speed increases are more likely to be cancelled out by induced 
demand, and CBS are less likely to be an effective emissions-reduction strategy with more AE 
vehicle emissions.  

Regarding electric vehicles, if EV emissions are zero (݁௘ ൌ 0 and by extension  
డ௘೐
డ௩೐

ൌ ௘೎ߝ
௩೎ ൌ 0), 

then equations Error! Reference source not found. and Error! Reference source not found. 

still apply. Unless a change in ௘݂  affects the fraction of AE-vehicle emissions 
ாೌ
ா

 through a 

change in 
௙ೌ

௙೎
, the total emissions elasticity to speed ߝா

௩ത  is independent of the fraction of EV in the 

fleet, ௘݂ (even though EVs reduce emissions on a per-vehicle basis). Similarly, if the presence of 

EVs does not affect  
௙ೌ

௙೎
, then the EVs will not impact break-even demand elasticity. If we choose 

to consider the upstream emissions for EV that are generated during the electric-power 
production process (i.e., using a “well-to-wheels” approach or life-cycle assessment (LCA)), 
then 0 ൏ 	 ݁௘ ൏ ݁௖  and we can represent EV as a new type of AE vehicle – and the previous 
equations Error! Reference source not found. and Error! Reference source not found. are 
still applicable.  

This section demonstrated the effects of EBS on the efficacy of CBS for emissions reductions. 
Section 6 will discuss the relative direct impacts of EBS as compared to CBS by analyzing three 
potential EBS, all of which reduce ݁̅: 

 Vehicle-fleet fuel-efficiency improvements (by lighter vehicles, less power-intensive 
engines, or a speed-smoothing “eco-driving” approach),  
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 Reduced fuel-carbon intensity (by using alternative fuels such as biodiesel or 
electricity, or by less energy-intensive fuel production and delivery methods), and  

 Replacement of LD ICE vehicles in the fleet with LD EV.  

But first we turn to a brief discussion of DBS for emissions reductions. 
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8.0 TRAVEL-VOLUME REDUCTIONS AND EMISSIONS (DBS) 

Put simply in terms of the methodological framework, by reducing ݍ , DBS decrease total 

emissions as 
డா

డ௤
ൌ ݁̅ (from Equation Error! Reference source not found.), or ߝா

௤ ൌ 1. But DBS 

also relate to congestion through the CBS analysis in Section 6.0.0. When ߟ௤௩ത ൐ γ௤௩ത , average 

speed-based efficiency alone cannot reduce total emissions because of induced travel demand. 
From the DBS perspective, when ߟ௤௩ത ൐ γ௤௩ത  a capacity decrease (i.e., “road diet”) can reduce total 

emissions if the suppressed travel-demand volume offsets higher vehicle-emission rates at lower 
average travel speeds. In other words, with a capacity-based approach, lower total emissions are 
more likely by increasing capacity when ߟ௤௩ത ൏ γ௤௩ത  and by decreasing capacity when ߟ௤௩ത ൐ γ௤௩ത  

2.  

In other forms of DBS vehicle-travel demand, volume is reduced by motivators such as road 
pricing or travel restrictions. For the demand-volume change alone, the emissions effect is 

indicated by ߝா
௤ ൌ 1. If the DBS impacts congestion or is jointly implemented with a CBS, the 

key value for application of this analysis is the net travel-demand elasticity to travel speed. For 
example, if a demand-moderating measure such as road pricing is implemented along with a 
capacity expansion, then that effect can be incorporated as a lower expected range of ߟ௤௩ത . In the 

best case (for emissions), both increased average travel speeds and reduced travel-demand 
volume (i.e. ߟ௤௩ത ൏ 0) contribute to a reduction of  emissions (e.g., strong pricing programs such 

as implemented in London (Beevers and Carslaw, 2005)).  

The next section describes the relative impacts of DBS as compared to CBS by assessing the 
emissions effects of reduced peak-period VMT per peak-period traveler (made possible by 
demand-management strategies).  

 

  

                                                 
2 This assumes that demand elasticities to speed changes in each direction are the same ( i.e., the aggregate travel 
response to a speed increase is equal and opposite of the response to a speed decrease). 
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9.0 COMPARING STRATEGIES FOR EMISSIONS 
REDUCTIONS 

In this section we put emissions changes from CBS into context by comparison with a set of 
alternative EBS and DBS, with separate results for freeways and arterials. The analysis employs 
representative values for U.S. cities – with assumptions as described in Section 6.3.  

9.1 FREEWAYS 

We first look at freeways alone, comparing EBS and DBS to CBS that increase congested speeds 
as indicated by a level-of-service (LOS) change 3. The comparison is presented as the amount of 
an EBS or DBS that would achieve equivalent emissions reductions to the CBS. Results for 
CO2e emissions are shown in Table 8 using 	ߟ௤௩ത ൌ 0.3 (a relatively low demand-elasticity value). 

The three numerical columns in Table 8 (from left to right) show LOS changes from F to E, from 
E to D, and from D to the A-C range. For each hypothetical LOS improvement, the net changes 
in average speed, travel-demand volume, and peak-period emissions are shown in the first three 
rows of the table. Only emissions from peak-period freeway travel are included, and the LOS 
changes only apply to the congested portion of freeway travel (55% – see assumptions in Section 
6.3).  

The final rows in Table 8 show the EBS and DBS changes that would be required to generate the 
same peak-period emissions changes on freeway facilities from each alternative strategy. The 
EBS and DBS effects apply to all peak-period freeway travel; other impacts are excluded (e.g., 
EV ownership would also reduce emissions from non-peak-period trips and from travel on non-
freeway facilities).  

                                                 
3 LOS is used as a qualitative congestion indicator, with average speeds for freeways from Barth et al. (1999). LOS 
F is the most congested, while LOS A through C are essentially at free-flow speeds. 
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Table 8. Equivalent Emissions Reduction Strategies for Freeway CO2e (ࢗࣁഥ࢜ ൌ ૙. ૜) 

 19 – 31 mph 31 – 53 mph 53 – 60 mph 

Avg. speed change (mph) 11.9 (64%) 22.4 (73%) 6.8 (13%) 

Travel demand change 
(vehicle miles/peak traveler-day) 

0.7 (9%) 0.8 (10%) 0.2 (2%) 

Net Emissions change  
(gCO2e/peak traveler-day) 

-131 (-3%) 112 (3%) -31 (-1%) 

Alternative Demand Strategy  

Trip length change 
(vehicle miles/peak traveler-day) 

-0.2 (-3%) 0.2 (3%) -0.1 (-1%) 

Alternative Efficiency Strategies    

Vehicle efficiency change 
(miles/gallon) 

0.5 (3%) -0.5 (-3%) 0.2 (1%) 

Fuel carbon intensity change  
(kgCO2e/gallon) 

-0.3 (-3%) 0.3 (3%) -0.1 (-1%) 

EV penetration by LCA  
(% of peak period fleet) 

8% -9% 3% 

EV penetration by zero-emissions 
(% of peak period fleet) 

4% -4% 1% 

 

As an example, consider the first numerical column of Table 8, which considers CO2e emissions 
for a freeway LOS change from F to E. The average speed change on congested freeways from 
19 to 31 mph (rounded) is a speed increase of 11.9 mph (64%) – row 1. Assuming	ߟ௤௩ത ൌ 0.3, this 

speed increase leads to 0.7 additional vehicle miles of peak-period freeway travel (per peak-
period traveler per day), an increase of 9% – row 2. Considering the increased efficiency and 
induced demand, total CO2e emissions are reduced by 131g per peak-period traveler, per day (-
3%) – row 3. This 131g of emissions savings could also have been achieved by reducing daily 
peak-period freeway travel by 0.2 vehicle miles per peak-period traveler (-3%) – row 4. 
Alternatively, 131g of CO2e could be saved if daily peak-period freeway travel were in vehicles 
with 0.5 miles per gallon higher fuel economy on average (3%) – row 5. A decrease of 
0.3kgCO2e per gallon (-3%) in the carbon intensity of fuel burned during peak-period freeway 
travel could also save 131g of CO2e emissions – row 6. Finally, converting 8% (by LCA) or 4% 
(by zero-emissions estimation) of the LD-vehicle fleet to EV’s for peak-period freeway travel 
could also achieve the same savings of 131g CO2e – rows 7 and 8. 
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As expected from previous results, the LOS change from F to E generates the greatest emissions 
benefits in Table 8, which require the largest alternative strategies to match. These alternative 
strategies, subjectively modest but in some cases difficult to implement, have the potential for 
low- or zero-capital costs for transportation agencies (but lower fuel-tax revenue). On the other 
hand, capital improvement projects for CBS such as urban freeway widening can be extremely 
expensive endeavors (but they can increase fuel consumption and associated tax revenues).  

At the moderate demand elasticity of ߟ௤௩ത ൌ 0.3, the induced travel for LOS E to LOS D leads to a 

total emissions increase. When a total emissions increase is expected, the alternative strategy 
equivalents have opposite signs from an emissions savings (i.e., longer trips, reduced vehicle 
efficiency, higher fuel-carbon intensity, and fewer EVs in the fleet). Using an assumed elasticity 
of ߟ௤௩ത ൌ 0.5, the induced travel leads to total emission increases for all three LOS improvements 

in Table 8.  

9.2 ARTERIALS 

Table 9 shows the results of an equivalent analysis for CO2e emissions on arterials, again with a 
demand elasticity of ߟ௤௩ത ൌ 0.3. Table 9 uses travel-speed increases of 10-16 mph, 16-24 mph, 

and 24-35 mph, roughly parallel to the heavily congested – moderately congested – uncongested 
LOS improvements in Table 8. As expected for a lower-speed facility, arterial congestion 
mitigation is more effective at reducing emissions rates. Still, even with this moderate demand 
elasticity the speed improvement above 24 mph produces a net emissions increase because of 
induced demand.  
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Table 9. Equivalent Emissions Reduction Strategies for Arterial CO2e (ࢗࣁഥ࢜ ൌ ૙. ૜) 

 10 – 16 mph 16 – 24 mph 24 – 35 mph 

Avg. speed change (mph) 6.0 (60%) 8.0 (50%) 11.0 (46%) 

Travel demand change 
(vehicle miles/peak traveler-day) 

0.7 (9%) 0.6 (8%) 0.6 (7%) 

Net Emissions change  
(gCO2e/peak traveler-day) 

-1,002 (-15%) -374 (-7%) 31 (1%) 

Alternative Demand Strategy 

Trips length change 
(vehicle miles/peak traveler-day) 

-1.3 (-15%) -0.6 (-7%) 0.1 (1%) 

Alternative Efficiency Strategies 

Vehicle efficiency change 
(miles/gallon) 

1.9 (17%) 1.1 (8%) -0.1 (-1%) 

Fuel carbon intensity change  
(kgCO2e/gallon) 

-1.3 (-15%) -0.6 (-7%) 0.1 (1%) 

EV penetration by LCA  
(% of peak period fleet) 

29% 17% -2% 

EV penetration by zero-emissions 
(% of peak period fleet) 

19% 9% -1% 

 

9.3 ASSUMPTIONS 

The values in row 4 of tables 8 and 9 associated with VMT reductions (DBS) assume a fixed 
number of peak-period travelers and no change in average emissions rates (i.e., shorter or longer 
trips but the same and ̅ݒ	and 	݁̅). The values in rows 5-8 (EBS) assume no changes in ̅ݒ. Values 
in row 7 of tables 2 and 3 assume an EV carbon intensity of travel of 0.216 kgCO2e per mile 
(from the supplementary material of Samaras & Meisterling (2008)) based on LCA, although 
upstream emissions are not included in the on-road emissions estimates for ICE vehicles (a 
conservative approach). Tables 2 and 3, row 8, assume zero emissions for EVs; the assumption 
of zero emissions for EVs is also made for local pollutants in the results below.   

Additional assumptions employed to calculate the figures contained in tables 2 and 3 include: 

 Average daily peak-period travel on freeway and arterial facilities of 8.0 and 8.6 miles, 
respectively, per peak-period traveler (the average of 439 U.S. urban areas in 2007 – 
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extractable from the data tables accompanying the Urban Mobility Report (UMR) 
(Schrank and Lomax, 2009)); 

 Of peak-period freeway and arterial travel (by VMT), 55% is congested (the average 
of 439 U.S. urban areas in 2007 – again from the UMR data tables); 

 Average fuel-carbon intensity measures 8.90 kgCO2e per gallon (calculated from 
(U.S. Environmental Protection Agency, 2009b)); 

 MOVES-based ESC parameters as shown in Table 7, with similar parameters for 
arterials from (Bigazzi, 2011);  

 The portion of peak-period travel on uncongested freeways and arterials is assumed to 
have average speeds of 60 mph and 35 mph, respectively – emissions from travel on 
local roads is neglected (a conservative assumption for the EBS); and  

 Induced demand is calculated using mid-point arc elasticity between two travel 
speed/travel volume conditions ሺ̅ݒଵ, ܯܸ ଵܶሻ and ሺ̅ݒଶ, ܯܸ ଶܶሻ as 

ഥ࢜ࢗࣁ ൌ
ሺࢀࡹࢂ૛ିࢀࡹࢂ૚ሻሺഥ࢜૛ାഥ࢜૚ሻ

ሺࢀࡹࢂ૛ାࢀࡹࢂ૚ሻሺഥ࢜૛ିഥ࢜૚ሻ
 . (1) 

 

9.4 FREEWAY/ARTERIAL COMPARISON 

The net-percent emissions changes from CBS (row 3 of the preceding tables) for each facility-
pollutant-LOS combination are shown in Figure 9, again using ߟ௤௩ത ൌ 0.3 and the assumptions 

above. Positive values indicate emissions increases. Figure 9 shows that the largest emissions 
reductions from CBS are for heavily congested arterials. NOx and CO emissions have almost no 
benefit from freeway congestion mitigation, while HC, the most speed-sensitive pollutant, has 
generally the highest potential savings.  
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Figure 9: Percent change in peak-period emissions from CBS  

9.5 EMISSIONS ELASTICITY TO EBS AND DBS 

From the net emissions benefits of CBS shown in Figure 9, equivalent EBS and DBS are easily 
determined by their emissions elasticity. For VMT reductions (row 4, tables 2 and 3), increased 
fuel efficiency (row 5, tables 2 and 3), and decreased fuel-carbon intensity (row 6, tables 2 and 3) 
the total emissions point elasticity is െ1 . Thus, for these strategies a certain percentage 
emissions reduction from a CBS can also be accomplished by roughly the same percentage 
implementation of the EBS or DBS4. For example, the 3% reduction in CO2e for the lowest-
speed freeway improvement (Figure 9) can also be accomplished through a 3% reduction in 
VMT, a 3% increase in fuel efficiency, or a 3% decrease in fuel-carbon intensity.  

For EV penetration of the fleet (rows 7 and 8 in tables 2 and 3) the emissions elasticity is slightly 
more complicated. Let ܬ ൌ ሼ݈, ݄, ݁ሽ where ݈ and ݄ are entirely ICE classes of LD and HD vehicles 

and ݁ is a class of LD EV. If all EV are replacing LD ICE vehicles, then 
డ௙೗
డ௙೐

ൌ െ1 and		డ௙೓
		డ௙೐

ൌ 0. 

The elasticity of ܧ to ௘݂ is then: 

ࡱࢿ
ࢋࢌ ൌ ૚

ࡱ

ࡱࣔ

ࢋࢌࣔ
ൌ ࢒ࢋିࢋࢋ

തࢋ
 . (37) 

If ݁௘ ൌ 0 (zero-emissions EV) and initially	 ௘݂ ൌ 0, then: 

                                                 
4 The percent changes for vehicle efficiency in Table 2 and Table 9 are slightly different from the emissions savings 
because emissions are inversely related to efficiency, so the point elasticity of -1 will be different from the arc 
elasticity (which was used in the tables). 
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ࡱࢿ
ࢋࢌ ൌ ି૚

૚ାࢎࢌ൬
ࢎࢋ
࢒ࢋ
ି૚൰

 .  (38) 

The expected range of the ratio 
௘೓
௘೗

 is from around 1 for CO up to 60 for PM2.5 at low speeds 

(Bigazzi, 2011). Thus, using  ௛݂ ൌ ாߝ ,0.09
௙೐  can range from െ1.0 for CO to െ0.16 for PM2.5. 

Considering LCA EV emissions for CO2e the elasticity is smaller: ߝா
௙೐	changes by a factor of 

ቀ1 െ ௘೐
௘೗
ቁ, or roughly 0.5 employing the assumptions previously described in this section. Since  

െ1 ൑ ாߝ
௙೐ ൏ 0,  the total emissions elasticity to EV replacement of LD ICE vehicles is equal to 

or smaller than the emissions elasticity to the other EBS and DBS, and thus greater percent EV 
penetrations are needed.  

Figure 10 shows the equivalent EV replacement results (i.e., rows 7 and 8 in tables 2 and 3) for 
all pollutants on both facilities, again assuming ߟ௤௩ത ൌ 0.3. As expected, the percentages are larger 

than in Figure 9, in addition to having the opposite sign (because െ1 ൑ ாߝ
௙೐ ൏ 0). From the 

denominator of Equation Error! Reference source not found., fleets with more HD vehicles 

ሺ ௛݂ሻ and pollutants with higher relative emissions rates from HD vehicles ቀ௘೓
௘೗
ቁ have smaller total 

emissions elasticity to EV penetration, ߝா
௙೐ . Smaller ߝா

௙೐ means that EV replacement for LD 

vehicles is less effective at reducing total emissions. This effect is reflected in Figure 10, where 

PM2.5 and NOx (which have the highest 
௘೓
௘೗

) are proportionally larger than the other pollutants 

when compared to Figure 9. The EV replacement of LD vehicles must be particularly large to 
reduce PM2.5 because the PM2.5 emissions are primarily from the HD portion of the vehicle fleet. 
Figure 10 shows that EBS that only reduce LD-vehicle emissions require large-scale deployment 
to be competitive with other strategies for reducing certain local pollutants.   
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Figure 10. Zero-emissions LD EV penetration for equivalent EBS 
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10.0 CONSIDERATION OF VEHICLE CLASS-SPECIFIC 
STRATEGIES 

The distinct emissions performance of LD and HD vehicles raises the potential for emissions co-
benefits from more focused congestion-mitigation strategies that address vehicle classes 
separately. As a comparison of congestion- and emissions-mitigation approaches and their class-
specific effects, Table 10 shows a short list of emissions-mitigation strategies with their expected 
direct impacts on the key variables of this analysis: travel speed ݒ௝, travel volume ݍ௝, emissions 

rate parameters ܽ௜,௝, and travel demand volume elasticity to speed ߟ௤ೕ
௩ೕ. The cells in the table are 

filled in with the relationships of an expected increase “+,” decrease “–,” or no change “o.” 
These relationships are highly generalized, and actual impacts can depend on the details of 
implementation. Truck-only lanes (TOL) are roadway facilities that provide exclusive right-of-
way for HD vehicles (Transportation Research Board, 2010). Just as general capacity expansions 
can employ road pricing to mitigate induced demand, TOL can utilize lane pricing (tolling) for 
the same purpose. 

Table 10. Vehicle Class-Specific Congestion- and Emissions-Mitigation Strategy Impacts 

 Light-Duty Vehicles Heavy-Duty Vehicles 

Mitigation Strategy ࢜࢒ࢗࣁ ࢒,࢏ࢇ ࢒ࢗ ࢒
ࢎࢗࣁ ࢎ,࢏ࢇ ࢎࢗ ࢎ࢜ ࢒࢜

 ࢎ࢜

General capacity increase + + o o + + o o 

Truck-only lanes (no toll) –  
new capacity 

+ + o o + + o o 

Truck-only lanes (no toll) – 
appropriated capacity 

– – o o + + o o 

Truck-only lanes (tolled) –  
new capacity 

+ + o o + o o – 

Truck-only lanes (tolled) –  
appropriated capacity 

– – o o + o o – 

Congestion pricing/demand 
reduction strategies 

+ – o – + – o – 

Vehicle/fuel efficiency 
improvements 

o o1 – o o o 1 – o 

1 Assuming fuel cost savings do not lead to induced travel  
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Capacity expansions (CBS) increase ݒ௝and	ݍ௝ , and the total emissions effect depends on the 

relative magnitude of each, as demonstrated earlier in this paper. The impacts of TOL on LD 
vehicles depend on whether (a) the TOL are added capacity (in which case ݒ௟ and ݍ௟ would both 
likely increase with the relocation of HD vehicles), or (b) the TOL are appropriated general-
purpose capacity (in which case the capacity decrease for LD vehicles would likely lower ݒ௟ and 
 .(௟, though traffic-flow impacts of this type of TOL vary (Transportation Research Board, 2010)ݍ
A tolled TOL can have similar efficiency benefits without an increase in ݍ௛ by offsetting the 

travel-time savings with toll costs (reducing the effective value of ߟ௤೓
௩೓).  

Congestion pricing and other forms of DBS reduce effective demand elasticity to travel speed, 

௤ೕߟ
௩ೕ – but can also increase ݒ௝ by decreasing ݍ௝ and so reduce ௝݁. EBS include improvements in 

vehicle and fuel efficiency that reduce ௝݁  by reducing the ESC parameters ܽ௜,௝ , with the only 

likely impact on ݍ௝  or ݒ௝  being possible induced demand through a rebound effect due to 

decreased travel costs. The net effect of any of the strategies in Table 10 on total emissions can 

be determined by the joint evaluation of	ߝ௘ೕ
௩ೕ  and	ߟ௤ೕ

௩ೕ , representing tradeoffs between vehicle 

efficiency and volume. The analytical framework presented in this paper allows for a 
parsimonious sketch-level analysis and comparison of various congestion and emissions-
mitigation strategies. 
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11.0 CONGESTION-MITIGATION STRATEGIES 
CONCLUSIONS 

This research is a step toward better understanding the potential emissions co-benefits of 
congestion-mitigation strategies. A novel methodological framework is applied to assess the total 
emissions effects of capacity-, demand- and efficiency-based emissions-reduction strategies. The 
net change in emissions depends on the balance of induced travel demand and increased vehicle 
efficiency – which, in turn, depend on the pollutant of interest, existing congestion level, and 
vehicle-fleet composition. Several interesting results are found by employing aggregate data 
representing average U.S. congestion and vehicle-fleet conditions.  

Congestion mitigation does not inevitably lead to reduced emissions. Furthermore, the net effect 
of congestion mitigation will greatly depend on the type of emissions being analyzed. In general, 
capacity-based congestion reductions within certain speed intervals (e.g., 30 to 40 mph) can be 
expected to increase total emissions of CO2e, CO, and NOx in the long run through increased 
vehicle-travel volume. Wider speed ranges will see increased total emissions in more specific 
conditions. Vehicle emissions of HC and PM2.5 have greater potential for reductions through 
traffic-congestion mitigation than CO2e, CO or NOx.  

Fleet composition and vehicle class-relative emissions rates are also key factors to understand 
future impacts of congestion- and emissions-mitigation strategies. Reducing light-duty vehicle 
emissions alone has only a small impact on total PM2.5 emissions – and a limited impact on other 
pollutants as well. Emissions-reduction strategies must also seek efficiency improvements for 
heavy-duty vehicles. Furthermore, even as a small fraction of the vehicle fleet, the demand 
elasticity of heavy-duty vehicles is important for predicting the total emissions effects of general 
congestion mitigation. Advanced-efficiency vehicles with emissions rates that are less sensitive 
to congestion than conventional vehicles generate less emissions co-benefits from congestion-
mitigation strategies.   

Applying hypothetical level-of-service (LOS) improvements reveals that large speed increases 
(percentage-wise) lead to comparatively small or non-existent net reductions in emissions. The 
largest potential emissions reductions for all pollutants are on heavily congested arterials; on 
freeways, large potential reductions are only seen for HC and PM2.5 emissions. Comparing these 
capacity-based mitigation strategies with alternative approaches shows that the same or more 
emissions benefits can be achieved by demand- or efficiency-based emissions-reduction 
strategies. However, this research does not include all the complex tradeoffs among emissions, 
transportation-system performance, livability, capital investment and budget, and fuel-tax 
revenues. 

The results presented in this paper are clearly dependent on the input data assumptions. This 
analysis uses aggregate data for current U.S. conditions, but the same methodological framework 
could be applied at any location where different values or strategies are expected. For example, 
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Section 0 describes how this methodological framework would apply for comparing vehicle 
class-specific congestion-mitigation strategies such as truck-only lanes.   
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