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Reconstructability Analysis as a Tool for
Identifying Gene-Gene Interactions in Studies

of Human Diseases∗

Stephen Shervais, Patricia L. Kramer, Shawn K. Westaway, Nancy J. Cox, and
Martin Zwick

Abstract

There are a number of common human diseases for which the genetic component may include
an epistatic interaction of multiple genes. Detecting these interactions with standard statistical
tools is difficult because there may be an interaction effect, but minimal or no main effect. Re-
constructability analysis (RA) uses Shannon’s information theory to detect relationships between
variables in categorical datasets. We applied RA to simulated data for five different models of
gene-gene interaction, and find that even with heritability levels as low as 0.008, and with the
inclusion of 50 non-associated genes in the dataset, we can identify the interacting gene pairs with
an accuracy of ≥80%. We applied RA to a real dataset of type 2 non-insulin-dependent diabetes
(NIDDM) cases and controls, and closely approximated the results of more conventional single
SNP disease association studies. In addition, we replicated prior evidence for epistatic interac-
tions between SNPs on chromosomes 2 and 15.

KEYWORDS: epistasis, reconstructability analysis, information theory, gene interaction model-
ing, OCCAM, genetics, bioinformatics

∗This work was supported by the National Institutes of Health (AG026916 to PK, U01 HL08471
and P60 DK20595 to NC).



INTRODUCTION  

 

Significant advances have been made over the last two decades in developing 

analytic methods and bioinformatics tools for detecting single genes that are 

necessary for, or contribute to, human diseases. For the most part, however, 

diseases with a “simple” genetic etiology are relatively rare. Common diseases 

(e.g., hypertension, cancer, dementia) are the result of DNA sequence variations 

in multiple genes, at least some of which may interact in a non-additive, or 

epistatic, fashion, and thus have a substantially more complex genetic etiology. 

Early genome-wide association results have identified associations with only 

modest main effects. To account for highly familial traits, one must assume that 

there are many more loci with very modest main effects, more rare variants with 

larger effects, or gene-gene and/or gene-environment interactions that are more 

prominent elements of the genetic component of these diseases. Detecting gene-

gene interactions can be problematic in the absence of main effects.  As the 

number of possible candidate genes to consider increases, the number of 

combinations likewise increases, and one is soon faced with “the curse of 

dimensionality” (Bellman, 1961). In this paper we show that for a modest number 

of genes (or SNPs) and for only pairwise interactions among them, this problem is 

manageable. It is likely that the methods used in this paper, based on 

Reconstructability Analysis (RA), can be effective for more variables and for 

more than pair-wise interactions; however, the scaling limitations of RA applied 

to epistasis have not yet been explored. 

      Elsewhere in the bioinformatics literature, epistatic interaction of two 

genes in a simulated dataset has been detected by first creating a computationally 

complex tool that could solve the problem of predicting the disease based on gene 

data, and then examining the structure of the solution to determine which genes 

were contributing to it. This approach has been used with multifactor 

dimensionality reduction (MDR) (Hahn et al, 2003) and artificial neural networks 

(ANN) (Ritchie et al, 2004). With reconstructability analysis (RA), we use a 

computationally simpler approach to identify the genes involved in epistasis, and 

our results are superior to the performance of MDR and ANN on this simulated 

dataset. While the variables identified in the structure could be used to select 

features for a neural network or some other prediction technique, the RA structure 

can also be used directly for disease prediction. 

 We begin with an overview of the theory on which RA is based, and then 

discuss recent approaches to the simulation of gene interactions. Next, we 

describe the genetic models we used and the datasets they generated. We then 

present the comparative performance of RA on simulated data, followed by an 

application of RA to an existing set of real data. We also detail the feasibility of 

application of our approach to larger scale studies, including genome-wide 
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association studies (GWAS).  RA, based in information theory, partially overlaps 

log-linear (LL) methods and thus logistic regression (LR); since LR is popular for 

modeling gene-gene interactions, we also briefly discuss the relationship between 

RA and LR.  

  

METHODS 
 

RECONTRUCTABILITY ANALYSIS 

 

Reconstructability analysis (RA) is an information- and graph-theoretic 

methodology which originates with Ashby (Ashby, 1964) and was subsequently 

developed by several others (Broekstra, 1979; Cavallo, 1979; Cellier and Yandell, 

1987; Conant, 1981; Jones, 1985; Klir, 1976; Krippendorff, 1981; Krippendorff, 

1986). An account of its origin (Klir, 1986) and compact summaries (Zwick, 

2001; Zwick, 2004) are also available. RA resembles log-linear methods (Bishop, 

et al, 1978) used widely in the social sciences, and where RA and log-linear 

methodologies overlap they are equivalent (Knoke and Burke, 1980; 

Krippendorff, 1986). RA also overlaps with Bayesian networks. In RA, a 

probability or frequency distribution or a set-theoretic relation is decomposed into 

component distributions or relations (Klir, 1985). When applied to the 

decomposition of frequency distributions, RA does statistical analysis. RA can 

model problems both where inputs (independent variables) and outputs 

(dependent variables) are distinguished (called directed systems) and where this 

distinction is not made (neutral systems).  Being based on information theory, 

which ignores metric information in the variables being analyzed, RA is a natural 

methodology for nominal, e.g., genomic, data.  By contrast, certain other machine 

learning methods which have been used to study epistasis, such as neural nets 

(Ritchie et al, 2004; Ritchie et al, 2003) or support vector machines (Chen et al, 

2008), inherently presuppose metric information and are thus less naturally suited 

for genomic analyses. 

     For example, assume a directed system with inputs (genes or SNPs) A, B, 

C, and D, and output the disease status, Z. Consider an observed frequency 

distribution f(A, B, C, D, Z) which we write as ABCDZ. RA decomposes such a 

distribution into projections such as ABCD and ABZ, which taken together define 

an RA structure ABCD:ABZ that is less complex (fewer degrees of freedom) than 

the data. This structure defines a calculated frequency (or probability) distribution 

ABCDZABCD:ABZ, obtained by maximum entropy composition of the ABCD and 

ABZ projections, and compared with the observed ABCDZ. While the data itself, 

ABCDZ, also called the “saturated model,” asserts that all four inputs jointly 

predict Z, the ABCD:ABZ structure asserts that only A and B jointly predict Z, 

while C and D have no predictive relationship with Z. A and B predict Z simply 
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via the conditional probability distribution p(Z|AB), obtained from the calculated 

ABCDZABCD:ABZ distribution. (The ABCD component of the ABCD:ABZ 

structure allows relationships between the inputs themselves, but we are not 

interested in these relationships.)  

      If ABCD:ABZ is a good structure, one can equivalently say that the 

“transmission” or “mutual information” T(AB:Z) = H(Z)–H(Z|AB) is high, while 

the conditional transmission TAB(CD:Z) is zero. H is uncertainty (Shannon 

entropy), a measure of variability for non-metric variables that is analogous to 

variance for metric variables.  So transmission is reduction of uncertainty about Z. 

Dividing T(AB:Z) by H(Z) gives %∆H(Z), the % uncertainty reduction of Z; this 

is what is reported in Tables 2  and 4-7. By contrast, the structure ABCD:Z, called 

the “independence model” asserts that no input predicts Z; T(AB:Z) is the 

predictive information in ABCD:ABZ relative to this independence model. The 

reduction of uncertainty for any structure can be assessed for statistical 

significance with the Chi-square distribution. For neutral systems, in which one 

does not distinguish between inputs and outputs, the independence model is 

A:B:C:.., i.e., inputs are no longer lumped in a single component. 

      There are different classes of RA structures. Structures such as ABCDZ, 

ABCD:ABZ, and AB:Z all have a “single predicting component,” i.e., one subset 

of the variables, including output Z, whose probability distribution can be used to 

predict Z. Such structures are “loopless,” and a loopless structure essentially picks 

out a single subset of the inputs that predicts the output. (It thus does “feature 

selection” or “dimensionality reduction.”)  By contrast, the second and third 

components of structure ABCD:ABZ:CDZ assert that Z is predicted by A and B 

jointly and also, separately, by C and D jointly. The two predicting relations are 

integrated via the maximum entropy formalism, and from the integrated 

distribution that is calculated, one obtains a conditional distribution, p(Z|ABCD), 

that is different from the conditional distribution obtainable directly from the data, 

and this calculated model conditional distribution is used for prediction.  

      Loopless structures can represent the fact that an input predicts the output 

even when controlling for all other inputs.  Thus for example, for data ABCDZ, a 

high T(A:Z) says that A predicts Z, while a high TBCD(A:Z) = T(ABCD:BCDZ) 

says that A predicts Z even when controlling for B, C, and D.  Thus RA could in 

principle be used to assess linkage disequilibrium from data. 

      If the non-predicting component that consists of all the inputs is included, 

structures with more than one predicting component necessarily have loops. RA 

calculations for structures without loops are simpler and faster, and the search for 

epistasis in this paper considered only loopless structures. For simplicity, the non-

predicting components (in the present case, ABCD) are omitted below in Tables 

2, 4, 5, and 6, which present results on simulated and real data. For loopless 

models with a small number of predicting inputs, one can easily examine all 
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possible structures – this is what was done in this study – and as the number of 

variables increases, this approach remains practical given sufficient computational 

resources.  However, with more than a few variables the exhaustive evaluation of 

all models is prohibitive if models with loops are also assessed, since these 

models do not have algebraic solutions but require iterative computation (e.g., 

with Iterative Proportional Fitting); for details, see Zwick (2004). In the present 

study, loop structures are used to identify the character of the epistatic interaction.  

More specifically, after a loopless epistatic model was identified, the difference 

between the loopless structure and its nearest descendent loop structure was 

assessed for significance, as illustrated below in Table 7. 

   Different types of epistasis are associated with different RA structures. 

Consider a three variable system, ABZ.  The data itself (the saturated model) 

might have a triadic interaction effect of A and B with Z that cannot be 

decomposed to a simpler structure without information loss.  This would be the 

strongest type of epistasis.  All of the simulated models in Table 1 show this type 

of epistasis, and so do the two-SNP structures found in the real data (Figure 3 and 

Table 6), i.e., in all these instances, the difference between ABZ and AB:AZ:BZ 

is significant at the .05 level. There are at least two other types of epistasis that 

can be modeled by simpler RA structures (AB:AZ:BZ and AZ:BZ) –  these show 

up, for example, in the tables of Cordell (2002) –  but a systematic examination of 

the relationship between RA classifications of epistasis and conventional 

distinctions (usually based on regression) is beyond the scope of this study. 

      A different information theoretic measure of a three-way interaction effect 

is given by the transmission difference, TB(A:Z) – T(A:Z), which indicates how 

much B increases or decreases the mutual information between A and Z. This 

quantity (which also equals TA(B:Z) – T(B:Z)) has been used as a measure of 

gene-environment interaction, in addition to T(A:B:Z) (for three variables) which 

is the constraint in the data relative to a neutral system independence model 

(Chanda et al, 2007).  It should be noted, however, that this transmission 

difference can be either positive or negative, and that a triadic interaction may be 

present even if it is zero. The strength of the triadic interaction is thus not properly 

measured by this transmission difference; rather, it is measured by the information 

distance between ABZ and AB:AZ:BZ (Krippendorff, 2009). 

      The RA structures discussed above are all “variable based”, i.e., defined in 

terms of subsets of variables.  RA encompasses also “state-based” structures 

(Zwick and Johnson, 2004), such as A1B2Z:B1C3Z defined in terms of 

information-rich input states (A1B2 and B1C3), that have either lower or higher 

predictive power than is typical. In this study, a SNP state is a coding of the 

diploid genotype, i.e., the genotype homozygous in one allele is recoded as state 

1, heterozygous genotypes as state 2, and the genotype homozygous in the other 

allele as state 3.  The A1B2Z component in the structure means that p(Z|A1B2) is 

4

Statistical Applications in Genetics and Molecular Biology, Vol. 9 [2010], Iss. 1, Art. 18

http://www.bepress.com/sagmb/vol9/iss1/art18
DOI: 10.2202/1544-6115.1516



significantly different than p(Z) i.e., that genotype A1B2 is at either higher or 

lower risk for disease than average. This type of analysis resembles multifactor 

dimensionality reduction (MDR), which has been used to study epistasis (Velez, 

et al., 2007). However, state-based RA was not used in this study. 

Calculations were made using RA software programs developed at 

Portland State University (Portland, Oregon) now integrated into the OCCAM 

package (named for the principle of parsimony and “Organizational Complexity 

Computation and Modeling”). The earliest program was developed by Hosseini et 

al (1986); reviews of RA methodology (Zwick, 2001; Zwick, 2004), a list of 

recent RA papers (Zwick, 2009) and a description of the OCCAM architecture 

(Willett and Zwick, 2004) are available. 

 
SIMULATED DATA 
 

Moore et al  (2002) introduced a genetic algorithm tool for producing genetic 

models characterized by equal marginal penetrance values for all gene pairs and 

maximum variance among penetrance values. Five of the genetic models 

represented in that paper were later used by Ritchie et al (2004) to test their 

genetic programming approach to gene interaction modeling. These models, and 

the heritability values (the proportion of phenotypic variance attributable to 

genetic variance) calculated by Ritchie et al. based on the definition from 

Culverhouse et al (2002), are shown in Table 1. In each model, each cell 

represents the probability of disease given the particular combination of 

genotypes, for example, p(D | gene1,gene2) is the probability of disease, where 

gene1 has genotypes AA, Aa, and aa, and gene2 has genotypes BB, Bb, and bb (in 

these papers, these genes are labeled G and H). 

      All models assume Hardy-Weinberg equilibrium, in which the frequency 

of any particular genotype is determined by the product of the frequencies of 

alleles involved, and not by evolutionary forces such as natural selection or 

sampling error. The frequencies of the two alleles at each gene are equal, which 

maximizes genotype variation. Given these two conditions, all five models exhibit 

significant interaction effects, but no marginal gene effects. Models were not 

designed with reference to any predetermined biological considerations. These 

five models were used to test the ability of RA to detect gene-gene interactions. 

     We created 30 datasets from each genetic model for each of two 

conditions. First, for comparability with existing work, we used two associated 

SNPs and eight non-associated, or “noise,” SNPs. Second, to demonstrate the 

scalability of the approach, we used two associated SNPs and 50 noise SNPs. 

Unlike most machine learning problems which seek to identify patterns in a 

random selection of the general population, biomedical datasets are often divided 

into two equal groups: case subjects who are known to have the condition of 

interest, and control subjects selected from the general population. The distinction 
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is important when using penetrance tables to develop datasets because the two 

groups must be handled differently. Control allele patterns appear with the 

frequencies associated with the general population, and show zero penetrance. For 

example, pattern XX should appear for approximately 25%, and XX/YY for 

approximately 6.25% of the controls. The allele patterns for the cases appear with 

frequencies associated with both the relative penetrance and the overall 

population frequencies. If, for example, allele pattern XX/YY had a penetrance of 

10%, and allele pattern Xx/Yy had 20%, then the proportion of XX/YY in the 

cases should be 11% = (0.25*0.25*0.1)/[(0.5*0.5*0.2)+(0.25*0.25*0.1) + terms 

for other genotypes with non- zero penetrances]. For both groups, allele patterns 

for the non-contributing SNPs can be assigned at random.

We developed 30 datasets for each of the five genetic models and each of 

the two noise conditions. The choice of 30 was arbitrary – since OCCAM does 

not yet provide a platform for the automatic testing of multiple randomly 

generated datasets, and had to be run manually one dataset at a time. The 

interacting SNPs were assigned on the basis of the penetrance tables, while the 

values of noise SNPs were assigned at random. The datasets were then run 

through OCCAM. By specifying suitable parameters, OCCAM searches through 

the lattice of structures for structural models of a particular class which have high 

information content (high reduction in output uncertainty). In this instance, 

OCCAM was asked simply to output all loopless structures with two predicting 

inputs, ordered by their information content. While in general using more datasets 

would be preferable, the extremely successful performance of OCCAM on these 

30, as indicated below, suggests that more datasets were not necessary.

NIDDM  DATA 

 

Cox et al. (1999) identified an interaction between genetic loci in the NIDDM1 

region on chromosome 2 (chr2) and a region in the vicinity of CYP19 on 

chromosome 15 (chr15), based on correlation of nonparametric linkage (NPL) 

scores. Subsequently, they identified a significant association between 

susceptibility to NIDDM and a set of 16 SNPs within, or close to, the calpain-10 

gene (CAPN10) in the NIDDM1 region (Horikawa et al, 2000).  Later, using the 

same subject and SNP dataset, but weighting subjects in terms of the chr2 NPL 

scores derived from linkage studies based on their family data, Tsalenko and 

associates (Tsalenko et al, 2003) applied an information-theoretic approach, also 

based on mutual information and equivalent to the use of loopless structures in 

RA, and identified a set of 15 informative SNPs in the CAPN10/GPR35 region.
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Table 1. Penetrance and Heritability of Simulated Genetic Models  

 Table Penetrance Margin 

Penetrance 

Model 1 

(heritability = 0.053) 

AA (.25)  Aa (.50)  aa (.25)  

BB (.25)  0.00  0.10  0.00  0.05 

Bb (.50)  0.10  0.00  0.10  0.05 

bb (.25)  0.00  0.10  0.00  0.05 

Margin Penetrance 0.05 0.05 0.05  

 

Model 2 

(heritability = 0.051) 

AA (.25)  Aa (.50)  aa (.25)  

BB (.25)  0.00 0.00 0.10 0.025 

Bb (.50)  0.00 0.05 0.00 0.025 

bb (.25)  0.10 0.00 0.00 0.025 

Margin Penetrance 0.025 0.025 0.025  

 

Model 3 
(heritability = 0.026) 

AA (.25)  Aa (.50)  aa (.25)  

BB (.25)  0.00  0.04  0.00  0.02 

Bb (.50)  0.04  0.02  0.00  0.02 

bb (.25)  0.00  0.00  0.08  0.02 

Margin Penetrance 0.02  0.02  0.02  

 

Model 4 
(heritability = 0.012) 

AA (.25)  Aa (.50)  aa (.25)  

BB (.25) 0.00 0.02 0.08 0.03 

Bb (.50) 0.05 0.03 0.01  0.03 

bb (.25) 0.02 0.04 0.02 0.03 

Margin Penetrance  0.03 0.03 0.03  

 

Model 5 
(heritability = 0.008) 

AA (.25)  Aa (.50)  aa (.25)  

BB (.25) 0.00  0.04  0.08  0.04 

Bb (.50) 0.06  0.04  0.02  0.04 

bb (.25) 0.04  0.04  0.04  0.04 

Margin Penetrance 0.04  0.04  0.04   
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      The data and subject sample here was based on the sample used in these 

studies. It comprised 220 Mexican-American individuals from Starr County, 

Texas, including one case from each of 108 multiplex NIDDM families, and 112 

population-based controls, and contained SNP genotype data for 76 SNPs on chr2 

and 126 SNPs on chr15, a more dense set of SNPs than had been used in the 

previous studies. Because the dataset is balanced in terms of numbers of cases and 

controls, and because structures are identified on the basis of information 

theoretic measures, as opposed to predictive accuracy, there are no sensitivity vs. 

specificity issues, such as those considered by Velez et al (2007). 

 
DATA PREPROCESSING 

 

For ease of indexing, markers were numbered sequentially; specifically, chr2 

markers were numbered A1-A76, and chr15 markers B1-B126. Once a marker 

was given a number, the number was retained throughout the study. The original 

dataset contained 88,880 data points (220 subjects*202 SNPs*2 alleles/SNP). Of 

these, approximately 7000 points were missing (~8%). The OCCAM software 

itself does not yet fill in missing data (though it allows these either to be skipped 

or to be coded for as an additional state), so preprocessing of missing data must be 

done as a preliminary step.  This was done as follows.  All missing data occurred 

in pairs (i.e., genotypes). Four SNPs on chr2 and one on chr15 were dropped 

because they had no data at all; five SNPs with a minor allele frequency (MAF) ≤ 

.01 (four on chr2 and one on chr15) were also dropped. Furthermore, we selected 

a set of 39 SNPs on chr15 that included and extended beyond the CYP19 locus, 

since our purpose was to replicate previous results regarding interaction between 

that region and chr2 loci.  If a marker was dropped in the case dataset, it was also 

dropped from the controls, and vice versa.  Subjects were dropped if they were 

missing data on more than 50% of the markers on chr2 or chr15. This included 8 

subjects, one from cases and seven from controls. If a record was dropped from 

the chr2 dataset, it was also dropped from chr15, and vice versa.  

      At this point, imputing values for missing genotype data required 

information on the linkage disequilibrium (LD) structure of the regions spanned 

by the SNPs. We used the computer program PLINK (Purcell et al, 2007) to 

estimate all pairwise r
2 

values for the 68 SNPs on chr2 and for the 39 SNPs on 

chr15. We resolved missing genotype data in two steps. First, there was a total of 

9 SNPs (5 on chr2, 4 on chr15) with > 5% missing data in the combined case and 

control dataset. Of these, seven (3 on chr2, 4 on chr15) were in strong LD (r
2
 > 

.90) with at least one SNP with no or minimal missing data. We elected to drop 

these seven SNPs, rather than replace their missing genotypes with those from 

SNPs in strong LD, because RA does not consider physical location or weighting. 

The remaining two SNPs (A14, A70) were not in strong LD (r
2
 < .65) with any 
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other SNPs; since they had nearly 10% missing data, we elected to drop these 

from the analysis. The final set of markers consisted of 63 chr2 SNPs and 35 

chr15 SNPs.  

      Second, the majority of SNPs had < 5% missing genotypes. None of these 

SNPs was in strong LD (r
2
 < .7) with proximal SNPs in the dataset. Since 

standard imputation methods perform less reliably as LD declines, we replaced 

missing data in these cases by a random number draw against the allele frequency 

distribution for each SNP, calculated separately for cases and controls. Because of 

the relatively small sample size, we found that replacing missing data with 

different random draws caused differences in results. To correct for this, we 

created 10 datasets with independently-generated fillers for the missing data.  

Each of these datasets was then processed by OCCAM, and results were 

compared.  In the discussion that follows only structures that appeared in all 10 

runs were considered.  Once missing data was replaced, each genotype was 

recoded into a single, three-valued data SNP state, as explained above.  Finally, 

the dependent variable (Z) was added, coding cases as 1 and controls as 0.                                                                    

      There were two parts to this experiment. First, we looked only at 

structures containing single SNPs from chr2, which allowed comparison of results 

with those of Horikawa et al (2000) and Tsalenko et al (2003).  Second, we 

considered only those structures that demonstrated epistasis by having one SNP 

on chr2 and one on chr15, which allowed comparison of results with those of Cox 

et al (1999). 

  

RESULTS 

 
SIMULATED DATA 
 

Table 2 shows an example of OCCAM output for Dataset 11 of Model 5.  Column 

1 identifies the structure, and column 2 indicates %∆H(output), the percentage of 

the uncertainty in Z reduced by knowing the inputs in the structure for the 8 noise 

SNP dataset. For the 50 noise SNP dataset, column 3 identifies the structure and 

column 4 tabulates the uncertainty reduced. The two active genes are A and B.  

The table is arranged in decreasing order of uncertainty reduction. Structure HZ is 

the single-gene structure with the highest %∆H(output), and the %∆H(output) 

levels of structures AZ and BZ are included to show that using even a correct 

single gene provides almost no usable information. 
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Table 2.  Sample OCCAM Output, Model 5 

8 Noise SNPs 50 Noise SNPs 

Structure %Uncertainty reduced Structure %Uncertainty reduced 

ABZ 7.22 ABZ  6.62 

ACZ 4.11 CGZ  1.43  

CGZ 2.36 DJZ  0.73 

DJZ 2.06 BGZ  0.42 

BGZ 0.80 ACZ  0.38  

HZ 0.61 HZ  0.36 

AZ 0.16 AZ  0.07 

BZ 0.06 BZ  0.02 

Z 0.00 Z  0.00 

       

 A summary of all five genetic models is shown in Table 3.  Column 1 

indicates the genetic model used, and column 2 lists the heritability of the disease 

in this genetic model (Moore et al, 2002; Ritchie et al, 2004).  Columns 3 and 4 

indicate the percentage of the 30 randomly constructed datasets for each genetic 

model in which RA was able to identify the correct gene structure. In all but the 

lowest heritability model, RA was able to consistently identify the two active 

SNPs, in the first experiment out of a total of 10, and in the second, out of a total 

of 52, based on datasets containing 200 cases and 200 controls.  Even for the 

lowest heritability model and the highest number of noise SNPs, RA was 

successful in identifying the two active genes 80% of the time. 

 The error rate of this approach appears to be extremely small. Since each 

test of a SNP pair in our simulated data is independent, we can merge all the tests 

for a given model. For the two active SNP + eight noise SNP test, for example, 

that gives a total of 1350 tests (comb(10,2)*30) within each model. Since we 

know a priori that there is only one active SNP pair, we call a SNP pair a false 

positive if it is not the AB pair yet still meets an α ≤ 0.000 criterion (where α is 

the probability of error if one rejects the null hypothesis that the output is 

independent of the inputs), and our AB pair is counted as a false negative if it 

doesn't meet that criterion. Model 5 had 5 false positives (where SNP pairs other 

than AB were identified as significant), and 2 false negatives (where the AB pair 

was rejected), for an error rate of 0.004. Model 4 had 9 false positives and no 

false negatives, for an error rate of 0.005. Models 1, 2, and 3 had no errors. 
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Table 3. Effectiveness of RA in identifying gene-gene interactions 

Genetic 

Model 

Heritability % With Both Active Genes 

in the top RA Model  

(8 noise SNPs, n = 30) 

% With Both Active Genes in 

the top RA Model 

(50 noise SNPs n = 30) 

1 0.053 100% 100% 

2 0.051 100% 100% 

3 0.026 100% 100% 

4 0.012 100% 100% 

5 0.008 93% 80% 

 

By comparison, previous work with only eight noise genes found one of 

the two active genes only 47% of the time (Ritchie et al, 2004) and both genes 

only 19% of the time (Hahn et al, 2003). Neither study reported on false positives. 

Hahn used multifactor dimension reduction and Richie used neural nets. RA 

significantly outperforms these earlier studies. 

 
NIDDM DATA  
 

SINGLE SNP SEARCH 

 

The results of the first part of this experiment are shown in Table 4 and Figure 1. 

To compare our results with those of Horikawa et al (2000), we took the top 16 

markers that appeared in all 10 experiments. This gave us a %∆H(output) cutoff 

of 1.25. All but one had α < 0.10 (where, as above, α is the probability of error if 

one rejects the null hypothesis that the output is independent of the inputs; it is for 

a confirmatory test on one structure, and does not correct for the number of 

structures being examined in the exploratory search). Thirteen of the 16 markers 

we identified were among the 16 markers identified by Horikawa et al (2000) as 

significantly associated with disease (p-value < .05). 

 Although a number of the SNPs in Figures 1 and 2 are not in LD with 

other SNPs (r
2
 < .3) in the tables, two LD blocks exist, with pairwise r

2 
ranging 

from .51-.98. One spans GPR35 (A37, A38, A52) and another spans the distal 

half of CAPN10 (A19, A30, A43, A48, A69, A56). Two additional SNPs near 

GPR35 (A35, A40) are in strong LD. However, only one SNP from each of the 

GPR35 and CAPN10 LD blocks is represented in the list of epistatic pairs with 

chromosome 15 (Figure 3).  
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Table 4. Single SNP Structures 

 

Structure 

%Uncertainty 

reduced*    α* 

A37 2.897 0.01 

A35 2.817 0.02 

A40 2.726 0.02 

A26 2.691 0.02 

A38 2.493 0.03 

A46 2.420 0.01 

A25 2.283 0.04 

A23 2.233 0.04 

A18 2.221 0.04 

A52 2.102 0.05 

A22 2.087 0.05 

A55 1.621 0.09 

A51 1.610 0.10 

A16 1.589 0.10 

A54 1.374 0.13 

A44 1.249 0.08 
*average of 10 data runs 

 

 

 

Table 5. SNP Structures for predicting NPL 

 

Structure 

%Uncertainty 

reduced*  

                           

α* 

A19 6.55 0.01 

A30 6.51 0.01 

A56 5.72 0.02 

A48 5.59 0.03 

A33 5.21 0.02 

A31 4.77 0.04 

A69 4.12 0.07 

A36 4.09 0.06 

A43 4.07 0.09 

A28 4.07 0.07 

A10 3.84 0.10 

A49 3.66 0.09 

A38 3.52 0.11 

A9 3.46 0.11 

A68 3.40 0.12 
*average of 10 data runs 
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 Our results are also consistent with the chr2 results in Tsalenko et al. 

(2003) (Table 5, Figure 2). Of our top 15 markers, 12 had α < 0.10, and 10 of 

those were among the 15 top scoring SNPs in their study.  We dropped two SNPs 

(A59, A65), included in the top 15 SNPs in their study because of missing data 

issues. These SNPS are in strong LD (r
2 

> .90) with A56 which is included in both 

lists; thus we effectively found 12 of the 15 SNPs in Tsalenko et al (2003). 

 
EPISTASIS 

 

Cox et al (Cox et al, 1999) identified an epistatic interaction between the chr2 

NIDDM1 region and a region in the vicinity of CYP19 on chr15, based on 

correlation of NPL scores. The CYP19 region is relatively small (130Kb), 

encompassing two SNPs (B3 and B4) in our original dataset, while the chr15 

region tested is large (~10,000 Kb). The original marker, D15S119, which 

showed linkage to the CYP19 region, is ~2 Mb distal to CYP19 (NCBI Map 

Viewer, Build 37.1); it is encompassed by our markers B39, B43 and B49. 

Epistatic structures are shown in Table 6 and Figure 3. Our criteria 

required that the structure appear in all 10 data runs, and that α≤0.10. All 36 

resulting structures had α < 0.02. In these 36 structures, 30 involved chr2 SNPs 

with strong main effects, as reported in Table 4.  Also, in these 36 structures, 14 

chr2 SNPs interacted with 21 chr15 SNPs.  Of these 14 chr2 SNPs, 8 had strong 

main effects, and of these 8, A35 was involved in many (10) epistatic structures. 

A total of 9 structures bracket the CYP19 region (those including B39, B43, B44, 

B124 or B125); the chr15 markers in six of these structures (those including B39, 

B43 and B49) flank D15S119. One structure, A22B3, involved a direct interaction 

with CYP19.  

 In addition, a cluster of SNPs (A22, A25, and A26 in the region between 

GPR35 and CAPN10) were involved in 10 structures showing interactions 

between that region of chr2 and the chr15 CAPN3/ZFP106 region.  In other 

findings, structure A26B32 demonstrates an interaction between the chr2 

GPR35/CAPN10 region and the chr15 gene HNF6, a transcription factor in which 

mutations lead to a form of diabetes called “maturity onset diabetes of the young” 

(MODY). 
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Figure 1. Horikawa Comparison. This figure maps part of the NIDDM1 region of 

chromosome 2. Markers found by Horikawa on the left side of the map, and by this study 

on the right. Highlighted genes are CAPN10 (red) and GPR35 (blue). The insert shows all 

markers found by each study, in chromosomal order. This study identified 13 of the 16 

SNPs identified by Horikawa et al (2000). 
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Figure 2. Tsalenko Comparison. This figure maps part of the NIDDM1 region of 

chromosome 2, and shows markers found to be important in predicting NPL scores in the 

study by (Tsalenko et al. 2003) on the left side of the map, and in this study on the right.  

Highlighted genes are CAPN10 (red) and GPR35 (blue). The insert shows all markers 

found by each study, in chromosomal order. This study identified 10 of the 15 SNPs 

identified by Tsalenko. 
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 Table 6. Epistatic SNP Structures 

Structure 

% Uncertainty 

reduced*    α* 

A26B32 8.78 0.00 

A35B47 8.32 0.00 

A41B44 7.92 0.00 

A35B49 7.82 0.00 

A25B15 7.61 0.01 

A40B49 7.60 0.00 

A37B39 7.59 0.01 

A35B125 7.45 0.00 

A26B45 7.35 0.01 

A40B44 7.32 0.01 

A40B125 7.26 0.01 

A35B44 7.20 0.01 

A23B39 7.18 0.01 

A25B16 7.11 0.01 

A66B44 7.05 0.01 

A40B47 7.00 0.01 

A60B44 6.97 0.01 

A25B39 6.94 0.01 

A47B44 6.93 0.01 

A37B43 6.88 0.01 

A35B124 6.87 0.01 

A25B7 6.82 0.01 

A55B46 6.81 0.01 

A23B47 6.66 0.01 

A35B14 6.61 0.01 

A25B24 6.59 0.01 

A18B56 6.57 0.01 

A22B3 6.49 0.02 

A35B31 6.48 0.01 

A26B25 6.39 0.02 

A37B33 6.25 0.02 

A35B56 6.23 0.02 

A35B28 6.15 0.02 

A35B65 6.13 0.02 

A62B44 6.12 0.02 

A26B44 6.01 0.02 
*average of 10 data runs 

 

Table 7 gives more detail, in the form of the %uncertainty reductions, for 

the A26B32 structure.  Due to the effect of the loop, the uncertainty reduction in 
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Z for AB:AZ:BZ is slightly subadditive with respect to uncertainty reductions for 

AB:AZ and AB:BZ, but the uncertainty reduction for ABZ is much larger than the 

uncertainty reduction for AB:AZ:BZ. This indicates a large triadic interaction 

effect. In this table, ∆df and ∆LR are differences in degrees of freedom and 

likelihood ratio relative to A26B32:Z.  α* is significance relative to A26B32:Z, 

showing that A26 is a significant a predictor of Z while B32 is not, and that 

A26B32Z is different from independence; α# is significance relative to the loop 

structure A26B32:A26Z:B32Z, showing that the triadic interaction effect in 

A26B32Z is statistically significant. All epistatic pairs (Table 6 and Figure 3) 

exhibit such a triadic interaction effect. Table 8 gives the penetrance table for 

A26B32. The SNP state is shown in parentheses. Each cell (each genotype) has a 

penetrance value equal to #cases / (#cases + #controls), with the denominator (the 

frequency of that genotype) given in square brackets. Under these entries in italics 

and smaller font is a modified estimate of the penetrance followed by the 95% 

confidence interval shown in curly brackets; these are calculated by the adjusted 

Wald method (Sauro, 2006). There is a suggestion of possible heterosis (non-

monotonicity with respect to allele dose) in this table; this is not definitive, given 

the small number of occurrences of the genotypes. 

 
Table 7. Uncertainty reductions for A26B32Z 

Structure ∆df ∆LR α
* 

α
# 

%∆H(Z) 
A26B32Z 8 27.00 0.0007 0.0047 9.10 
A26B32:A26Z:B32Z 4 11.98 0.0174 1.0000 4.04 
A26B32:A26Z 2 8.22 0.0164 − 2.77 
A26B32:B32Z 2 4.20 0.1227 − 1.41 

A26B32:Z 0 0.00 1.0000 − 0.00 
 

The chr2 GPR35 region itself interacts with chr15 genes SEMA6D 

(A41B44) and GALK2 (A37B39). In addition to contributing two structures in the 

vicinity of CYP19, SNP A35 (at the end of the NIDDM1 region) also interacts 

with chr15 genes SEMA6D (A35B47), and USP8 (A35B49).  From the 

perspective of chr15, the SNP associated with SEMA6D, SNP B44, is involved in 

eight epistatic structures on chr2, most of them within CAPN10. 
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Table 8. Penetrance table for A26B32Z 

 B32(1) B32(2) B32(3) 
A26(1) .40 [117] 

.40 {.32,.49} 

.51 [43] 

.51 {.37,.65} 

1.00 [5] 
.86 {.60,1.00} 

A26(2) .62 [29] 
.61 {.44,.77} 

.85 [13] 

.80 {.57,.97} 

0.00 [2] 
.25 {0,.63} 

A26(3) 1.00 [3] 
.80 {.47,1.00} 

.50 [2] 

.50 {.09,.91} 

----- [0] 

 

 

DISCUSSION 
 

RA is capable of detecting low levels of genetic interactions, despite high noise 

levels, in simulated data, reliably detecting interactions in heritabilities as low as 

0.008, with as many as 50 intervening noise genes. As noted above, RA 

outperforms the earlier work of (Ritchie et al, 2003), who used neural nets, and 

(Hahn et al, 2003), who used multifactor dimension reduction.  

To validate the use of RA for association and gene-gene interaction 

studies, we used a set of NIDDM1 case and control subjects, for which there was 

evidence in the literature of an association between NIDDM1 and a specific 

region on chromosome 2, as well as a possible interaction with a region on 

chromosome 15. For this specific purpose, the small sample size that we used 

(200 cases and 200 controls) is adequate. The SNP data available on these 

subjects had been generated on the basis of prior linkage and positional cloning 

studies. Although the rationale for selecting SNPs for association studies now 

encompasses a broader spectrum of considerations, and although larger sample 

sizes are needed for genome-wide association studies, these considerations have 

no consequence for the basic integrity of RA methodology.   

 In single SNP tests on real data, RA closely approximated results obtained 

in previous analyses of these data (Horikawa et al, 2000; Tsalenko et al, 2003). In 

cross-chromosome tests (Cox et al, 1999), we confirmed the association between 

the chr2 NIDDM1 region and the chr15 CYP19 region. We detected a multi-SNP 

association between NIDDM1 and CAPN3 on chr15; it has been suggested that 

CAPN3 may contribute to susceptibility to diabetes (Walder et al, 2002).       

In this study, SNPs are identified by an information theoretic measure 

calculated from the full dataset; that is, the data was not split into training and test 

sets to assess predictive accuracy. The study uses the simplest possible RA 

analysis, namely loopless models with only one or two inputs. This type of RA is 

equivalent to the information-theory approach used by Tsalenko et al (2003) 
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Figure 3.  Epistasis Findings. This figure maps part of the NIDDM1 region of 
chromosome 2, and the study region of chromosome 15, and shows epistatic markers 
found in this study. Highlighted genes are CAPN10 (red), GPR35 (blue), CAPN3 (green), 

and CYP19 (black). One of our markers (B4) falls within the CYP19 region found by Cox 
et al (1999). 
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and is also related to the measures used by Chanda et al (2007) to study gene-

environment interactions. More complicated RA methods, e.g., variable-based 

models with loops or state-based models, were not here employed to detect 

epistasis, although models with loops were used (Table 7) as reference models to 

show that epistasis is a triadic interaction effect rather than a cyclic linkage of 

variables, i.e., that it corresponds to ABZ and not AB:AZ:BZ.   

There are other methods, such as log-linear (LL) models and Bayesian 

networks (BN), which resemble information theory approaches, which could be 

used to study epistasis. Where these probabilistic methods overlap, they are 

typically mathematically equivalent, although some differences exist. Standard 

Bayesian analysis does not consider multiple predicting component structures 

which have loops, and state-based modeling does not appear to exist in either the 

LL or BN toolkits.  RA has additional features that distinguish it from BN and 

LL.  It is applicable to set-theoretic relations and mappings whose analysis is non-

statistical and has the possibility of other extensions via “generalized information 

theory” (Klir, 2005); set-theoretic RA might offer fast approximations for the 

analysis of contingency tables. RA also includes methods to analyze continuous 

outputs which could be applied to gene expression, and it has a Fourier variation 

that resembles non-linear regression and might be applied to epistasis. 

       Logistic regression (LR), which has been used to study epistasis, is 

closely related to log-linear (LL) methods.  LR, applied to nominal (as opposed to 

continuous) input variables where dummy variables code the states of the input 

variables, is essentially the same as LL; in the area where these three formalisms 

overlap, RA, LL, and LR are all equivalent. Thus, for example, LR gives the same 

delta-likelihood-ratio and α values as those shown in Table 7. Despite this 

equivalence, RA employs uncertainty and transmission measures not normally 

reported in LL or LR, and these measures are useful and intuitively easy to 

understand; recall, for example, the fact that conditional transmissions could 

allow one to encompass the effects of LD on SNP-disease associations. LR does 

not evaluate the structure AZ:BZ (as opposed to AB:AZ:BZ), which can 

sometimes model epistasis, because it is not hierarchically related to AB:Z, the 

independence reference structure for directed systems, but AZ:BZ is naturally 

encompassed in RA (and LL).  RA is also definitely different from LR as 

implemented in the PLINK software (Purcell et al, 2007) which has been 

employed for the analysis of epistasis.  PLINK regresses against allele dose, i.e., 

treats variables as quantitative rather than nominal, and is inappropriate when the 

dependence of disease on allele dose is not monotonic (or if monotonic, not 

linear); as noted earlier (Table 8), such non-monotonicity may occur in our data. 

But even when genotypes are coded as nominal states, LR does not fully overlap 

– and is thus not completely equivalent to – RA.  The formal differences between 

RA and LR include the differences noted above between RA and LL: RA has a 
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set-theoretic version, can analyze continuous outputs, and has a Fourier-based 

variation.  Further, RA is a fusion of information theory and graph theory, and 

connects strongly with the “graphical models” literature.  In its graph theoretic 

aspects RA explicitly considers the lattice of all possible structures and offers 

heuristics for searching this lattice.  For example, OCCAM is explicitly designed 

for exploratory modeling, though it can also be used more simply for 

confirmatory modeling. By contrast, LR software is usually not designed for 

exploratory purposes and is sometimes unable to handle interactions between 

many variables.  Inputs with three or more states are sometimes recoded in terms 

of two or more binary variables, the meaning of whose states is inherently 

obscure.  However, states and interactions between states can be explicitly coded 

in LR as separate effects whose interpretation is straightforward, and with such 

coding, LR resembles state-based RA.  Whether the two are formally equivalent is 

under investigation, but even if they are, there remain computational differences: 

LR maximizes likelihood, typically with the Newton-Raphson algorithm, while 

RA maximizes entropy, equivalent here to maximizing likelihood, with Iterative 

Proportional Fitting. In summary, while RA and LR (and LL) are identical where 

they overlap, RA has distinctive features, both theoretical and computational, 

which make it useful for the study of epistasis. 

Other methods, very different from RA/LL/LR/BN modeling, have also 

been used to analyze epistasis, namely neural networks and support vector 

machines. As noted earlier, these methods are actually designed for continuous 

variables, and so are intrinsically not suited to genomic data, which is nominal. 

Moreover, the predictive relation inherent in an RA (or LL, LR, or BN) structure 

is a conditional probability of the discrete output, given its discrete inputs.  This 

conditional probability is precisely penetrance and thus is a natural and 

transparent way to represent relations between genotype and phenotype.  By 

contrast, a neural network fits data via a set of hard-to-interpret weights, and is 

usually not accompanied by statistical assessment. Also, neural networks are 

designed for deterministic input-output relations, and often do not perform well 

when relations are stochastic, which is typically the case for genotype-phenotype 

relations, e.g., for epistatic pairs in the diabetes data analyzed here. 

In this study, RA uses a simple brute force approach. Since the genetic 

models were designed with no main effect, no single SNP is linked to the disease 

more than any other single SNP, so no single SNP measure gives any clue about 

the interaction effect involving the two active SNPs.  One cannot, therefore, 

reduce the set of SNPs to consider by looking at any single SNP.  However, pairs 

of SNPs that do not include both active SNPs will also show no effect, so one can 

simply look at all pairs of SNPs to find the active pair. For OCCAM, this is not a 

burdensome calculation; processing time for 400 records and 10 SNPs takes less 

than a second, and 400 records and 52 SNPs takes approximately 4 seconds on a 
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Pentium-class PC. We note that with these computational times, RA is feasible for 

approaches that have been previously described for potential analysis of 

interactions in GWAS.  For example, consideration of all possible pairs of regions 

identified among the top signals (e.g. top 10,000 signals), or consideration of all 

pairs of regions across the genome for the top replicated signals, or considering all 

possible pairs of regions from a pre-identified set of loci for which there is prior 

evidence of biological interaction at the level of the protein and/or DNA would all 

be computationally feasible with RA.  With some optimization of code, and use of 

parallel analysis, RA would be computationally feasible to apply in a genome x 

genome analysis of interaction, although there are clearly statistical issues in 

interpreting results of such a large number of tests. 

In summary, RA can readily detect two-gene interactions that predict 

disease in the absence of any main (single gene) effect and in the presence of 

noise genes. 
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