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Polarization characteristics of dye-laser amplifiers I. Unidirectional 
molecular distributions 

Kendall C. Reyzer and Lee W. Casperson 
School 0/ Engineering and Applied Science, University o/California, Los Angeles, California 90024 

(Received 15 April 1980; accepted for publication 20 May 1980) 

Many practical laser amplifiers exhibit anisotropic gain due to polarization of the pumping fields 
or to a fixed preferential alignment of the active dipoles. Several specific causes and consequences 
of gain anisotropy are discussed in detail. In the analysis, the emphasis is placed on dye-laser 
systems including arbitrary amplitudes, phases, and polarizations of the pump and signal fields. 
Analytical results are presented for a unidrectional molecular distribution, and it is found that the 
polarization states of the pump and signal fields change with distance in the amplifier. 

PACS numbers: 42.55.Mv, 42.1O.Nh 

I. INTRODUCTION 

Lasers that operate with isotropic pumping mecha­
nisms such as flashlamps or electric discharges are normally 
expected to produce an output beam that is unpolarized. 
Polarized outputs only occur when some anisotropy is intro­
duced into the resonator or lasing medium. These anisotro­
pies are present, for example, in solid-state lasers when the 
host crystal is biaxial or uniaxial, in gas lasers when a brew­
ster window is used on the laser tube, or in lasers where the 
pumping mechanism itself is anisotropic. The purpose of this 
study is to investigate in detail the polarization characteris­
tics of anisotropically pumped laser amplifiers with empha­
sis on dye lasers. Dye systems provide one of the best known 
examples oflaser amplifiers in which the gain may be strong­
ly anisotropic. The effects of this anisotropy on the optical 
properties of a laser amplifier have not been previously con­
sidered in detail. 

The initial discovery of the dye laser was made using 
another laser as the pumping source. The pump laser was 
linearly polarized and thus the excitation mechanism was 
anisotropic. This was readily apparent when the output of 
the laser-pumped dye laser was strongly polarized in spite of 
the fact that the resonator and the dye solution were other­
wise isotropic. 1 The anisotropic pumping scheme produced 
a gain that was no longer uniform with respect to the polar­
ization of the laser field. 

Other early studies of anisotropic pumping concerned 
the fluorescent emission from atoms and molecules. The flu­
orescent emission of an atom or molecule excited by linearly 
polarized light has been found to possess a definite polariza­
tion characteristic. 2 From electromagnetic theory it is 
known that the elementary radiators, that is, oscillating elec­
tric or magnetic dipoles, rotors, and quadrupoles produce 
polarized electromagnetic waves. The emission process from 
a single atom or molecule is usually modeled by one or more 
of these radiators, but whether or not the overall fluorescent 
emission from an ensemble of atoms or molecules is polar­
ized depends on the orientation of the radiators in the ensem­
ble. A random orientation produces an overall unpolarized 
emission, whereas the existence of some preferential direc­
tion favors a polarized emission. This preferential direction 
may be provided by the linear polarization of the pump 

source. When both the absorption and emission processes 
are modeled by elementary oscillators, nearly all known 
cases of polarized fluorescence can be explained. 3 

The polarization characteristics of optically pumped 
media are usually described in terms of the degree of polar­
ization, defined for excitation by linearly polarized radi­
ation. The value of P is found from the equation 

(1) 

where III is the intensity of emission parallel to the exciting 
field and Ii is the intensity of emission perpendicular to the 
exciting field. For all cases involving linear oscillators it has 
been shown that P is less than or equal to one half.3 The 
particular value of P depends on which elementary oscillator 
can be used to describe the absorption and emission 
processes. 

The interesting absorption and emission bands of or­
ganic dye molecules occur primarily in the visible region of 
the spectrum. This is believed to be due to a molecular struc­
ture that contains a chain of conjugated double bonds.4 ,5 It 
has been shown that for most purposes the interaction of 
radiation with a chain of conjugated double bonds can be 
described by a partially anisotropic linear oscillator rigidly 
connected to the chain.6 The direction of the linear oscillator 
has been shown to be parallel with the axis of the chain,7 

which in turn is the unique axis of the molecular coordinate 
system. The interaction between the pump electric field and 
the dye molecule depends only on the angle between the 
exciting field and the unique axis of the dye molecule. This 
model provides a means for including the factors that influ­
ence P, specifically the angle between the oscillators used for 
absorption and emission. This angle is a function of the 
structure of the molecule, the wavelength of the pump, the 
concentration of dye molecules, the solvent, the tempera­
ture, and any impurities that are present. 8 

The first successful explanation of the polarization ef­
fects in dye lasers was made by Sevchenko and coworkers.9 

They modeled the absorption and emission processes by 
electric dipole transitions and assumed that the dipoles were 
parallel and fixed with respect to the molecules. The mole­
cules themselves were uniformly distributed and rigidly 
fixed so that there could be no molecular motion from exci­
tation till emission. The effect of the linearly polarized pump 
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FIG. I. Energy level model used in laser analysis. 

was to preferentially excite those molecules that were orient­
ed in a direction close to that of the pump, and the result was 
a nonuniform distribution of excited molecules and hence an 
anisotropic gain_ The gain was found to possess a maximum 
along the direction of the pump field polarization. The main 
points of the current dye-laser polarization theory were re­
cently reviewed by Lempicki, 10 and he emphasized that none 
of the previous treatments had included saturation effects 
and that rotational diffusion had only been included at 
threshold. I I The primary objective of this study is to develop 
a laser model in which saturation effects are fully included. 
Emphasis here is on lasers having unidirectional molecular 
distributions, and isotropic distributions are treated in a 
companion paper. 12 The effects of rotational diffusion are 
discussed in a related study. 13 

The basic semiclassical formalism for treating anisotro­
pically pumped laser amplifiers is developed in Sec. II, and 
explicit formulas are obtained for the population differences 
of the pump and signal transitions. The field equations are 
derived in Sec. III, and the limit ofline center tuning with no 
saturation is considered in detail. Analytical solutions for 
the special case of a unidirectional distribution are presented 
in Sec. IV. Whenever possible, the results are described in 
terms of intuitive physical models of the dipole-field interac­
tions. Under a broad range of conditions the polarization of a 
propagating signal tends to rotate with distance toward the 
orientation of the molecules, while the pump tends to rotate 
toward the perpendicular direction. 

II. SEMICLASSICAL THEORY 

In this section a theory is developed for the gain aniso­
tropies in a laser amplifier resulting from the polarization of 
the pump source. The starting point for this treatment is the 
familiar density matrix equations, but they are extended here 
to include the pumping field as a coherent interaction rather 
than as an incoherent term that is added phenomenological­
ly. In this way, the vector properties of the pump and signal 
fields are automatically included. 

A. Density matrix model 

The energy-level model that is used in the development 
of the amplifier theory is the four-level system shown in Fig. 
1. It is assumed that the pump absorption takes place only 
between levels one and two while stimulated emission takes 
place only betwen levels three and four. The coupling be-
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tween the absorption levels and the emission levels is taken 
to be nonradiative relaxation with a relaxation time '1'2 be­
tween levels two and three, and '1'4 between levels four and 
one. Spontaneous emission is included between levels three 
and four with a fluorescent decay time '1'3' For the case of a 
dye laser, levels one and four would be members of a single 
vibrational manifold as would levels two and three. 

The procedure for setting up the density matrix equa­
tions is well known,14 and the results for this energy level 
model may be written 

apll _ i (p P44 -a - -~ 12~21-P21~d·Ep +-, 
t n ~ 

(2) 

(3) 

(4) 

(5) 

ap21 __. i (p ) E P21 
-/(j)pJP21+~ II-P22~12' P--T' 

at n P 
(6) 

(7) 

P12=Pil' (8) 

P43=P!4' (9) 

where Ep and Es are respectively the pump and signal elec­
tric fields, W pJ and W sO are respectively the center frequencies 
of the pump and signal transitions, the various ~jj are the 
matrix elements of the dipole moment operator, and Tp and 
Ts are the coherence times of the off-diagonal matrix ele­
ments. Multiplying Eq. (6) by ~12 and Eq. (7) by ~43 and 
moving these terms inside of the derivatives since they are 
time independent in the Schr6dinger representation yields 

a1121 --= 
at 

(10) 

a1134 = - i D 1 12(E A)A 1134 (11) at - IW s0 1134 - -,; s I1-s s·e, es - r,' 
where 

1121 =P21~12 =P2111-12ep' (12) 

1134 = P34~43 = P3411-4is' (13) 

Il1-p 1
2

=11-2111-il =11-2111-12' (14) 

Il1-s 12 = 11-3411-!4 = 11-3411-43' (15) 

Dp =PII-P22' (16) 

Ds = P33 - P44' (17) 

and es and ep are unit vectors in the directions of~43 and ~12 
respectively. 

The use of the density matrix provides a means for ob­
taining the average induced dipole moment for an ensemble 
of molecules. Consider a molecule whose transition moment 
is oriented within the solid angle dl1 about the direction giv-
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FIG. 2. Coordinate geometry used to characterize the molecular dipole 
moments. 

en by the spherical coordinates «(},l/J ) as shown in Fig. 2. If all 
molecules found in this solid angle are considered as a class, 
then the average induced dipole moment due to this class of 
dipoles is found by taking the ensemble average of the expec­
tation value of the dipole moment operator for each mole­
cule in the class. IS Then Eqs. (2}-(5) and (S}-(II) become a 
complete set of equations for the matrix elements of Pp and 
Ps for one class of dipoles. 

The average value of the dipole moment induced by the 
pump and stimulating fields for one class of dipoles is given 
byl6 

< .... P >av = P 12""2 I + P21 .... 12' 

< .... s >av = P34 .... 43 + P43 .... 34' 

(ISa) 

(ISb) 

where < ) av means the ensemble average of the expectation 
value. The actual induced moment is the sum of the expres­
sions in Eqs. (IS). However, the dipole induced by the pump 
field and the dipole induced by the stimulating field are oscil­
lating at different frequencies, and it is assumed that the 
frequency difference is large enough for the rotating wave 
approximation to apply. This approximation means that 
only Eq. (1 Sa) will be used as the source term for the pump 
field and only Eq. (1Sb) will be used as the source term for 
the stimulating field. In the case of dye molecules, this is a 
good approximation due to the large Stokes shift between the 
absorbing and emitting frequencies (e.g., Rhodamine 6G has 
an absorption peak at 532 nm and an emission peak at 590 
nm so vp - Vs = 5.54 X 1013 Hz). 17 

The total polarization P resulting from the induced di­
pole moments is found by integrating the macroscopic polar­
ization due to one class of dipoles over all classes. This can be 
expressed as 

P p = r n«(), l/J H .... p >av dn, Ju 

Ps = L n«(}, l/J H .... s >av dn, 

(19a) 

(19b) 

where n«(}, l/J )dn is the number of molecules per unit volume 
oriented within the solid angle dn about the «(), l/J ) direction. 

6077 J. Appl. Phys., Vol. 51, No. 12, December 1980 

B. Population differences 
A solution to the set of Eqs. (2)-(5) and Eqs. (S)-( 11) can 

be obtained assuming the pump and stimulating fields have a 
plane wave dependence and the propagation vectors kp and 
ks are colinear. Referring to the coordinate system in Fig. 3, 
Ep and Es can be written 

E/z, t) = !lfp(z, t)exp[i(kpz - (Up!)] + c.c., (20a) 

Es (z, t) = ! If s (z, t )exp (i(ksz - (Us t)] + C.c., (20b) 

where If p (z, t) and If s (z, t) are slowly varying complex vec­
tor functions of z and !. The plane wave dependence in the 
1121 and 1134 terms from Eqs. (10) and (11) can be factored out 
as 

1121«(}, l/J, z, t) = 'TJp«(}, l/J, z, t )exp [i(kpz - (Upt) ]ep, 
(21a) 

113i(}, l/J, z, t) = 'TJs«(}, l/J, z, t )exp [i(ksz - (Us!) ]e., 
(21b) 

where 'TJ p and'TJs are complex functions that vary slowly in z 
and t. Equations (20) and (21) along with the rotating wave 
approximation in Eqs. (2}-(5) and (S}-(II) yields 

(22 

(23 

ap33 = ~Im(11s.lf:) + P22 _ P33, 
at Ii 72 73 

ap44 = _ ~Im(11s .if:) + P33 _ P44, 
at Ii 73 74 

where 11p = 'TJpep and 11s = 'TJses· 
The response of the laser medium to the pump and sig­

nal fields is now described completely by the six equations, 

E. 

y 

PROPAGATION 
DIRECTION 

FIG. 3. Geometry of pump and stimulating electromagnetic fields. 
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Eqs. (22)-(26). When the fields are known, these equations 
can be solved for the population differences D p and D s • How­
ever, several simplifications are often possible. First of all, 
Eqs. (26a) and (26b) can be solved analytically if it is assumed 
that the coherence times are much shorter than any other 
times of interest. The derivatives are set equal to zero and the 
solutions become 

1/p = - Illp 12Dp.2"(Vp)(I~:>~p)[(wp - wpO)Tp - i)/411, 
(27a) 

1/. = Ills 12Ds.2"(vs)(lfs·es)[(ws - w!iJ)Tp - i)/411, (27b) 

where .2"(vp) and .2"(v.) are the normalized Lorentzian line­
shape functions given by 

2hrLivp 
.2"(vp) = , (28a) 

1 + [2(vp - vpO)/Livp f 
2hrLiv, 

.2"(v,) = 2' (28b) 
1 + [2(vs - vso)/Livs ) 

andLivp andLiv, are the full widths at half maximum and are 
related to the coherence times by Livp = (1TTpyl and ..::lv, 
= (1TT.)-I. When these results are substituted into Eqs. 

(22)-(25), the laser problem is reduced to four coupled 
equations. 

If the pump field is taken to be cw or quasi-cw (i.e., the 
duration of the pump pulse is much longer than the effective 
lifetime of the excited states), Eqs. (23)-(25) can be solved 
analytically for the popUlation differences Dp and D,. The 
solution is obtained by setting the derivatives equal to zero 
and inserting the results from Eq. (27). After some algebraic 
manipulation one obtains 

where 

fJp = Illp 1211f p .ep 12 .2"(vp) 14112, 

p, = Ill, 12 W,·e, 12 .2"(v,)141j2, 

(30a) 

(30b) 

The expressions in Eqs. (29) can be simplified further by 
requiring that the absorption and emission dipoles be paral­
lel, that is e p = e, . This is reasonable in a dye solution as long 
as the pump source is not in the ultraviolet. With ultraviolet 
pumping the dye molecules may be excited to the second 
excited singlet level. There is a nonradiative relaxation from 
that level to the first excited singlet state after which a radia­
tive transition can occur. Since the two excited singlet levels 
represent different electronic states, the transition moments 
are not necessarily parallel. 1M On the other hand, when the 
pump source is in the visible, the molecules are excited to an 
upper vibrational level of the same electronic state and con­
sequently the absorption and emission dipoles must be 
parallel. 
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To be specific, we also require that the relaxation time 
for the nonradiative decay from levels two and four shown in 
Fig. 1 is much less than the effective lifetime oflevel three. In 
a dye, the vibrational relaxation times are on the order of 
picoseconds while the effective lifetime of the emitting level 
ranges from tens of picoseconds to a few nanoseconds de­
pending on the magnitude of the stimulating field. Thus, in 
the expressions for the popUlation differences in Eqs. (29) r 2 

and r 4 are set equal to zero. 
The functions If p (z, t ) and If, (z, t ) can be expanded as 

If p(Z, t) = Epx(z, t )exp [iopx(z, t ))ex 

+ Epy(z, t )exp [iopy(z, t) ley, (3Ia) 

I&',(z, t) = E,x(z, t )exp (io,,, (z, t ))ex 

+ E,y(z, t )exp [io,y(z, t) ley, (31 b) 

where Eps ' Epy, E"" and E,y are the real, orthogonal ampli­
tude components ofEp and E,. and ex and ey are the unit 
vectors in the x and y directions respectively. With the above 
simplifications. the popUlation differences become 

D (B 
A.. ) _ I + /,(B, l/J, z, t) 

p ,,!,,Z, t - , 
1 + /p(e, l/J, z, t) + /,(e, ¢. z, t) 

(32a) 

D,(O, ¢, z, t) = J;,(8, ¢, z, t) • (32b) 
I + J;,(B, ¢, z, t) + f,(B, ¢, z, t) 

where 
/p = <P~xcos2B +2 <Ppx<PpycosOpcosBsinBcoS¢ 

+ <P 2 sin2Bcos2
A.. py «p, 

f, = <P;x cos2B +2 <Pu <P,y cosO, cosBsinBcoS¢ 

+ rJ> ;ysin2Bcos2¢. 

(33a) 

(33b) 

The terms <Ppx' <pPY' <P,x' and <P,y are dimensionless field 
amplitudes given by 

<Ppx = Illp I [r3.2"(vp)]I/2EpxI2I1, 

<Ppy = Illp I [r3.2"(vp)]1!2Epy/211, 

<P,x = Ill, I [r3.2"(v,)]1/2E,J2I1, 

<P,y = Ill, \ [73.2"(V,)r /2E,y/2l1. 

(34a) 

(34b) 

(34c) 

(34d) 

These dimensionless field amplitudes may also be related to 
the intensity of the x and y components of the pump and 
stimulating fields (Ipx' Ipy' Isx' and I,y) by 

<P~x = 7P/vp)IpJhvp' (35a) 

<P ~y = rpp(vp)IpyIhvp , (35b) 

<P~x = rp,(v,)I,Jhv" (35c) 

<P;y = 7,(J,(v,)J,y/hv" (35d) 

where u/vp) is the absorption cross section given by 

up\vpl = hvp no\llp \2.Y(vp)/2€& (36) 

and u,(v,) is the stimulated emission cross section given by 

u,(v,) = hV,no l.u, 12.2"(v,)/2€dr. (37) 

As an example, rhodamine 6G has a cross section for absorp­
tion and stimulated emission approximately equal to 
2x 10- 16 cm2 and a fluorescent decay time of approximately 
5 X 10-9 sec. 19 Therefore, a pump intensity of 125 kW Icm2 at 
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532 nm and a signal intensity of 105 kW Icmz at 590 nm 
would correspond to a value of unity for the dimensionless 
field amplitudes. 

III. ELECTROMAGNETIC FIELD EQUATIONS 
A. Arbitrary frequency 

The differential equations that the pump and stimulat­
ing fields satisfy are derived from the vector wave equation 
by separating Ep and E, into orthogonal components and 
using the macroscopic polarizations Pp and Ps from Eqs. 
(19) as the source terms. The initial equations are 

aZE aZE aE azp 
P p P P -----aF - 11£---at2 - f1CTTt = f1---at2' 

(38a) 

aZEs aZEs aE, a2p, 
-- - f1E-- - f1 CT-- = f1--. 
az2 at 2 at at 2 

(38b) 

Using Eqs. (18}-(21) along with Eqs. (31), the first of these 
wave equations may be decomposed into the set of amplitude 
and phase equations 

(39a) 

(39b) 

a ( E2 E2 E2 E2 ) _ xy K px - py ~ -" px + py . 8 
-- COM) + sm 

2 PEE PEE p 
px PY px pjl 

Kp(ax - ay) 

2 
(39c) 

where the higher-order space and time derivatives of slowly 
varying quantities have been neglected and the rotating wave 
approximation has been employed. The parameters ax' a xy ' 
and ay are the absorption coefficients which are expressed as 

ax(z, t) = CTp(Vp )1 n(O, rp )Dp(O, rp, z, t) 

Xcos20d[J, 

aXY(z, t) = CTp(Vp)1 n(O, rp )Dp(O, rp,z, t) 

X cosOsinOcoS¢; df), 

ay(z, t) = (Tp(Vp) 1 n(O, rp )Dp(O, rp, z, t) 

xsin20cos2rp df). 

(4Oa) 

(4Ob) 

(4Oc) 

The phase difference 8 p and the off-line-center parameter Kp 
in Eqs. (39) are given by 

6079 

8p(z, t) = 8px (z, t) - 8py (z, t), 

Kp = 2(vp - vpO)/..1vp' 

J. Appl. Phys .• Vol. 51. No. 12. December 1980 

(41) 

(42) 

and yp represents any additional losses other than by reso­
nant absorption. The propagation constants are given by k ~ 
= f1EUJ~ and k; = f1EUJ;, and the phase velocity is 

c/no = (PEt IJ2
. 

In a similar manner, the equations for the stimulating 
field components and phase difference can be obtained. 
These equations are 

aEsx + no aEu + y, E,x 
az c at 2 

= g" E,,, + gxy E,v(cosOs + Ks sin8,) , 
2· 2 

(43a) 

aEsy + no aE,y + Ys Esy 
az c at 2 

where gx' gxy' and gy are the gain coefficients expressed as 

gx(z, t) = (Ts(Vs) 1 n(O, rp )Ds(O, rp, z, t) 

X cos20 df), 

gxy(z, t) = (Ts(Vs) In(O, rp )D,(O, rp, z, t) 

X cosOsinOcoS¢; df), 

gy(z, t) = CTs(V,) L n(O, rp )Ds(O, rp, z, t) 

X sinZOcosZrp df). 

(44a) 

(44b) 

(44c) 

The phase difference 8, and the off-Hne-center parameter K, 
in Eqs. (43) are given by 

8s(z, t) = 8,xCz, t) - 8,y(z, f), 

Ks = 2(v, - v,J/..1vs' 

(45) 

(46) 

and Ys represents any losses incurred by the stimulating 
field. 

Equations (39) and (44) are a set of six partial differen­
tial equations in the six unknownsEpx , Epy, Esx' E,y, 8p' and 
8,. These equations become a complete set when it is recalled 
that the population differences are related to the fields by 
means of the density matrix equations of the previous sec­
tion. With quasi-cw operation the density matrix equations 
have been reduced to Eqs. (32). The initial conditions at 
z = 0 are known since they are the values of the incident 
pump and stimulating fields. These equations can be solved 
in general by numerical methods. However, certain special 
cases allow a substantial simplification of the equations and 
stilI lead to physically useful solutions. 
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B. Line center tuning 

When the pump and signal fields are tuned to the line­
center frequency of their respective transitions, the param­
eters Kp and Ks from Eqs. (42) and (46) vanish. Then the 
phase difference equations become, for a cw laser, 

d8p 1 E~x +E~y . 
--=-<I sm8 (47a) 

dz 2 xy EpxEpy P' 

d8s I E;x + E;y . 
- = - -;:-gxy sm8s ' (47b) 
dz 2 EsxEsy 

When the pump and signal fields are linearly polarized at the 
input plane (z = 0), 8p (0) and 8s (0) are zero and so the deriva­
tives in Eqs. (47) are also zero at z = O. This means that the 
phase differences are zero for all z and thus the pump and 
signal fields remain linearly polarized as they propagate in 
the laser medium. This is important for practical applica­
tions since many laser pump and signal sources are linearly 
polarized. 

It is convenient now to transform Eqs. (39a), (39b), 
(43a), and (43b) to a new set governing the total field ampli­
tude and polarization orientation for both the pump and the 
signal. To achieve this transformation for the signal equa­
tions, one can first multiply Eq. (43a) by 2Esx and Eq. (43b) 
by 2Esy and then add to obtain 

a(E;x + E;y) + no a(E;x + E;y) (E2 + E2 ) 
a a 

+ Ys sx sy 
'Z C t 

=gxE;x + 2gxyEsxEsy +gyE;y. (48) 

But Esx and Esy can be written in terms of the total field 
amplitude Es and the polarization angle "'S with respect to 
the x axis as 

Esx = Es cos",,, 

Esy = Es sin"'s' 

Thus Eq. (48) becomes 

aE; no aE; E2 
-a +- -a +Ys s z c t 

(49a) 

(49b) 

= (gx cos2",s + 2gxy cos"'ssin",s + gy sin2"'s)E; (50) 

or, with the expansion of the derivatives, 

aEs no aEs Ys E -+--+- s 
Jz cat 2 

= !(gx cos2"'s + 2gxy cos"'ssin"'s +gy sin2
"'slEs' (51) 

A similar equation can be derived describing the vari­
ations of the polarization angle "'S. IfEq. (49a) is substituted 
directly into Eq. (43a) and the result is divided by cos"'s' one 
obtains 

aEs no aEs a",s -- + - -- - Es tan"'s--
Jz c at az 

no a",s Ys gX E gxy E .1. 
--E tan", --+-Es =- s +- stan'f's' 

c s s at 2 2 2 
(52) 

When this equation is subtracted from Eq. (51) and the re­
mainder is divided by Es tan"'s the result can be written 
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(53) 

In a similar manner, the equations for the pump field 
become 

aEp no aEp YP 
-+--+-E 

az c at 2 p 

- H(axcos21/Jp + 2axycos"'psin",p 

+ aysin21/Jp)]Ep, 

atPp no at/Jp -+--
az c at 

(54a) 

= H(a x - ay)costPpsin",p + a x/sin21/Jp - COS2t/Jp»). 
(54b) 

Further simplifications can be made for the limit of an 
unsaturated quasi-steady-state laser amplifier in which 
pump depletion is not important. In this case, the gain coeffi­
cients become constants and gxy is zero when n«(}, </» is an 
even function of </>, which is true for most practical situa­
tions. The field equations given in Eqs. (51) and (53) may be 
written under these conditions as 

dE, Ys 2.1.' 2.1.) dz + 2 E, = !Es(gxO cos 'f's + gyO sm 'f's , 

d"" 
dz 

(55a) 

(55b) 

y 

FIG. 4. Angular distribution of the unsaturated gain in a unidirectional 
ensemble of laser dipoles for various values of pump intensity. 
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where gxO and gyO are the unsaturated gain coefficients. 
Equation (55b) can be solved for the z dependence of the 
polarization angle tPs and the result can be substituted into 
Eq. (55a) to solve for the field amplitude. The solution to Eq. 
(55b) is given by 

tantPs = tantP.oexp [ - (gxO - gyO)zI2), (56) 

where tP>fJ is the initial polarization angle with respect to the 
x axis. From this result it is clear that the polarization angle 
of the propagating signal tends to align with the x axis(tPs 
= 0) when gxO is greater than g yO' and the polarization ap-

proaches they axis (tPs = 1T12) whengyO is greater thangxO • 

Using Eq. (56), Eq. (55a) can be written 

dInEs rs 1 
~ = - T + "4«(gxO + gyO) + (gxO - gyO) 

X{l + tan2tP.oexp[ - (gxO _gyO)Z]}-1/2). (57) 

This equation can be integrated and the result is20 

E _ E {rsz (gxO + gyO)z 11 [(I + sectP>fJ) 
s - >fJ exp - - + - - n 

2 4 4 1 - sectP>fJ 

(
I - {I + tan2tPsOexp[ - (gxO -gyO)z]}!;2)]} 

X I + {I + tan2tPsOexp[ _ (gxO _gyO)Z]}1/2 .(58) 

Specific solutions can be obtained when the unsaturated gain 
terms are calculated for a particular molecular distribution. 

Finally, Eq. (55a) can also be rewritten as 

dEs rs 
dz + TE , = YJo(tP.)Es' (59) 

where 

(60) 

and can be considered an incremental gain distribution. A 
plot of go( tPs) versus tPs gives the incremental gain seen by a 
signal field for any polarization direction. These gain distri­
butions are plotted for an unidirectional molecular distribu­
tion in Sec. IV. 

IV. UNIDIRECTIONAL DISTRIBUTION 

The formulas that have been developed represent a 
complete set from which one may determine the polarization 
and amplitude characteristics of the propagating pump and 
signal fields in quite general optically pumped laser media. 
While these equations can always be solved by numerical 
methods, it turns out that certain special cases of the general 
solutions are sufficient to describe most situations of practi­
cal interest. In this section linearly polarized solutions are 
obtained in the case of a cw laser having a unidirectional 
molecular distribution. For convenience, the polarization of 
the pump field is taken to be parallel to the x axis and there is 
no pump depletion. 

With. a unidirectional distribution the function n(O, <P ) 
can be wntten 

(61) 

where 00 and <Po represent the preferred orientation and the 8 
function is normalized by 
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Using these formulas Eqs. (44) become 

gAz) = NUs(v.o)D,(Oo, <Po, z)cos200, 

gXY(z) = Nus (vsO)Ds(Oo, <Po, z)cosOosinOocos<Po, 

(62) 

(63a) 

(63b) 

gy(z) = Nu, (v>fJ)Ds (00 , <po,z)sin20ocos2<po' (63c) 

In this case, the gain coefficients have an explicit form and 
can be used in the field amplitude and phase equations di­
rectly. When 00 and <Po are both zero the molecules are all 
lined up parallel to the pump field and only the gain in the x 
direction is nonzero. With Eqs. (32) and (33) this gain value 
is 

gx(z) = 3Nas (v>fJ)<P;xl[l + <P;x + <P;x(z)) (64) 

where as is the average stimulated emission cross section 
equal to u,I3. 21 This gain can be simplified to 

gAz) =gxO/[1 + sI,Az») , (65) 

where the unsaturated gain gxO is given by 

gxO = 3Nas(vsO )<P;J(1 + <P;x) 

and the saturation parameter s is 

(66) 

(67) 

The unsaturated gain distribution from Eq. (60) in this 
case is 

go(tP.l = NO's [3<P ;x/( I + <P;x) ]COS2tPs· (68) 

This distribution can be normalized by NO's, and the dimen­
sionless unsaturated gain distribution is shown in Fig. 4 for 
several different values of <P ;x . It can be seen that no matter 
how intense the pump field is, there will be very little gain for 
signal fields polarized in a direction nearly parallel to y. This 
result can also be seen from the field equations. Using Eq. 
(65) and Eqs. (34) and (35) to convert to intensities, the field 
equations become 

(69a) 

(69b) 

Equation (69a) is a standard laser amplifier equation and its 
soluti?ns are well.known. The y component from Eq. (69b) 
expenences no gam due to the unidirectional distribution 
and is actually attenuated due to the loss mechanisms. 

Finally, it may be noted that if the laser is unsaturated 
and tuned to line center, the signal polarization direction 
and amplitude are given explicitly by Eqs. (56) and (58) with 
gyO = O. Thus the signal tends to align itself parallel to the 
molecular orientation. On the other hand, one can show 
from Eq. (54b) that the pump field tends to align itself per­
~ndicular ~o the molecules as the parallel pump component 
IS preferentially absorbed. Other solutions for the unidirec­
tional distribution can also be readily obtained. 

V. CONCLUSION 

In this paper a semiclassical formalism has been devel­
oped for investigating the amplitude and polarization char-
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acteristics of the pump and signal fields propagating in a dye­
laser amplifier. In their most general form these results allow 
for arbitrary amplitudes and elliptical polarizations of the 
fields which may also be tuned away from the center fre­
quencies of the absorption and emission transitions. To ob­
tain detailed solutions of the governing equations, numerical 
techniques are often required. However, for certain impor­
tant limits the equations simplify and analytic solutions be­
come possible. Particularly helpful simplifications occur for 
lasers tuned near line center. In this case the pump and signal 
fields can remain linearly polarized, and some exact solu­
tions have been described. Emphasis has been placed on uni­
directional molecular distributions so that the gain has a 
strongly preferred direction. As one should expect, the sig­
nal polarization tends to become aligned with the gain maxi­
mum. For an isotropic molecular distribution the results are 
somewhat more complicated, and several solutions and ap­
plications are discussed in the following study. 12 
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