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Abstract 
Background: Reconstructability Analysis (RA) has been used to detect epistasis in genomic data; in that work, even the 
simplest RA models (variable-based models without loops) gave performance superior to two other methods.  A follow-on 
theoretical study showed that RA also offers higher-resolution models, namely variable-based models with loops and 
state-based models, likely to be even more effective in modeling epistasis, and also described several mathematical 
approaches to classifying types of epistasis.  
Methods: The present paper extends this second study by discussing a non-standard use of RA: the analysis of epistasis in 
quantitative as opposed to nominal variables; such quantitative variables are, for example, encountered in genetic 
characterizations of gene expression, e.g., eQTL data. Three methods are investigated for applying variable- and state-based 
RA to quantitative dependent variables: (i) k-systems analysis, which treats continuous function values as pseudo-
frequencies, (ii) b-systems analysis, which derives continuous values from binned DVs using expected value calculations, 
and (iii) u-systems analysis, which treats continuous function values as pseudo-utilities subject to a lottery.  These methods 
are demonstrated and compared on synthetic data.
Results: The three methods of k-, b-, and u-systems analyses, both variable-based and state-based, are then applied to a 
published SNP dataset.  A preliminary search is done with b-systems analysis, followed by more refined k- and u-systems 
searches.  The analyses suggest candidates for epistatic interactions that affect the level of gene expression.  As in the 
synthetic data studies, state-based RA is more powerful than variable-based RA.
Conclusions: While the previous RA studies looked at epistasis in nominal (or discretized) data, this paper shows that RA 
can also analyze epistasis in quantitative expression data without discretizing this data.  Since RA can also model epistasis 
in frequency distributions and detect linkage disequilibrium, its successful application here also to continuous functions 
shows that it offers a flexible methodology for the analysis of genomic interaction effects.
Keywords: epistasis, gene-gene interactions, gene expression, eQTL, Reconstructability Analysis, information theory, 
graphical models, OCCAM, bioinformatics, k-systems analysis, u-systems analysis, function decomposition, state-based 
modeling.

© 2012 Zwick et al: licensee Herbert Publications Ltd. This is an Open Access article distributed under the terms of Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/3.0). This permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background
Reconstructability Analysis (RA) is a modeling methodology 
developed in the systems science community [1-6] based on the 
work of Ashby [7].  It has recently been used to detect epistasis 
in genomic data [1], where its performance was superior to 
multifactor dimension reduction and neural nets.  Only the 
simplest RA models were used, namely variable-based models 
without loops, so the potential value of RA for studying epistasis 
was not fully explored.  A follow-on paper [2] showed (a) that 
epistasis can be modeled by RA even more effectively with 
more refined variable-based models with loops and with 
state-based models (which nearly always have loops), (b) that 
in classifying epistasis one can use multiple rather than single 
models, and (c) that the RA classification of types of epistasis can 
be augmented with structures from other graphical modeling 
techniques.

This second [2] study still did not examine all the ways that RA 
can be used to study epistasis.  In particular, it did not consider 
the use of RA to analyze epistasis affecting quantitative as 
opposed to nominal measures, as is encountered in the study 
of gene expression, e.g., in eQTL data.  This paper sets out the 
theory for such non-standard use of RA, showing with examples 
how analysis is done.  Systematic testing on simulated data 
or analysis of real data for the purpose of articulating specific 
hypotheses about epistatic interactions are tasks left for the 
future.  The aim of this paper is to explain and further develop 
RA methodology for analyzing functions, and thus lay the 
groundwork for such future investigations.

Methods
Methodological distinctions
RA is a fusion of information theory and graph theory developed 

Journal of
Molecular Engineering & Systems Biology
ISSN 2050-1412

http://www.hoajonline.com
mailto:mailto:zwick%40pdx.edu?subject=
http://creativecommons.org/licensesby/2.0
http://www.hoajonline.com/Journal-of-Molecular-Engineering-and-Systems.html
http://www.hoajonline.com/Journal-of-Molecular-Engineering-and-Systems.html


Zwick et al. Journal of Molecular Engineering & Systems Biology 2012, 
http://www.hoajonline.com/journals/pdf/2050-1412-1-4.pdf

2

doi: 10.7243/2050-1412-1-4

within the systems science community that partially overlaps 
other ‘graphical models’ methods that are better known, 
such as log-linear modeling and Bayesian networks.  Table 1 
summarizes various distinctions within RA methodology, and 
reviews of this methodology are available [8,9].  Because these 
distinctions are not completely orthogonal, their discussion 
below does not simply follow the table sequentially, but the 
table is still a useful organizing framework.  The first distinction 
points to the purpose of this paper: to explore the use of RA 
to analyze functions; but distributions are also discussed as 
part of necessary preliminaries.  All the alternatives within 
the other methodological distinctions are relevant to the 
analysis of functions.

Model types
In standard uses of RA, both input and output variables 
(independent and dependent variables) are nominal with an 
arbitrary number of states.  The input variables might be SNPs, 
for example, and an output variable might be the presence 
or absence of disease, or its surrogate, case vs. control.  To 
illustrate how RA is applied to epistasis, let the input variables 
be A, B, C, etc. and the output variable Z, and let the epistatic 
interaction be between A, B, and Z, with C having no relation to 
Z.  This is captured in model m1 = ABC:ABZ, which is a variable-
based model without loops, the only type of RA model used in 
the [1] study.  This model has two relations, ABC and ABZ, the 
colon “:” meaning “independent of.”  The first relation allows 
for but does not necessarily assert association between the 
input variables.  The second is the epistatic relation, which 
asserts that A and B jointly predict Z.  In all models, the order 
of relations and the order of variables within a relation are 
arbitrary, e.g., ABC:ABZ is the same as ZAB:CBA.

Epistasis might be analyzed with more complex models, 

namely those with loops.  Consider the variable-based model 
with a loop: m2 = ABC:AZ:BZ.  The loop in this model is the 
cycle of interactions between A and B (within ABC), B and 
Z, and Z and A.  The first relation again allows association 
between input variables; there are now two predicting 
relations: one in which A predicts Z, and the other in which 
B predicts Z.  These two interactions are integrated with 
the maximum entropy principle, but there is no three-way 
interaction effect, so epistasis in m2 is of a weaker type 
than what exists in m1 [2].  A more complex way to analyze 
epistasis is to use state-based models.  Consider, for example, 
a state-based model m3 =  ABC:Z:A1B1Z:A2B3Z1 (which has 
a loop), where subscripts indicate particular states of the 
indicated nominal variables.  The first relation again allows 
for association between input variables.  The Z component 
imposes the marginal distribution of the output variable.  
The third and fourth relations represent the power of the 
specific state A1B1 to predict Z and an anomalously high or 
low probability of the A2B3Z1 state.  Variable-based models 
with loops and state-based models can more effectively 
characterize epistasis than variable-based models without 
loops because they make finer discriminations.  Though their 
structures are more complex, they make more economical 
use of their degrees of freedom [2].

Three RA steps: projection, composition, evaluation
In standard variable-based or state-based RA, the data is 
usually an observed frequency distribution f(ABCZ) = N 
p(ABCZ), where N = sample size; or the data could be given 
as a probability distribution p(ABCZ) without any sample 
size. p(ABCZ) means the distribution p(Ai,Bj,Ck,Zl), for all i,j,k,l; 
the short notation will generally be used except where the 
long notation is needed for clarity.  This is for information-
theoretic (or probabilistic) RA.  There also exists a set-theoretic 
(“possibilistic”) RA where the data is a set-theoretic relation 
or mapping; this type of RA is of limited interest for studying 
epistasis, so this methodological distinction is not included 
in Table 1.

Assume as before that Z depends on A and B but not 
C.  An RA model (e.g., m1, m2, or m3) stipulates a calculated 
ABCZ distribution, pm(ABCZ), that is generated from the 
projections of the data specified by the relations present 
in the model.  The first step in constructing a model is 
projection, in which these relations are calculated from the 
data.  In the composition step that follows, the relations are 
integrated using maximum entropy to obtain the calculated 
distribution for the model.  For example, for data ABCZ and 
model ABC:ABZ,  the projection step calculates ABC and 
ABZ, and the composition step joins these relations into 
the calculated pABC:ABZ(ABCZ) = p(ABC) p(ABZ) / p(AB).  For 
models with loops, however, composition is not algebraic, 
but must be iterative.  What composition does is generate 
a calculated distribution that is as uniform as possible (has 
maximum entropy) as long as its calculated projections for 

1. DATA TYPE frequency or probability distribution

function

     explicit function

     sample data

2. MODEL TYPE variable-based (VB)

     without loops

     with loops

state-based (SB) (usually has loops)

3. SYSTEM TYPE directed system (input/output distinction)

     deterministic

     non-deterministic

neutral system (no i/o distinction)

4. REPRESENTATION b-systems (distribution or function)

k-systems (function)

u-systems (function)

5. COMPUTATIONAL TASK search (exploratory) over models

fit, test (confirmatory), or use one model

6. COMPOSITION ALGORITHM maximum entropy (standard) composition

Fourier composition

Table 1. Methodological distinctions for RA
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the relations in the model agree with the corresponding 
projections of the data.  As indicated in Table 1, there is a 
composition algorithm that is an alternative to maximum 
entropy, and which has been tested in a preliminary way 
[10], but this algorithm hasn’t been implemented in the RA 
software used in this project, and isn’t considered in this paper. 

The evaluation step assesses model goodness, which 
depends on (i) the difference between the model distribution 
and some reference distribution and (ii) the degrees of freedom 
of the model relative to that reference.  The reference model 
is usually either the data, ABCZ, or the independence model, 
ABC:Z, in which no input is associated with the output.  For 

“neutral systems,” discussed below, the reference is instead 
sometimes the uniform distribution.  If the reference is the 
data, one wants the calculated pm to agree with the observed 
p.  The difference between these two distributions (the error) 
is usually given in terms of the difference between calculated 
and observed Shannon entropies of these distributions, 
Hm(ABCZ) – H(ABCZ) = Tm, where Tm is “transmission,” also 
known as the Kullback-Leibler distance.  If the reference is 
the independence model, one wants the calculated pm to 
differ as much as possible from a calculated pind, as long as 
the difference is significant statistically, so that the model 
captures a maximal fraction of the information (I) in the data.  
Model goodness with respect to difference from the reference 
distribution is often tabulated as %I = 100 ( Hind – Hm ) / (Hind 

– Hdata) where ind=independence; when the reference is the 
uniform distribution, %I = 100 (Huniform – Hm ) / (Huniform – Hdata).

Model use; neutral systems
Model m is used by obtaining the conditional distribution 
pm(Z|AB), from pm(ABCZ), which allows one to predict Z from 
A and B.  Because Z is nominal in standard RA, using this 
conditional distribution for prediction is doing a classification.  
Here, RA is closely related (but not necessarily completely 
equivalent) to log-linear methods, logistic regression, and 
Bayesian networks.  The presence of a sample size allows 
models and their predictions to be tested for statistical 
significance.

So far, discussion has concerned “directed” systems, which 
have inputs and at least one output.  RA also includes the 
analysis of “neutral systems,” where inputs and outputs 
are not distinguished; in effect, all variables are inputs (or 
outputs).  For the analysis of quantitative functions, one RA 
representation – “k-systems” analysis – uses neutral systems; 
the two other RA representations – “b-systems” and “u-systems” 
analysis – use directed systems.  Neutral systems can also 
be used to detect association between inputs, i.e., linkage 
disequilibrium among SNPs.

Software
RA used in this study is implemented in the program OCCAM 
[11,12], named after “Organizational Complexity Computation 
and Modeling” and the famous razor (principle of economy) 

sometimes spelled this way.  OCCAM is web-accessible, and 
available for use by contacting the author (Zwick).  State-based 
searches reported in this paper were done with an auxiliary 
program [13], but state-based searches have recently been 
incorporated into OCCAM.  

Data
Consider data where Z is not nominal but quantitative 
(continuous), as occurs for example in measures of gene 
expression, and distinguish two types of data: (a) the data is 
given as an explicit function of nominal inputs A, B, and C, i.e., 
as Zijk = f(Ai, Bj, Ck), and (b) it is sample data consisting of input 
and output values for N cases, {A(c), B(c), C(c), Z(c)}, c = 1 to N, 
where A(c) is some nominal Ai value, and similarly for B and C.  

An explicit function is a simple mapping of nominal 
arguments onto real values, not a sample of input and output 
values where the same input might be observed to have 
multiple output values.  If f(Ai, Bj, Ck) is penetrance, i.e., the 
probability of disease given the inputs, one can regard it as 
the conditional probability p(Z1 | Ai, Bj, Ck), where Z is a binary 
output with Z0 being the non-diseased state and Z1 being the 
diseased state.  By thus adding a nominal output variable, 
the data is amenable to standard probabilistic analysis.  If, 
however, f is given as an arbitrary function, one does not have 
a probability distribution.  The problem is no longer one of 
classification, but is the modeling of a continuous function.  
Log-linear methods and Bayesian networks are not applicable, 
but RA, in its k-systems or u-systems forms, can still be used.  

In sample data, input states can repeat with different 
function values.  One can bin (discretize) the output Z values, 
and thus convert the data into a probability distribution to 
which standard RA (and log-linear methods and Bayesian 
networks) apply.  Unless there is a binning scheme standard 
for the type of data being examined, a number of bins is 
chosen, and bin boundaries are assigned to equalize, as much 
as possible, the number of data points falling in each bin.  
(“Equal sampling” binning makes more efficient use of the 
data than “equal interval” binning.)  A reasonable minimum 
default for the number of bins is three, since this allows the 
detection of nonlinear effects (which two bins would not).  If 
sample size permits, more bins for Z will give greater precision 
in calculated Z values for the b-systems approach.  In the 
results reported below on real data, four bins were used.  
Input variables that are continuous must also be binned.  An 
input that in preliminary calculations is highly predictive can 
be rebinned with more bins; and one could select a number 
of bins that optimizes the reduction per input bin of the 
entropy of Z [14].  In general, the number of bins assigned to 
all the variables is a “scarce resource”, since the complexity 
of models that can be considered is limited, for any sample 
size, by the cardinalities of the variables.

The sample size allows one to calculate statistical 
significance, and quantitative Z predictions can be recovered 
by a simple expected value calculation as discussed below.  

http://www.hoajonline.com/journals/pdf/2050-1412-1-4.pdf
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Since one is analyzing a distribution where input states can 
have different binned output values, the problem is stochastic.  
This approach is referred to as “b-systems” analysis (“b” for 
binning).  Or, one can convert sample data to an explicit 
function by averaging the f(c) values for each (Ai, Bj, Ck) input 
state; the data is then the function Zijk = fave(Ai, Bj, Ck), which 
can be modeled with either k-systems or u-systems analysis, 
as explained below.  In doing this, sample size information is 
discarded, and the analysis is non-statistical and deterministic.

For both explicit functions and sample data, an important 
issue is whether or not function values are available for the 
complete input space.  It is assumed in this paper that the data 
provides a fully defined function.  How well the b-, k-, and 
u-systems approaches reconstruct partially defined functions 
requires a separate study.

b-systems analysis
The b-systems approach is just standard RA with one additional 
calculation that obtains a continuous predicted value for 
the output variable.  The continuous prediction of Z for any 
input state is obtained from the conditional distribution p(Zl 
| Ai,Bj,Ck) by calculating Z’s expected value for that input state 
by summing over bins.  Each bin, b, has assigned to it some 
continuous value, Zb, which could be (i) the midpoint of the 
range of Z values that define this bin or – preferably – (ii) the 
mean or (iii) the mode of the Z values that were discretized 
to this bin. (Bin values can be assigned in OCCAM using its 

rebinning option.)  Z’s expected value is <Zij> = Σb Zb p(Zb | 
Ai,Bj).  The entropy of this conditional distribution for each 
input state is a measure of the confidence that should be 
associated with this expected Z value; one can also calculate 
a variance for this expected value.

Binned gene expression data were used in a preliminary RA 
study [15] but expected value predictions were not examined 
there.  That study employed only simple variable-based 
models without loops, but it successfully replicated and 
extended SNP-gene expression associations in a public 
dataset [16]. 

k-systems analysis
The use of “k-systems” analysis to compress (decompose) 
functions of nominal variables was first proposed by Jones 
[17], who joined it to state-based analysis, but the k-systems 
approach can also be used with variable-based analysis [18].  
This approach applies to data that is an explicit function of 
nominal variables.  If sample data is given, it is converted to 
an explicit function by averaging function values for every 
input state.  The within-input-state variation in the function 
value and the frequencies of the input states are ignored.

The central idea in k-system analysis is to linearly scale the 
function (its average value for every input state) so it can be 
treated as a pseudo-probability, do standard reconstructability 
analysis on this distribution, and then do an inverse scaling of 
reconstructed pseudo-probabilities to get an approximation 
to the original function.  Jones called the scaled function “k” 
in honor of George Klir, one of the pioneers of RA, hence the 
name “k-systems analysis.”  Here the scaled function is called 
p, because it is treated as if it were a probability.  Scaling is 
done as follows:

p(ABC) = a f(ABC) + b, where a and b are constants, such that
0≤p(ABC)≤1 for all states of ABC, and ΣΣΣ p(ABC) = 1

b is chosen to bring negative values of f to zero or to a 
slightly positive value (negative values are not relevant to gene 

k-systems u-systems
A B f fk6 fk7 fk8 fu6 fu8 fu9

0 0 145.6 151.4 143.1 151.4 145.6 145.6 145.6

0 1 157.1 151.4 101.2 151.4 157.1 157.1 157.1

0 2 0 0.0 58.3 0.0 30.3 19.6 0.0

1 0 123.1 123.1 87.9 123.1 123.1 123.1 123.1

1 1 29.6 36.4 62.2 24.5 30.3 19.6 24.5

1 2 33.2 36.4 35.8 24.5 30.3 19.6 24.5

2 0 18.6 36.4 56.3 24.5 30.3 19.6 24.5

2 1 16.5 36.4 39.8 24.5 30.3 19.6 24.5

2 2 83.9 36.4 22.9 83.9 30.3 83.9 83.9

rms-dev 18.53 40.17 5.44 21.41 8.69 4.72

R2 0.90 0.52 0.99 0.86 0.98 0.99

∆df 3 4 4 3 4 5

reference for ∆df uniform AB:Z

models k
6=A0B2:A0:A1B0 u6= AB:Z:A0B1Z0:A0B0Z1:A1B0Z1

k7=A:B u8= u6:A2B2Z1

k8= k6:A2B2 u9= u6:A2B2Z1:A0B2Z1

Table 2. Hallgrímsdottir and Yuster (HY) data
f is the original function (data). fk6–fk8 are functions reconstructed from 
state- and variable-based k-systems models in Table 3.  fu6–fu9 are func-
tions reconstructed from state- and variable-based u-systems models in 
Table 5, further below.  

Model H %I ∆df

10 AB 2.596 100.0% 8

9 A0B2:A0:A1B0:A2B2:A2 2.597 99.8% 5

8 A0B2:A0:A1B0:A2B2 2.607 98.2% 4

7 A:B 2.981 32.9% 4

6 A0B2:A0:A1B0 2.681 85.2% 3

5 A0B2:A0 2.795 65.3% 2

4 A 3.069 17.6% 2

3 B 3.082 15.3% 2

2 A0B2 3.000 29.6% 1

1 Uniform 3.170 0.0% 0

Table 3. State- and variable-based k-systems analysis of HY data
H = Shannon entropy, %I = % information, df = degrees of freedom. 
Variable-based models are in italics. Models are neutral systems.

http://dx.doi.org/10.7243/2050-1412-1-4
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expression, but this discussion applies to functions in general); 
a is then determined by the normalization condition that the 
probabilities sum to 1. The scaled p(ABC) is then subjected 
to standard neutral system RA.  Suppose the variable-based 
model AB:BC with its calculated distribution, pAB:BC(ABC), is 
recommended by the analysis.  The reconstructed function 
is obtained by the inverse scaling, i.e.,

fAB:BC(ABC) = ( pAB:BC(ABC) - b ) / a
One can as well use state-based modeling to decompose 
an observed p(ABC) and obtain a calculated pm(ABC).  Jones 
joined scaling-decomposition-rescaling with state-based 
modeling, but these two procedures are separable.

The k-systems RA approach can be compared to the 
analysis of variance without replication, also used to study 
the association between nominal inputs and a quantitative 
output that is unique for each input state.  Jones [19] and 
Gouw and Jones [20] discuss these alternative methodologies 
and argue for the merits of their approach, which differs 
from multivariate experimental design methods in making 
no assumptions about the functional form of the relation 
between inputs and output or of the distribution of errors.  
However, k-systems analysis is not statistical, and does not 
offer confidence estimates, so its results need to be subjected 
to cross-validation studies in which test data assess the 
generalizability of models obtained from training data.

The following tables show the k-systems analysis of 
a function of two variables, and the efficacy of state- as 
compared to variable-based modeling. Table 2 is data from 
Hallgrímsdottir and Yuster [21], who classify types of two-
locus epistasis.  Since the lowest function value is 0, the 
function needs only ratio scaling by a to convert it to a pseudo-
probability.  A and B have cardinality 3, so the data’s degrees 
of freedom (df) is 8, assuming knowledge of the average f.

Table 3 shows the results of both state- and variable-based 
k-systems analysis.  The results show that the function can be 
represented by many fewer degrees of freedom if state-based 
models are used.  State-based model #6, A0B2:A0:A1B0, with 

∆df=3, has one fewer degree of freedom than the variable-
based model #7, A:B; yet model #6 captures 85.2% of the 
information in the data, while model #7 captures only 32.9%.  
State-based model #8, with the same ∆df=4 as model #7, 
captures 98.2%, almost three times the information of model #7.  
Similarly, for ∆df=2, state-based model #5, A0B2:A0 has about 
four times the information of variable-based models #3 and 
#4.  The reconstructed functions for models #6, #7, and #8 
are shown in Table 2 where closeness of these functions to 
f is indicated by rms-dev and R2.  In Table 3, closeness of the 
reconstructed functions to f is given by entropy-based %I.

Since k-systems analysis is non-statistical – there is no 
sample size that can be meaningfully used – the choice of 
a particular model and its reconstructed function must be 
made on the basis of user-provided criteria, based only on %I 
and ∆df.  In the present case, models #6 and #8 are plausible 
candidates, but #7 is not.  State-based analysis of continuous 
output functions is more powerful than variable-based analysis.

u-systems analysis
The u-systems approach, like k-systems analysis, applies to 
functions defined uniquely by their inputs.  The essential idea 
underlying this approach is borrowed from expected value 
calculations in decision theory [13,18]: any utility value can 
be regarded as the expected value of an appropriate lottery.  
Similarly, any function value can be generated as an expected 
value of an appropriate probability distribution.  Thus, for 
example, if we wish our expected value to equal the actual 
function value, i.e., 

<Z>ij = p(Z0|AiBj) Z0 + p(Z1|AiBj) Z1  = f(Ai,Bj),

this can be accomplished by setting the representative values 
for the bins to the minimum and maximum values of the 
function, i.e., Z0=fmin and Z1=fmax, and by defining 

p(Z1|AiBj) = (f(Ai,Bj) – fmin)/(fmax – fmin ); p(Z0|AiBj) = 1 – p(Z1|AiBj).  

A B f p(Z0|AB) p(Z1|AB)

0 0 145.6 0.072 0.927

0 1 157.1 0.000 1.000

0 2 0 1.000 0.000

1 0 123.1 0.216 0.783

1 1 29.6 0.810 0.189

1 2 33.2 0.792 0.207

2 0 18.6 0.882 0.117

2 1 16.5 0.891 0.108

2 2 83.9 0.072 0.927

Table 4. u-systems form of Hallgrímsdottir and Yuster 
(HY) data

Model H %I ∆df

10 ABZ 3.679 100.0% 8

9 AB:Z:A0B1Z0:A0B0Z1:A1B0Z1:A2B2Z1:A0B2Z1 3.684 99.0% 5

8 AB:Z:A0B1Z0:A0B0Z1:A1B0Z1:A2B2Z1 3.708 93.9% 4

7 AB:AZ:BZ 4.004 31.9% 4

6 AB:Z:A0B1Z0:A0B0Z1:A1B0Z1 3.767 81.4% 3

5 AB:Z:A0B1Z0:A0B0Z1 3.874 59.0% 2

4 AB:AZ 4.078 16.3% 2

3 AB:BZ 4.090 13.8% 2

2 AB:Z:A
0B1Z0 4.007 31.2% 1

1 AB:Z 4.156 0.0% 0

Table 5. State- and variable-based u-systems analysis of HY data
Variable-based models are in italics.  Models are directed systems.
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For the (Ai, Bj) value for which the function is maximum, p(Z1) 
= 1 and p(Z0) = 0; for the (Ai, Bj) value for which the function 
is minimum, p(Z1) = 0 and p(Z0) = 1. 

Applying this approach to the Hallgrímsdottir and Yuster [21] 
data of Table 2 gives the p(Z0|AiBj) and p(Z1|AiBj) values shown in 
Table 4. To get ABZ data, these conditional probabilities, p(Z|AB), 
must be multiplied by some p(AB).  Since the Hallgrímsdottir-
Yuster data is an explicit function, p(AB) is taken to be a 
constant.

In applications where sample data is available, one has 
frequencies for the different input states.  In k-systems analysis, 
these are not usable, but in u-systems analysis, one could 
multiply p(Z|AB) by the input state probability, p(AB).  This 
does a weighting of function values; alternatively, weights 
based on variances of function values for different input 
states might be used.  Here no weighting has been done.  The 
results of variable- and state-based u-systems analysis of the 
HY data are provided by Table 5; the reconstructed functions 
for state-based models #6, #8, and #9 are given in Table 2.

Once again, results show that state-based analysis is more 
powerful than variable-based analysis.  This is indicated by 
the higher information content of state-based model #5 
compared to the information contents of variable-based 
models #4 and #3, all of which have ∆df=2; also by the higher 
information content of state-based model #8 compared to 
that of variable-based model #7, both of which have ∆df=4.

The u-systems analysis of Table 5 resembles but is still 
different from the k-systems analysis of Table 3. Table 6 shows 
the sequence of states added in these two searches.  The 
analytical relationship between these two representations 
and the arguments for using one versus the other are 
under investigation.  Still, the results of these two different 
mathematical approaches are in rough agreement.

Comparing the rms-deviations and R2s given in Table 2 for 
the u-systems reconstructed functions (for models #6, #8, and 
#9) to the same measures given in Table 2 for the k-systems 
reconstructed functions (for models #6 and #8) suggests 
that, on the HY data, k-systems reconstruction performs 
slightly better than u-systems reconstruction.  However, a 
general conclusion about the relative merits of these two 

approaches to reconstructing continuous functions must 
await comparative studies on more datasets. 

Comparing b-, k-, and u-systems analyses
Three different approaches are thus available for the analysis 
of functions such as might be obtained from gene expression 
data: b-systems analysis, which is a slight extension of standard 
probabilistic analysis, which requires that function values 
be binned; k-systems analysis, which rescales the function 
so it can be treated as a pseudo-probability; and u-systems 
analysis, which treats the function value as the expected value 
of a lottery. The salient properties of these approaches are 
summarized in Table 7.

Comments:
1. The input-output relation in u-systems analysis is 

deterministic in that only the average function value for any 
input state is used; however, it is stochastic in that the analysis 
itself is probabilistic (the output has two states).

2. The use of input state repeats is possible in u-systems 
analysis in that the probabilities of input states or the variances 
of their function values could be used to weight the conditional 
probabilities of the output states.

3. Analysis with b-systems is statistical in that likelihood 
ratio values, p-values, and information measures (e.g., the 
Akaike and Bayesian Information Criteria) are relevant to the 
choice of model.  These measures are not relevant and thus 
cannot be used for model selection for k- or u-systems, since 
a sample size is either unavailable or irrelevant.

4. The use of exact function values in k-systems and 
u-systems is an advantage since artifacts introduced by 
binning are avoided; b-systems analysis may give results that 
are sensitive to the exact procedures and parameters used 
for discretization.

5. The range limits of a u-systems reconstructed function 
can be extended by choosing bin values beyond the minimum 
and maximum function values in the data.  By contrast, the 
range of a b-systems reconstructed function is limited by those 
bins populated by the data, while the range of a k-systems 
reconstructed function is not inherently limited.

k u

5 A2 A0B2Z1

4 A2B2 A2B2Z1

3 A1B0 A1B0Z1

2 A0 A0B0Z1

1 A0B2 A0B1Z0

attribute b-systems k-systems u-systems

system type directed neutral directed

presence of loops more common less common more common

input-output relation stochastic deterministic deterministic1

use of input state repeats yes no possible2

statistical tests3 yes no no

use of exact function values no (binned)4 yes (of average) yes (of average)

reconstruction range limited yes (by bins) no yes but arbitrary5

Table 6. Sequence of added states in k- and 
u-systems analysis of HY data.

Table 7. Comparing the b-, k-, and u-systems approaches
Preferred values of attributes are in bold.
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Results: A real data example
In a preliminary study [22], RA was used to analyze data on 
states for 75 SNPs in eight genes and expression values for 
these genes.  The expression values were binned, but the 
study aimed only at detecting SNPs that predicted expression, 
so continuous expression functions of the SNP states were 
not also generated.  This study used only variable-based 
models without loops, and its primary results were models 
with only one predicting SNP.  This simple analysis detected 
associations between SNP alleles and binned gene expression 
values, replicating and extending SNP–gene expression 
associations in a public data set [16]. Only the data from SNPs 
and expression values from the published positive cis-acting 
(local) SNP–gene expression associations were included.  RA 
identified all but two cis-acting SNPs (false negative rate = 
2.7%) and detected additional cis-acting SNPs.

To further explore the use of RA for quantitative functions, 
continuous gene expression values were generated from this 
data in a two-step process: the first step did a coarse search 
among models using b-systems analysis, the second step did 
a finer analysis of the results of the first step using the k- and 
u-systems approaches.

Step 1: b-systems analysis.  A b-systems search through 
the space of models, including models with loops, was done 
with OCCAM.  The expression values were discretized into 
four bins.  Before doing this search, cases with missing data 
for salient variables were eliminated from the data, since 
OCCAM currently treats missing data as an additional state 

of the affected variable, and this extra state (a) can introduce 
artifacts into the analysis and (b) adds complexity to the 
model which raises the threshold for statistical significance.  
The original data had N=193; after case elimination, N=83, yet 
despite this drop in sample size, more models were significant 
because models were simpler.  The search results are shown 
in Table 8.  The search was done for three levels of complexity; 
at each level, the best 25 models are selected from the larger 
set of models which were generated by adding one relation 
to the best 25 models of the preceding lower level.

A promising model from the results of this search was 
selected for more detailed k- and u-systems analyses.  The 
selection was based on the OCCAM results summary, which 
tabulates “best models” using different model selection criteria.  
The most conservative of these criteria is (i), the Bayesian 
Information Criterion (BIC), which favors simple (low ∆df) 
models.  Just as in the Wilmot [22] study, where BIC favored 
loopless models having only one SNP predictor, the search 
results identified a set of five equivalent models, of form 
IV:XZ, where Z is the binned expression value for gene KIF1B, 
IV is a component that contains all the independent variables 
(the 75 SNPs), and X is any one of the {N, O, P, Q, R} SNPs, all of 
which are in KIF1B and in strong linkage disequilibrium (LD) 
with one another.  IV:OZ was arbitrarily chosen to represent 
this set of models.

A less conservative criterion (ii) was also used that selects 
the model with the highest %I that is statistically significant 
(p<.05) relative to a reference of independence, and for 

Model Level H ∆df ∆LR p %I ∆AIC ∆BIC pincr

IV:XZ:YZ:MZ (25 models) 3 7.46 12 60.3 0.000 32.7% 36.3 7.1 0.077

IV:XZ:YZ (25 models) 2 7.53 8 51.9 0.000 28.1% 35.9 16.4 0.000

IV:XZ (5 models) 1 7.66 4 36.9 0.000 20.0% 28.9 19.2 0.000

IV:WZ (3 models) 1 7.67 4 35.2 0.000 19.1% 27.2 17.5 0.000

13 other models

IV:YZ (4 models) 1 7.86 4 14.0 0.007 7.6% 6.0 -3.7 0.007

IV:Z 0 7.98 0 0.0 1.000 0.0% 0.0 0.0 0.000

Model selection criteria

i. Best Model(s) by ∆BIC:

   IV:XZ 1 7.66 4 36.9 0.000 0.1999 28.9 19.2 0.000

ii. Best Model(s) by %I with p < 0.05 and also all pincr  < 0.05:

   IV:XZ:YZ 2 7.53 8 51.9 0.000 0.2811 35.9 16.4 0.000

iii. Best Model(s) by ∆AIC:

   IV:XZ:YZ:MZ 3 7.46 12 60.3 0.000 32.7% 36.3 7.1 0.077

iv. Best Model(s) by %I with p < 0.05:

   IV:XZ:YZ:MZ 3 7.46 12 60.3 0.000 32.7% 36.3 7.1 0.077

Table 8. b-systems variable-based model search for gene KIF1B
Models are directed systems.  “(n models)” means n equivalent models, not listed. LR and p are likelihood ratio and signifi-
cance relative to the IV:Z reference; pincr is incremental significance relative to the immediate model ‘ancestor’. Good models 
have low H, ∆df, p, pincr, and high ∆LR, %I, ∆AIC, ∆BIC.
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which each incremental df increase from independence is 
also statistically significant (pincr<.05).  This “path-significance” 
criterion selected best models of the form, IV:XZ:YZ, which 
has a loop, where X is as above and Y is any one of the {G, H, I, 
J, K, L} SNPs, all in gene OLA1 and also in strong LD with one 
another.  IV:OZ:GZ was arbitrarily chosen to represent this set 
of b-systems models.  The two less conservative criteria, (iii) 
AIC, and (iv) cumulative but not also incremental significance, 
being more vulnerable to false positives, were not considered. 
The b-systems search thus yields two models IV:OZ and 
IV:OZ:GZ (and their equivalents).  The SNPs represented by 
X and Y (and M in IV:XZ:YZ:MZ) are listed in Table 9. That the 
X variables are in strong LD with one another, as are the Y 

variables, is shown by an OCCAM neutral system run that 
looks only for associations between the SNPs (it drops the 
DV); this calculation yields the X and Y clusters.  Also, in a 
directed system calculation where the DV is O or G, the 
other SNPs in each group maximally predict (%I=100%) 
their representative SNP.

Table 10 shows f(OG), the average expression for the 
OG states in the data, and fb1(OG), fb2(OG), and fb3(OG), the 
expected-value reconstructions of three variable-based 
b-systems models (detailed results not shown), with their 
R2 and rms-deviations relative to f(OG).  This calculation only 
deleted cases where data was missing for O or G, so here 
N=187.  fb1 and fb2 are the reconstructed functions for IV:OZ 
and IV:OZ:GZ, the best models in the search shown in Table 8 
according to BIC and path-significance criteria, respectively.  
fb3 is the reconstructed function for a triadic variable-based 
interaction between O, G, and Z.  In the terminology of the 
earlier RA study of epistasis [2], IV:OGZ is Type 1 epistasis, 
the strongest type; IV:OZ:GZ is Type 2 epistasis, a weaker 
type.  IV:OZ, having only one SNP predictor, is not epistatic 
at all.  All three of these b-systems models agree well with 
the data, and the only slight improvement in R2 (from 0.904 
to 0.913 or 0.917) by adding G as a predictor (either via Type 
2 or Type 1 epistasis) suggests that this addition may not 
be warranted, even though this addition was incrementally 
significant in the initial b-systems search (model IV:XZ:YZ 
in Table 8).

Table 10 also indicates the results of expected value 
reconstructions of two state-based b-systems models.  
The state-based analysis is shown in Table 11.  State-based 
b-systems models are slightly better (higher R2 and/or lower 
∆df) than variable-based b-systems models.  Note that 
adding the fourth state (going from model #4 to #5), in bold, 
which indicates an epistatic interaction, is incrementally 
(and cumulatively) significant.

Step 2.1: k-systems analysis. Table 10 above includes 
models #3 and #4 from a k-systems analysis whose results are 
given below in Table 12.  The first state selected (model #2) 
was O2, whose average expression value is notably different 
from the other two O states.  This state alone embodies 91.4% 
of the data. The second state selected (model #4) was O0, 

X SNPs Y SNPs

N rs946501 G rs6433464

O rs9332414 H rs11674895

P rs17034643 I rs10195413

Q rs121242 J rs4972643

R rs12120191 K rs10930654

L rs4144329

M rs1995969

b-systems k-systems

variable-based state-based state-based

O G f fb1 fb2 fb3 fb4 fb5 fk3 fk4

0 0 2.34 2.40 2.36 2.37 2.39 2.36 2.39 2.39

0 1 2.41 2.40 2.41 2.40 2.39 2.40 2.39 2.39

0 2 2.41 2.40 2.40 2.40 2.39 2.40 2.39 2.39

1 0 2.21 2.22 2.20 2.19 2.22 2.22 2.25 2.25

1 1 2.28 2.22 2.24 2.25 2.22 2.22 2.25 2.25

1 2 2.25 2.22 2.19 2.19 2.22 2.22 2.25 2.25

2 0 1.84 2.04 2.03 2.04 2.04 2.04 1.84 1.87

2 1 1.90 2.04 2.04 2.04 2.04 2.04 1.84 1.87

2 2 1.76 2.04 2.03 2.00 2.04 2.04 1.84 1.76

rms-dev 0.124 0.121 0.117 0.125 0.124 0.041 0.029

R2 0.904 0.913 0.917 0.905 0.915 0.970 0.985

∆df 4 8 16 3 4 2 3

reference for 
∆df OG:Z uniform

models b1=OG:OZ     b2=OG:OZ:GZ     b3=OGZ k3=O

b4 = OG:Z:O0Z0:O2Z0:O1Z2 k4=O:O2:G2

b5 = OG:Z:O0Z0:O2Z0:O1Z2:O0G0Z1

Table 9. SNPs in models selected
The SNP that represents the LD group is in bold

Table 10. b- and k-systems reconstructions for gene KIF1B
fb1-fb3 are reconstructed functions for variable-based b-systems 
analyses, whose details are not included. fb4 and fb5 are reconstructed 
functions from b-systems models #4 and #5 in Table 11. fk3 and fk4 are 
for k-systems models #3 and #4 in Table 12

Model H %I ∆df p pincr

7 OGZ 4.128 100.0% 16 0.000 0.879

6 OG:Z:O0Z0:O2Z0:O1Z2:O0G0Z1:O2G0Z1
4.151 93.4% 5 0.000 0.164

5 OG:Z:O0Z0:O2Z0:O1Z2:O0G0Z1
4.158 91.3% 4 0.000 0.046

4 OG:Z:O0Z0:O2Z0:O1Z2
4.174 86.8% 3 0.000 0.026

3 OG:Z:O0Z0:O2Z0
4.193 81.3% 2 0.000 0.000

2 OG:Z:O0Z0
4.273 58.3% 1 0.000 0.000

1 OG:Z 4.475 0.0% 0 1.000 1.000

Table 11. State-based b-systems analysis of KIF1B
Variable-based models are in italics.  Models are directed systems.
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which increases %I by about 5%.  The two state model O2:O0 
is equivalent to the variable based model, O, since df(O)=2.  
The third state selected (model #4) was O2G2, indicating an 
epistatic interaction affecting KIF1B transcription involving a 
SNP (O) in that gene and a SNP (G) in a different gene, OLA1, 
but this increases %I only by about 2%, which undermines 
confidence in the reality of this epistatic effect. Since k-systems 
analysis is non-statistical, these findings can only be validated 
by tests in new data.

Step 2.2: Table 13 shows the u-systems analysis of 
this data.  State-based model #3, namely OG:Z:O2Z1:O1Z1, 
is equivalent to variable-based u-systems model OG:OZ, 
since O0Z1 is determined by the known states, O2Z1 and O1Z1 
(because Z1 is known from the Z component) and knowing 
all OjZ1 probabilities determines also the OjZ0 probabilities 

Model H %I ∆df

6 OG 3.16090 100.0% 8

5 O2:O0:O2G2:G0 3.16091 99.9% 4

4 O2:O0:O2G2 3.16103 98.6% 3

3 O2:O0 = O 3.16119 96.8% 2

2 O2 3.16168 91.4% 1

1 uniform 3.16993 0.0% 0

Table 12. State-based k-systems analysis for KIF1B
Variable-based models are in italics.  Models are neutral systems.  
Model #6 is the data.  The reconstructed function for models #3 and 
#4 are shown above in Table 10

Model H %I ∆df

7 OGZ 3.636 100.0% 8

6 OG:Z:O
2Z1:O1Z1:O2G2Z1:O0G0Z1:G1Z1 3.640 99.1% 5

5 OG:Z:O2Z1:O1Z1:O2G2Z1:O0G0Z1 3.645 98.2% 4

4 OG:Z:O2Z1:O1Z1:O2G2Z1 3.660 95.2% 3

3 OG:Z:O2Z1:O1Z1 = OG:OZ 3.683 90.6% 2

2 OG:Z:O2Z1 3.735 80.1% 1

1 OG:Z: 4.137 0.0% 0

Table 13. State-based u-systems analysis for KIF1B
Variable-based models are in italics.  Models are directed systems.  
Model #7 is the data.  The reconstructed functions for models #2 and 
#3 are the same as fk2. and fk3 in Table 10.

b k u

5 O2G0Z1 O1G2 G1Z1

4 O0G0Z1 G0 O0G0Z1

3 O1Z2 O2G2 O2G2Z1

2 O2Z0 O0 O1Z1

1 O0Z0 O2 O2Z1

Table 14. Sequence of added states in b-, k-, and u-systems analy-
ses of KIF1B data

(because O is known from OG).  Not surprisingly, therefore, the 
reconstructed function for this u-systems model is identical to 
that of the k-systems model #3, O.  As in state-based k-systems 
analysis, the third added state, O2G2Z1, posits an epistatic 
interaction, increasing %I by 4.6%, a slightly greater increase 
than observed in the k-systems analysis.  This added state is in 
fact the same as what is added in the k-systems search, since 
O2G2Z1 determines also O2G2Z0 (because O2G2 is known from 
the OG component).  Again, not surprisingly, the function 
reconstructed for this u-systems model is identical to that of 
k-systems model #4, O:O2G2.  Beyond ∆df=3, however, u- and 
k-analyses diverge, but since R2 for df=3 models is already 
0.985, more complex models are not included in Table 10.  
The states added in b-, k-, and u-analyses are listed in Table 14.

In summary, b-systems analysis, both variable- and 
state-based, suggests an epistatic effect between O and G, 
supported by incremental significance of the models, but 
k-systems analysis –  and perhaps also u-systems analysis –  
casts some doubt upon this.  Since k- and u-systems analyses 
treat function values exactly, and in state-based models with 
great precision, their implications carry some weight.  The 
point of these analyses, however, is not to ascertain whether 
there is an OG epistatic effect on KIF1B gene expression or 
not.  The point is merely to illustrate the methodology of this 
continuous RA approach as applied to gene expression data; 
specifically to show that k- and u-systems approaches can 
reconstruct functions more accurately than the b-systems 
approach.  A secondary purpose here is to demonstrate 
that state-based RA is more powerful than variable-based 
RA, which is strikingly shown by the HY analyses but also 
evidenced in the KIF1B analyses.

Discussion & Conclusions
This paper demonstrates the use of RA to analyze continuous 
functions, as opposed to frequency or probability distributions, 
and advances the methods for doing so.  In tests on a simple 
function used in an earlier study on classifying epistasis [21] 
and on real data [22], k-systems and u-systems analyses yield 
similar but slightly different results, and have comparable 
modeling efficacy.  The relative merits of these two non-
standard RA approaches to decomposing functions, and their 
suitability for different data contexts, need to be explored 
further.  In future software development, parallelization of 
the software will make possible the application of RA to 
GWAS.  After this is done, the number of SNPs that RA can 
analyze will depend on the type of model.  For loopless 
models, which have closed form solutions, 100,000s of SNPs 
could be considered; for variable-based models with loops, 
which require iterative methods, perhaps 1000s (certainly 
100s); for state-based models, perhaps 100s (certainly 10s).

Since RA can model epistasis in frequency (and probability) 
distributions [1,2], and also detect LD, and since k- and 
u-systems variants of RA can be usefully applied also to 
functions obtained in studies of gene expression, RA 
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constitutes a flexible and powerful modeling methodology 
for the study of epistasis.  A variety of other approaches have 
been applied to modeling epistasis in gene expression [23-
28].  Comparing RA to other approaches is beyond the scope 
of this paper, and will be the subject of future studies, but 
advantages of RA over some other methods can be stated 
briefly: (i) RA can be used for both nominal data and continuous 
function applications; this allows one to work within a single 
mathematical/computational framework, while some other 
methods are specific to only one these two applications; (ii) 
RA has three levels of refinement – coarse (variable-based 
models without loops), fine (variable-based models with 
loops), and ultra-fine (state-based models); this allows one 
to move smoothly within a single framework from broad 
search, e.g., GWAS, involving very many variables to ultra-
fine analysis that focuses on only a few, while some other 
methods (e.g., [21]) are specific to one of these situations; 
(iii) RA explicitly considers the space of possible models in 
its use of hypergraphs, and is thus especially designed for 
exploratory searches, while some other methods are primarily 
confirmatory, and require the user to specify the models to 
be considered; (iv) Even where RA overlaps with – and to 
the extent of the overlap is obviously not superior to – other 
methods, it has distinctive features, so it complements these 
other methods (see, e.g., the discussion of RA vs. Bayesian 
networks and other graphical models in [2]).
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