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Propagation of Airy-Hermite-Gaussian waveguide modes in
free space

Jonathan G. Grossman, Lee W. Casperson, Oscar M. Stafsudd, and Leroy V. Sutter, Jr.

The cavity modes of metal strip waveguide lasers are most simply expressed in terms of Airy-Hermite-
Gaussian functions. The free space propagation of the resulting beam modes has been examined, and both
near- and far-field patterns have been calculated and measured. Phase plates may be useful for enhancing
the far-field intensity.

1. Introduction

Carbon dioxide waveguide lasers are now in wide use
as compact and reliable sources of 10-Aum laser radiation.
In one important implementation the pumping is ac-
complished by means of a rf discharge in the lasing gas
medium.' Very recently it has been suggested that a
curved metal waveguide has significant advantages over
the more conventional dielectric waveguides used in
most rf carbon dioxide waveguide lasers,2 3 and a more
thorough discussion of the relevant literature is given
in Ref. 3. It must be emphasized, however, that the
metal waveguide lasers produce output modes that are
described by Airy-Hermite-Gaussian functions.2-8

These modes are different from the Hermite-Gaussian
and Laguerre-Gaussian modes that are typical of non-
waveguide lasers, and they are also different from the
modes obtained with other types of laser waveguide.
While some laser applications may not be sensitive to
the details of the electromagnetic field distribution, in
many cases the fields must be known precisely. Un-
fortunately, the modes of most waveguide lasers begin
to change their functional form as soon as they leave the
laser, and the fields at some distant point must be ob-
tained using free space eigenmode expansions or dif-
fraction integrals. The purpose of this study is to in-
vestigate the propagation characteristics of the Airy-
Hermite-Gaussian modes produced by curved metal
waveguide lasers.
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The diffraction pattern of the Airy-Hermite-Gauss-
ian modes in free space is accurately represented by the
Fresnel diffraction integral.2 Unfortunately, this in-
tegral is not soluble in terms of simple analytic func-
tions. It is, however, easily evaluated numerically. In
this paper we present the results of such numerical
calculations together with experimental verification for
some of the lower-order laser modes. The results of the
numerical studies are presented in Sec. II with emphasis
on the development of Hermite-Gaussian approxima-
tions to the Airy-Hermite-Gaussian mode functions.
The advantage of these approximations is that they
permit analytical calculations of the beam propagation
characteristics. In Sec. III, we present experimental
verification of the Gaussian model for propagation of
the lowest-order Airy-Hermite-Gaussian modes.

II. Numerical Solutions

The basic laser waveguide structure under consid-
eration here is shown schematically in Fig. 1. The
concave and curved metal strip sketched in the figure
is terminated by flat mirrors which reflect (and partially
transmit) the laser mode, and the rf excited laser gas or
other amplifying medium is in close proximity to the
waveguide surface. To a good approximation, the fields
at the output of such a laser may be regarded as plane
waves having a Hermite-Gaussian amplitude distribu-
tion in the z direction tangential to the waveguide sur-
face and an Airy amplitude distribution in the r' di-
rection normal to the waveguide surface. In mathe-
matical terms the output fields can be written3

E(p,¢) = EoA(p)Hm(t) exp(-2/2). (1)

The Airy factor A(p) is a solution of the Airy differential
equation9

d2 A
2 - pA = 0,

dp2 (2)
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Fig. 1. Schematic representation of an rf excited metal waveguide
laser.

where p is the normalized and displaced radial coordi-
nate:

p = (2k2/ro)-2/3 [(2k2/ro)r' - a]. (3)

The constant a must be chosen so that a zero of the Airy
function occurs at the waveguide surface r' = 0, and ko
is the propagation constant. The Hermite factor H(P)
is a solution of the Hermite differential equation10

d2 H dH
d-2 2d-+ 2mH = 0,
d~2 d~

where P is the normalized z coordinate

= 2/2z/w,

(4)

(5)

and m is an integer denoting the transverse mode order
in the z direction. The spot size w in Eq. (5) is related
to the waveguide parameters by

2.5 2.0 1.5 1.0 0.5 0
DISTANCE FROM WAVEGU IDE SURFACE, MM

Fig. 2. Beam intensity perpendicular to the waveguide surface for
the first- and second-order Airy-Gaussian modes.

Fig. 3. Far-field beam divergence of the first- and second-order
Airy-Gaussian modes.

w = [2(roRo)1/2/ko]1/2.

The Fresnel diffraction integral for the Airy-Her-
mite-Gaussian modes is

U(,Y) =exp(jkz) J f A.(x )H. (IJy) exp (Y-)

LIZ Wo -. ) w o 

X exp {j- [(Xo - X1)2 + (yo - y)2]})dxldyl, (7)

where A(xo) is the portion of the Airy function for
which x0 is greater than the nth zero, Hm is the mth
Hermite polynomial, and the integral is over the exit
aperture of the waveguide. The diffraction integral is
easily separated into an integral for a Hermite-Gaussian
beam diffracting in the y direction and an Airy beam
diffracting in the x direction. The Hermite-Gaussian
integral can be evaluated analytically while the Airy
integral requires numerical evaluation.

The numerical evaluation of Eq. (7) for a specific
mode yields accurate near- and far-field patterns.
However, this approach is limited in that it does not
provide the user with any direct guidelines for design
of different lasers or optical systems. Our numerical
study, therefore, also attempted to develop quasi-ana-
lytical solutions for the propagation of the Airy-Her-
mite-Gaussian modes in free space.

The most important parameters of a laser's output
mode in the far field are its beam divergence and in-
tensity profile. As seen in Figs. 2-5, the far-field in-
tensity profiles of the Airy-Hermite-Gaussian modes,
unlike Hermite-Gaussian modes, do not retain much of
their near-field properties. The beam divergences,
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Fig. 4. Beam intensity perpendicular to the waveguide surface for
the sixth- and seventh-order Airy-Gaussian modes.

Fig. 5. Far-field beam divergence of the sixth- and seventh-order
Airy-Gaussian modes.
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however, do roughly correlate to their Hermite-Gauss-
ian counterparts. In particular, the first-order Airy
mode's divergence is very close to the lowest-order
Hermite-Gaussian mode (TEMoo) if the Airy mode's
spot size AR is defined as half of the beam diameter
between the e-2 power points. It is interesting to note
that for these examples the far-field intensity distri-
bution is symmetric in spite of the large asymmetries
in the near field.

The apparent similarity between the TEMoo and
lowest-order Airy mode is also evident in their far-field
intensity profiles. The far-field profile of the lowest-
order Airy mode is accurately (less than a few percent
error) represented by a Gaussian mode with the same
spot size. The analogy, however, does not extend to the
other beam parameters, particularly ones that are used
in near-field calculations. One of the beam parameters
that is significantly different for the two beams is the
Rayleigh length z0, which represents the distance the
beam needs to propagate to increase its diameter by a
factor of 21/2. For a Gaussian beam the Rayleigh length
is given by' 1

zo = (nirw2)/X, (8)

where n is the index of refraction, X is the wavelength,
and w0 is the beam's radius to e- 2 power at the beam
waist.

The propagation distance to the far field for a
Gaussian beam may be regarded as roughly three Ray-
leigh lengths. For the Airy mode, about ten Rayleigh
lengths are required before the beam starts to exhibit
its far-field diffraction pattern. Similarly, the Airy
mode's phase front curvature and spot size cannot be
accurately approximated by the Gaussian beam pa-
rameters R(z) and w(z) in the near field. In the far
field, however, the Gaussian beam parameters may be
used to describe quite accurately the lowest-order Airy
mode. These results are consistent with the propaga-
tion of other lowest-order waveguide modes such as the
EH 11 mode in free space.12

The higher-order Airy modes can only be represented
by Hermite-Gaussian functions for order-of-magnitude
calculations. This is due to the lack of symmetry ex-
hibited by the higher-order Airy modes in the near field.
The higher-order modes, as seen in Fig. 4, consist of ever
narrowing maxima, each thinner and smaller than
its predecessor. The nulls of the Airy function are given
by9

a = -f[3ir(4s - 1)/8], (9)

where

f(Z) Z2/3+ 5 Z-2 5 Z_4 +77125 -6 108056875z-8
48 36 82944 6967296 /

(10)

and a, is the sth root of the Airy function and z is large.
From Eq. (9) it can be shown that the maxima thickness,
when defined as A = as - a+ 1, decreases as the
mode-order s increases.

The above discussion clearly shows the difficulty of
modeling Airy modes as modified Hermite-Gaussian

Fig. 6. Far-fielc

L0

I beam divergence for a phase compensated sev-
enth-order Airy-Gaussian mode.

functions. Inspection of the Airy mode's maxima,
however, indicates that each maximum can be accu-
rately represented by the Gaussian function, exp - [(rs
-ps) 24/R2], where r, is the perpendicular distance from
the waveguide surface, ps is the distance to the peak of
the sth maximum, and R, is the spot size of the sth
maximum (distance between e- 2 power points).

The far-field diffraction of the sth-order Airy mode
can, therefore, be calculated by summation of the far-
field diffraction of s Gaussians. A more convenient
formula although slightly less accurate (10%) is

As (full angle) = X
nA 1/27r

(11)

where Os is the far-field beam divergence of the s-order
Airy mode and A,/2 is the diameter of the maximum
having one-half of the peak intensity of the first max-
imum.

The far-field diffraction of the higher-order Airy
modes can be greatly enhanced by use of a phase plate.
The phase plate as defined by Casperson is a transpar-
ent plate that, when inserted in the beam, forces all
portions of the wave front to oscillate in phase.1 3 This
is different from the standard situation where the
electric field alternates between positive and negative
values over the different nodes of the mode. It has been
shown that a phase compensated beam can have a far-
field peak intensity more than an order of magnitude
greater than the uncompensated beam.13 A numerical
evaluation of the propagation of a seventh-order Airy
first-order Hermite-Gaussian phase compensated mode
has been performed, and Fig. 6 shows the results. The
far-field peak intensity was found to be twelve times
greater for the compensated beam than for the un-
compensated beam. Numerical evaluation of several
other higher-order Airy modes has yielded similar re-
sults.

11. Experiment

The lowest-order waveguide mode is almost always
the most important mode.12 This is especially true for
metal waveguides where the lowest-order mode is the
only mode that evolves into a near-Gaussian mode.
The experimental examination of the free space prop-
agation of this mode was, therefore, the primary goal of
our study.
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setup for studying free space beam
propagation.

AR(11 M) = 13 MM
AR(1 M) = 12 MM

CALCULATED

8 MM

Fig. . Near-field beam intensity profile along Airy axis, lowest-order
Airy mode (1 m from laser).

The experimental arrangement is shown in Fig. 7.
Two steering mirrors direct the metal waveguide laser
output beam to the rotating mirror. The distance be-
tween the laser and rotating mirror is adjustable from
0.5 to 1.5 m. (After 1.5 m the rotating mirror starts to
clip the beam.) The rotating mirror assembly is
mounted on a rotatable platform enabling beam scans
along either the Airy or Gaussian axes of the beam. The
detector is nearly collinear with the second steering
mirror and the rotating mirror to minimize diffraction
into the detector from the edge of the rotating mirror.
The resulting scope trace is in units of beam intensity
(vertical) and distance (horizontal) with the horizontal
scale given by x/div = 2 r t/div, where Q is the angular
frequency of the rotating mirror, r is the distance from
the rotating mirror to the detector, and t/div is the time
scale of the oscilloscope.

Beam scans were taken along the Airy axis of the
beam at 1- and 3-m distance from the laser and are
shown in Figs. 8 and 9. Both beam scans show a low-
est-order Airy mode in close (within 10%) agreement
with the calculated results. It was found that under
severe misalignment of the laser (both optics and top
rf electrode tilted -1° each), the laser output is a sec-
ond-order transverse Airy mode as shown in Fig. 10.
Only a few beam scans were taken along the Gaussian
axis since the propagation of Gaussian modes in free
space is well known. Figure 11 shows a scan taken 1 m
from the laser, and the spot size in this scan is also in
excellent agreement with the theory.

IV. Conclusion

The propagation of Airy-Hermite-Gaussian beams
in free space has been examined both theoretically and
experimentally. The lowest-order Airy-Gaussian mode
has been shown theoretically to evolve into a Gaussian
beam in the far field, while the higher-order modes
evolve into more complex beams. The far-field beam
divergence of all Airy-Hermite-Gaussian modes, how-
ever, can be related to a first-order Gaussian approxi-
mation to the Airy function. The use of a phase plate
enhances the peak far-field beam intensity of the
higher-order modes by an order of magnitude or more.
Our experimental results verified the near-field calcu-
lations for the first- and second-order Airy modes as well
as the far-field calculations for the lowest-order Airy-
Gaussian mode.

The results of this study indicate that the lowest-
order Airy-Gaussian mode propagates in free space in
a manner similar to other lowest-order waveguide
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Fig. 9. Far-field beam intensity profile along Airy axis, lowest-order
Airy mode (3 m from laser).
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Fig. 10. Near-field beam intensity profile along Airy axis, second-
order Airy mode (2 m from laser).
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Fig. 11. Far-field beam intensity profile along Hermite-Gaussian
axis, lowest-order Hermite-Gaussian mode (1 m from laser).
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modes. For practical applications, it is, therefore,
possible to replace conventional hollow dielectric
waveguide lasers with concave metal waveguide lasers.
The primary advantages of such a replacement would
be lower fabrication cost and potential higher power
capabilities of the metal waveguide lasers.

The authors gratefully acknowledge D. Fink's help
in the numerical computations and many useful dis-
cussions with F. G. Allen, M. F. Nicol, and R. A.
Satten.
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