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Several groups have proposed the state-space approach to tracking time-varying frequencies of multiharmonic quasiperiodic
signals. The extended Kalman filter/smoother (EKF/EKS) is one of the common frequency tracking approaches seen in the
literature. We introduce a multiharmonic frequency tracker based on the forward-backward statistical linearized Sigma-Point
Kalman smoother (FBSL-SPKS) and compare its performance to that of the extended Kalman smoother (EKS). In all cases the
FBSL-SPKS tracker outperformed the EKS tracker over a wide range of signal-to-noise (SNR) ratios. We also demonstrate its
superior performance on real signals.

1. Introduction

Many natural signals contain nearly periodic rhythms with
slowly varying morphologies. Example signals with this
property include tremor, speech, electrocardiogram (ECG),
and arterial blood pressure (ABP). In many applications the
instantaneous frequency (IF) of these signals contains useful
information for further analysis.

Many signal processing methods have been applied to the
problem of multiharmonic frequency tracking in quasiperi-
odic signals. Especially, the pitch tracking in the speech
signal analysis is one of the most common applications of
multiharmonic frequency tracking. Pitch detection/tracking
algorithms can be roughly categorized into three groups:
time-domain methods such as zero-crossing, frequency-
domain methods, and time-frequency-domain methods. All
pitch tracking methods apply the frame-by-frame analysis
due to the nature of human voice [1]. Recently Tabrikian et
al. proposed the maximum a posteriori (MAP) probability
pitch tracking method using harmonic model [2]. They
implemented the MAP estimator by a dynamic program-
ming procedure based on measurement collected over several
frames. However, these frame-by-frame based algorithms are
always not applicable especially when a local signal stationar-
ity cannot be assumed. There are other methods that have

been applied to track rhythmicity (harmonic components)
in nonstationary quasiperiodic signals based on adaptive
schemes [3]. The advantage of using these adaptive schemes
is that one can track rhythmicity (frequencies) recursively as
signal samples are acquired.

In this paper we use a Fourier series representation,
which is shown in (1) Section 2.1, of multiharmonic
quasiperiodic signals in which the amplitudes, phases, and
frequencies are allowed to change slowly over time. The
application of state space methods to continuously track the
amplitudes, phases, and frequencies was pioneered by Parker
and Anderson in [4] with many subsequent investigations
[5–9]. Recently there have been several proposed methods
based on particle filters [10, 11] which are highly computa-
tionally intensive and hence practically intractable.

The Kalman filter (KF) recursively estimates the optimal
state of a linear state space system driven by Gaussian noise
by minimizing the MSE [12]. However, it cannot be applied
directly to frequency tracking because our state space model
has nonlinearity due to the relationship between frequencies
and observed signals. There are many types of generalizations
of the KF for the case of a nonlinear state space model. The
extended Kalman filter (EKF) uses a local linear approxima-
tion of the model. The algorithm is relatively simple and
faster than other generalizations of the KF because it relies
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on a first-order Taylor series approximation of the nonlinear
system around the estimate of the current state. The Sigma-
Point Kalman filter (SPKF) is another generalization to
nonlinear state-space models, which includes the Unscented
Kalman filter (UKF) [13], Central Difference Kalman filter
(CDKF) [14], and their square-root variants [15]. Like the

EKF, the SPKF approximates the state distribution by a
Gaussian Random Variable. The SPKF uses a deterministic
sampling approach to approximate the probability density
of the state-error and noise covariances by a set of carefully
chosen sample points known as sigma-points. These sigma-
points are chosen in such a way that they completely capture
the mean and covariance of the corresponding densities.
These sigma-points are then propagated through the true
nonlinear system, with the posterior mean and covariance
estimated using simple weighted averaging. This approach
captures the posterior mean and covariance accurately
to the 2nd order (3rd order is achieved for symmetric
distributions) compared to EKF which only achieves 1st-
order accuracy. Another advantage of the SPKF over other
Kalman generalizations is that it maintains the same order of
computational complexity as the EKF.

The Kalman smoother (KS) is a noncausal version of the
KF. Typically, smoothers can achieve better estimates than
filters since they deal with more measurements with proper
design. We proposed a tremor frequency tracking method
utilizing the extended Kalman smoother (EKS) in [16, 17].
However, we are unaware of any literature that investigates
the estimation accuracy of smoothers in the multiharmonic
frequency tracking application.

Forward-backward statistical linearized sigma-point
Kalman smoother (FBSL-SPKS), which is recently proposed
in [18], presents a new formulation for nonlinear smoothing
using Sigma-Point Kalman filtering method. The derivation
of the FBSL-SPKS is obtained by making use of the
relationship between the SPKF and weighted statistical linear
regression (WSLR). WSLR takes into account both the mean
and covariance of the prior distribution to pseudolinearize
the nonlinear dynamics. Therefore, it is more accurate than
the first-order Taylor series-based linearization approach,
which completely neglects the prior covariance at the
point of linearization. In [18], the FBSL-SPKS is shown to
obtain superior estimates than the EKS in general. To our
best knowledge, however, the head-to-head performance
comparison between the EKS and SPKS has not been
made explicitly for the multiharmonic frequency tracking
application. Especially, FBSL-SPKS has never been applied to
any practical applications such as multiharmonic frequency
tracking.

The first objective of our study was to implement two
multiharmonic frequency trackers utilizing the EKS and
FBSL-SPKS and demonstrate their feasibility of tracking the
frequency of multiharmonic signals. The second objective
was to compare the performance of the EKS and FBSL-
SPKS trackers based on the Monte Carlo simulations and
real biomedical signals. We used three performance metrics
to quantify different aspects of the multiharmonic tracking
performance. We only examined the smoothers since our

work was focused on an offline analysis of prerecorded
signals.

2. Methodology

We apply two nonlinear smoothing schemes using the EKF
and SPKF approaches for multiharmonic frequency tracking
problem. The EKF-based smoother, that is, the EKS, has
many mathematically equivalent expressions. Here, we use a
variant similar to that developed in [19] (see [20, page 374]).
The nonlinear SPKF-based smoother was derived from the
first principle in [18] and is referred as the FBSL-SPKS.
The FBSL-SPKS is a fixed interval smoother, which uses two
independent forward and backward filters for smoothing.
The standard SPKF is used as a forward filter. The backward
filter requires the inverse dynamics of the forward filter.
While the EKS can easily invert the Taylor series based
linearized dynamics, the SPKS requires a new approach to
linearize the forward nonlinear dynamic model. There are
two major variants of SPKS available in the literature which
can solve this problem in a roundabout way. In [21], the
inverse dynamic model was learned from the data by training
a backward nonlinear predictor (e.g., neural network). The
major disadvantages of this method are that it is application
and data specific and requires a learning phase. Recently an
Unscented Rauch-Tung-Striebel- (URTSS-) based smoother
was proposed in [22], where a joint distribution of the
current and future state is maintained in order to smoothen
the current state. This method requires more computation
due to doubling of the state dimension.

The FBSL-SPKS introduced a direct and straightforward
formulation for forward-backward smoothing [18]. Instead
of learning a backward dynamical model from the data,
the proposed smoother (FBSL-SPKS) makes use of weighted
statistical linear regression (WSLR) formulation of SPKF
(see [18] for details). WSLR is a linearization technique
that takes into account the uncertainty of the prior random
variable when linearizing the nonlinear model. In this
way, WSLR is more accurate in the statistical sense than
the first-order Taylor series-based linearization employed
by the EKF which only considers the mean of the prior
densities while linearizing. By representing the forward
nonlinear dynamics in terms of WSLR, a linear backward
filter was derived from first principle in [18]. The forward
and backward estimates were then statistically combined to
obtain a smoothed estimate. This newly proposed FBSL-
SPKS performed comparably with the smoothers presented
in [21, 22] but with higher computational efficiency and ease
of implementation.

2.1. State Space Model. We use boldface notation to denote
random processes, normal face for deterministic parameters,
upper case letters for matrices, lower case letters for vectors
and scalars, and subscripts for time indices. The observed
signal is denoted as yn where n = 0, . . . ,N represent discrete
time.

Our state space model is based on the one proposed in [4]
with some modifications. The measurement model is based
on a Fourier series representation in which the amplitudes,
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phases, and frequencies are allowed to change slowly over
time. It can be expressed as

yn = sn + vn

= h(xn) + vn

=
m∑

k=1

ak,n cos(kθn) + bk,n sin(kθn) + yn + vn,

(1)

where m is the number of the harmonics assumed to
be known, θn the instantaneous angle, ak,n and bk,n the
amplitudes of the kth harmonic sinusoidal components, yn
the trend of yn, and vn is a white noise process with zero-
mean and variance r. The instantaneous angle θ is modeled
as

θn =
n∑

i=1

2πTsfi =
n∑

i=1

2πTs

(
ξ i + f

)

=
n∑

i=1

2πTsξ i +
n∑

i=1

2πTs f = φn + 2πTsn f ,

(2)

where f is the mean frequency, ξn is the difference between
the instantaneous frequency fn and the mean frequency f , φn
the accumulative sum of ξn, and Ts the sample interval. This
is one of the major differences between our state-space model
and the one proposed in [4]. This modification was necessary
because the FBSL-SPKS requires the state variables to have
zero mean. Since φn is the accumulative sum of ξn = fn − f ,
its mean is zero. This increases numerical stability and makes
it easier to invert the model for the backward filter.

Each state-space variable was modeled as follows:

φn+1 = φn + 2πTsγn + uφ,n,

γn+1 = αγn + (1− α)uγ,n,

ak,n+1 = ak,n + ua,n,

bk,n+1 = bk,n + ub,n,

yn+1 = yn + uy,n,

(3)

where γn is the fluctuating component in φn, α an autore-
gressive (AR) process coefficient of γn, and u·,n mutually
uncorrelated white noise processes. A value of α = 1 results
in a random walk model of φn and α = 0 results in a white
noise model. The variance q of u·,n determines how quickly
the parameters are expected to change over time.

The state vector xn is defined as

xn =
[
φn γn a1,n, . . . , am,n b1,n, . . . , bm,n yn

]T
. (4)

Then, the state-space model can be written as follows:

xn+1 = f (xn) + un, (5)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,n + 2πTsx2,n

αx2,n

x3,n

...

x2m+2,n

x2m+3,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,n

u2,n

u3,n

...

u2m+2,n

u2m+3,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

yn = h(xn) + vn, (7)

where f (·) and h(·) are the linear state transition and
nonlinear observation functions, respectively.

2.2. EKS Frequency Tracker Recursions

2.2.1. Forward Updates. The filtered and predicted state
estimates can be computed directly from the well-known
EKF recursions, which can be found in [20]. In the
recursions, the derivatives of the state transition function
fn(x) and observation function hn(x) have to be computed
as part of time-update and measurement-update equations,
respectively. They can be expressed as follows.

(i) Derivative of fn(x) for time-update equations is

Fn =
∂ fn(x)
∂x

∣∣∣∣∣
x=x̂n|n

,

Fn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2πTss′
[

x̂2,n|n
]

0 0 · · · 0

0 αs′
[

x̂2,n|n
]

0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

(ii) Derivative of hn(x) for measurement-update equa-
tions is

Hn = ∂hn(x)
∂x

∣∣∣∣
x=x̂n+1|n

,
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Hn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑

k=1

− âk,n+1|nk sin(kθ) + b̂k,n+1|nk cos(kθ)

0

cos(θ)

...

cos(mθ)

sin(θ)

...

sin(mθ)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(9)

The further detail of the EKF recursions can be found in [20].

2.2.2. Smoothing. There are many mathematically equivalent
expressions for the extended Kalman smoother (EKS). Here
we use a variant similar to that developed in [19] (see [20,
page 374]). The backward recursive update equations for the
EKS start with initialization at time N such as

ψN+1|N = 0, (10)

where ψ is called the adjoint variable. The smoothed
estimates can then be computed as follows.

(i) Backward-update equations are

Kp,n =
(
FnPn|n−1H

T
n

)
r−1
e,n ,

ψn|N =
(
Fn −Kp,nHn

)T
ψn+1|N +HT

n r
−1
e,nen,

x̂n|N = x̂n|n−1 + Pn|n−1ψn|N .

(11)

2.3. SPKS Multiharmonic Frequency Tracker Recursions. Our
proposed FBSL-SPKS uses a forward-backward approach. A
standard SPKF is run in the forward direction using the
nonlinear model shown in (5) and (7). A backward filter then
computes the estimates operating on the inverse dynamics
of the forward filter. WSLR formulation as described below
is used to pseudolinearize the nonlinear state-space model
so that it is inverse can be computed. The forward and
backward estimates are then optimally combined to generate
the smoothed estimates. In order to better understand
the equations of FBSL-SPKS, first we describe how SPKF
performs an inherent linearization called WSLR, which
considers both the mean and covariance of the prior random
variable (RV) at the point of linearization.

(ii) Weighted Statistical Linear Regression (WSLR) is as
follows.

Consider a prior RV x which is propagated through a
nonlinear function g(x) to obtain a posterior RV y. Sigma-
points χi, i = 0, 1, . . . , 2M are selected as the prior mean x

plus and minus the columns of the square root of the prior
covariance Px:

χ =
[

x x + γ
√

Px x − γ√Px

]
, (12)

where M is the RV dimension and γ is the composite scaling
parameter. The sigma-points set χ completely captures the
mean x and the covariance Px of the prior RV x:

x =
2M∑

i=0

wiχi,

Px =
2M∑

i=0

wi

(
χi − x

)(
χi − x

)T
,

(13)

where wi is the normalized scaler weight for each sigma-
point. Each prior sigma-point is propagated through the
nonlinearity to form the posterior sigma-points set γi:

γi = g
(
χi

)
i = 0, 1, . . . , 2M. (14)

The posterior statistics can then be calculated using weighted
averaging of the posterior sigma-points,

ŷ =
2M∑

i=0

wiγi,

P̂x =
2M∑

i=0

wi

(
γi − ŷ

)(
γi − ŷ

)T
,

P̂xy =
2M∑

i=0

wi

(
χi − x

)(
γi − ŷ

)T
.

(15)

An alternate view is to consider the estimates arising from the
sigma-point approach as a weighted statistical linearization
of the nonlinear dynamics:

y = g(x) ∼= Ax + b + ε, (16)

where A and b are the statistical linearization parameters and
can be determined by minimizing the expected mean square
error which takes into account the uncertainty of the prior
RV x. Defining J = E[εTWε] is the expected mean square
error with sigma-point weighting matrix W:

[A, b] = arg min J

= arg min
(

E
[
εTWε

])
.

(17)

The true expectation can be replaced as a finite sample
approximation:

E
[
εTWε

]
=

2M∑

i=0

wiεTi εi, (18)

where the point wise linearization error is εi = γi − Aχi − b.
Now taking partial derivative on J with respect to b we obtain

∂J

∂b
= 0. (19)
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By substituting J with (g(x)− Ax − b)TW(g(x)−Ax−b) the
equation can be rewritten as follows:

∂
[(
g(x)− Ax − b

)TW
(
g(x)− Ax − b

)]

∂b
= 0. (20)

After cross multiplication and differentiation, (20) simplifies
to

E
[

W
(
g(x)− Ax − b

)] = 0 (21)

Solving for b from (21) we get

b = E
[
g(x)

]− AE[x],

b = ẑ− Ax.
(22)

Substituting the value of b obtained in (22) into J and taking
the partial derivative with respect to A we get

∂J

∂A
= 0. (23)

Then, the equation can be rewritten as

∂
[(
g(x)− ẑ− A(x− x)

)TW
(
g(x)− ẑ− A(x − x)

)]

∂A
= 0.

(24)

Cross multiplication and differentiation with respect to A on
(24) provides

E
[

W
[

Ax̃x̃T +
(
g(x)− ẑ

)
x̃T
]]
= 0, (25)

where x̃ = (x − x); solving for A from (25) we get

A = E
[

(x − x)(z− ẑ)T
]T
E
[

(x− x)(x− x)T
]−1

= P̂T
xzP−1

x ,
(26)

where the prior mean (x) and covariance (Px) are calculated
in (13) from the prior sigma-points. Similarly, the posterior
mean (ẑ) and covariances (P̂z and P̂xz) are calculated from
the posterior sigma-points. The linearization error ε has zero
mean and covariance Pε which is defined as follows

Pε =
2M∑

i=0

wiεiεTi

=
2M∑

i=0

wi

[
γi −

(
Aχi + b

)][
γi −

(
Aχi + b

)]T

=
2M∑

i=0

wi

[
γi − Aχi − ẑ + Ax

][
γi − Aχi − ẑ + Ax

]T

=
2M∑

i=0

wi

[(
γi − ẑ

)
− A

(
χi − x

)]

×
[(
γi − ẑ

)
− A

(
χi − x

)]T

= P̂z − AP̂xz − P̂T
xzAT + APxAT .

(27)

Replacing P̂T
xz = APx from(26)

Pε = P̂z − APxAT − APxAT + APxAT

= P̂z − APxAT .
(28)

From (28), P̂z = APxAT + Pε, we observe that the covariance
of the linearization error Pε is added when calculating the
posterior covariance P̂z. The uncertainty feedback scheme is
very important especially when there is severe nonlinearity
over the uncertainty region of prior RV. First-order Taylor
series-based linearization employed by EKF often diverges
in highly nonlinear region as it only performs linearization
around the mean of the RV but neglects this error term. In
general, the WSLR technique is an optimal way of linearizing
any nonlinear function in the minimum mean square error
(MMSE) sense as this approach explicitly takes into account
the prior RV statistics (e.g., mean and covariance).

To form the SPKF estimator, we consider the nonlinear
state-space model:

xn+1 = fn(xn, un),

yn = hn(xn, vn),
(29)

where xn ∈ RM is the state, yn ∈ RP is the observation
at time index n, un and vn are Gaussian distributed process
and observation noises, f (·) is the nonlinear dynamic model
and h(·) is the nonlinear observation model function. The
process and observation noise has zero mean and covariances
Qn and Rn, respectively. The SPKF is then derived by
recursively applying the sigma-point selection scheme shown
above at every time index to these dynamic equations (see
[13] for more details).

Alternatively, we may form the statistically linearized
state-space using the WSLR technique:

xn+1 = A f ,nxn + b f ,n + G f ,nun + G f ,nε f ,n,

yn = Ah,nxn + bh,n + vn + εh,n,
(30)

where A f ,n, Ah,n, b f ,n, and bh,n are the statistical linearization
parameters and ε f ,n, εh,n are the linearization error with
mean zero and covariance Pε f ,n and Pεh ,n. All the parameters
can be obtained by applying (22) and (26) iteratively at each
time index n. Deriving the KF using the linearized state-space
shown in (30) also leads to SPKF (see [21]). This statistically
linearized form allows to form the dynamics of the backward
filter used in forward-backward smoothing approach. As the
statistically linearized state space shown in (30) is different
from the standard linear state space used by the Kalman
filter, the detailed derivation of the FBSL-SPKS which is
demonstrated in the next sections needs to be done from the
first principle. The pseudocode for the FBSL-SPKS can now
be specified as follows.

2.3.1. Forward Updates. A standard SPKF is used as the
forward filter. The task of the SPKF is to estimate xn at
time index n given all past and current measurements. The
SPKF recursions, which operates on the nonlinear state-
space model defined in (29), are written below with WSLR.
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(i) Initialization:

x̂0|0 = E
[

x0|0
]
,

Px0|0 = E
[(

x0|0 − x̂0|0
)(

x0|0 − x̂0|0
)T],

x̂a0|0 = E
[

xa0|0
]
=
[

x̂T0|0 ûT0|0 v̂T0|0
]T

,

Pa
x0|0 =

[(
xa0|0 − x̂a0|0

)(
xa0|0 − x̂a0|0

)T]
,

=

⎡
⎢⎢⎢⎢⎣

Px0|0 0 0

0 Q 0

0 0 R

⎤
⎥⎥⎥⎥⎦
.

(31)

(ii) Calculation of sigma-points:

χan|n =
[

x̂an|n x̂an|n +Λ x̂an|n −Λ
]

, (32)

where Λ =
√

(L + λ)Pa
xn|n .

(iii) Time-update equations:

χx
i,n+1|n = fn

(
χx
i,n|n, χu

i,n|n
)

i = 0, 1, . . . , 2L,

x̂n+1|n =
2L∑

i=0

w(m)
i χx

i,n+1|n,

Pxn+1|n =
2L∑

i=0

2L∑

j=0

w(c)
i j

(
χx
i,n+1|n − x̂n+1|n

)

×
(
χx
j,n+1|n − x̂n+1|n

)T
.

(33)

(iv) Weighted Statistical Linearization of f (·):

Pxn|n,xn+1|n =
2L∑

i=0

2L∑

j=0

wc
i j

(
χx
j,n|n − x̂n|n

)

×
(
χx
i,n+1|n − x̂n+1|n

)T
,

A f ,n = PT
xn|nxn+1|nP−1

xn|n ,

b f ,n = x̂n+1|n − A f ,nx̂n|n,

Pε f ,n = Pxn+1|n − A f ,nPxn|nAT
f ,n.

(34)

(v) Measurement-update equations:

γi,n+1|n = hn
(
χx
i,n+1|n, χv

i,n|n
)

i = 0, 1, . . . , 2L,

ŷn+1|n =
2L∑

i=0

w(m)
i γi,n+1|n,

Pỹn+1|n =
2L∑

i=0

2L∑

j=0

w(c)
i, j

(
γ j,n+1|n − ŷn+1|n

)

×
(
γi,n+1|n − ŷn+1|n

)T
,

Pxn+1|n,yn+1|n =
2L∑

i=0

2L∑

j=0

w(c)
i, j

(
χx
j,n+1|n − x̂n+1|n

)

×
(
γi,n+1|n − ŷn+1|n

)T
,

Kn+1 = Pxn+1|nyn+1|nP−1
ỹn+1|n ,

x̂n+1|n+1 = x̂n+1|n + Kn+1
(

yn+1 − ŷn+1|n
)
,

Pxn+1|n+1 = Pxn+1|n −Kn+1Pỹn+1|nKT
n+1.

(35)

(vi) Weighted Statistical Linearization of h(·):

Ah,n = PT
xn+1|nyn+1|n

(
Pxn+1|n

)−1
,

bh,n = ẑn+1|n − Ah,nx̂n+1|n,

Pεh,n = Pỹn+1|n − Ah,nPxn+1|nAT
h,n,

(36)

(vii) where

xa =
[

xT uT vT
]T

,

χa =
[

(χx)T (χu)T (χv)T
]T

,

Pa
xn|n =

⎡
⎢⎢⎢⎣

Pxn|n 0 0

0 Q 0

0 0 R

⎤
⎥⎥⎥⎦.

(37)

(viii) Parameters: λ is the composite scaling parameter
which is given by

λ = α2(L + κ)− L (38)

where w(c)
i and w(m)

i are the scaler sigma-point
weights and they are defined as

w(c)
0 = λ

(L + λ)
+
(
1− α2 + β

)
, i = 0,

w(m)
0 = λ

(L + λ)
, i = 0,

w(c)
i = 1

2(L + λ)
, i = 1, 2, . . . , 2L,

w(m)
i = 1

2(L + λ)
, i = 1, 2, . . . , 2L,

(39)
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where α controls the size of the sigma-point distribution
and should be within 0 ≤ α ≤ 1 to avoid sampling
nonlocal points when the nonlinearities are strong [21].
β ≥ 0 is the weighting term which incorporates the higher-
order moments of the prior distribution. As generally sigma-
points can effectively capture the first 2 moments (mean and
covariance) of the distribution (for gaussian any symmetrical
sigma-points set also capture the third-order moment, i.e.,
skewness), the parameter β also can be used to minimize
the error of higher-order moments of the distribution due
to sigma-point approximation effects. For Gaussian prior,
β = 2 [13]. The parameter κ is used to make sure that
the positive definiteness of the covariance matrices and the
default choice of κ ≥ 0 should work for most of the cases.
L is the dimension of the augmented state; Q and R are the
process and observation noise covariances.

2.3.2. Backward Updates. An information filter is used to
estimate the states from the backward direction given all
the present and future measurements. As the statistically lin-
earized state-space is different from the standard linear state-
space used by the Kalman filter, the time and measurement
update equations had to be derived from the first principle
[18]. The backward filter recursion which operates on the
statistically linearized state-space shown in (30) is given as
fpllows.

(i) Initializations:

SN+1|N+1 = 0,

ẑN+1|N+1 = 0,
(40)

where Sn|n = (Pb
xn|n)

−1
is the information matrix and

ẑn|n = Sn|nx̂bn|n is defined as the information state.
The state estimate and error covariance matrix for
the backward filter can be denoted as x̂bn|n and (Pb

xn|n),
respectively.

(ii) Time-update equations:

Sn|n+1 = AT
f ,nSn+1|n+1A f ,n − AT

f ,nSn+1|n+1G f ,n

·
[(

Pε f ,n +Q
)−1

+ GT
f ,nSn+1|n+1G f ,n

]−1

·GT
f Sn+1|n+1A f ,n.

(41)

Define Kb,n as the backward gain matrix:

Kb,n = Sn+1|n+1G f ,n

[(
Pε f ,n +Q

)−1
+ GT

f ,nSn+1|n+1G f ,n

]−1

.

(42)

Then,

Sn|n+1 = AT
f ,n

(
I−Kb,nGT

f ,n

)
Sn+1|n+1A f ,n,

ẑn|n+1 = AT
f ,n

(
I−Kb,nGT

f ,n

)

·
(

ẑn+1|n+1 − Sn+1|n+1b f ,n

)
.

(43)

Table 1: Summary of user-specified design parameters.

Name Symbol Value

AR coefficient α 0.9987

Phase process noise variance qθ 10−5Ts
Frequency process noise variance q f 100Ts
Amplitude process noise variance qs 0.0002Ts
Average process noise variance qy 0.001Ts
Measurement noise variance r 1

Mean frequency f 100 Hz

Ts is a sample interval.

(iii) Measurement-update equations:

Sn|n = Sn|n+1 + Ah,n
(

Pεh ,n + R
)−1Ah,n,

en =
(

yn − bh,n
)
,

ẑn|n = ẑn|n+1 + Ah,n
(

Pεh,n + R
)−1en.

(44)

2.3.3. Smoothing. The SPKF is run in the forward direction
on the interval [0,N] to compute the forward posterior
estimates x̂n|n. The information filter is then run backwards
to form the prior backward estimates ẑn|n+1. The two esti-
mates are then optimally combined to obtain the smoothed
estimate x̂sn|n and corresponding covariance Ps

n|n.

Ps
n|n =

[(
Pxn|n

)−1
+ Sn|n+1

]−1

,

x̂sn|n =
(

I + Pxn|nSn|n+1

)−1
x̂n|n + Ps

n|nẑn|n+1.

(45)

3. Experiment

3.1. Synthetic Time-Variant Harmonic Signals. We generated
two sets of synthetic signals with time-variant harmonics
whose sample rate was fs = 2 kHz, mean frequency f =
100 Hz, and duration 3 s using (1)–(3). The first set of
synthetic signals contains the rhythmicity during the entire
3 seconds duration. The second set of synthetic signals
contains the rhythmicity only during the first and last one
seconds, 0-1 and 2-3 seconds. Between 1 and 2 seconds the
signals are simply white Gaussian noise. The second set of
synthetic signals mimics those signals whose rhythmicity is
intermittent.

3.2. Parameter Selection. Tables 1 and 2 list the user-specified
parameters that we used for the results and examples in this
paper. In [17] we demonstrated that the ratio (γ) between
the measurement noise variance and process noise variance
is the critical factor that affects the performance of the EKS
frequency tracker. We used the same value for the ratio
(γ = q f /r), which was 100. The other values such as qs and
qy were selected based on empirical results obtained during
the development of the multiharmonic frequency trackers.
The user-specified parameters were chosen for the best
performance of the EKS tracker [17]. We did not perform any
additional tuning process for the SPKS tracker. Therefore,
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(a) Spectrogram of a true signal with the estimated harmonics (white
lines) using the EKS frequency tracker
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(b) Spectrogram of a true signal with the estimated harmonics (white
lines) using the FBSL-SPKS frequency tracker

Figure 1: (a) EKS Frequency Estimate and (b) FBSL-SPKS Frequency Estimate. The black area in the spectrograms represents great power
concentrated in the corresponding frequency at a given time.
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(a) Spectrogram of residuals with the EKS frequency tracker
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(b) Spectrogram of residuals with the FBSL-SPKS frequency tracker

Figure 2: (a) EKS Estimation Error (NMSE = 8.56) and (b) FBSL-SPKS Estimation Error (NMSE = 7.53). The black area in the
spectrograms represents great power concentrated in the corresponding frequency at a given time. If the harmonic tracking is successful,
the black stripes in Figures 1(a) and 1(b) should be eliminated as shown in Figures 2(a) and 2(b). The EKS harmonic tracker does not track
the harmonic components appropriately in the rectangular box in Figure 1(a), which results in the black stripes left in the box as shown in
Figure 2(a).

Table 2: Synthetic signal generation parameters.

Name Symbol Value

AR Coefficient α 0.99999

Frequency process noise variance q f 0.2

Amplitude process noise variance qs 10−5

Mean frequency f 100 Hz

any bias incurred during the selection of the user-specified
parameters would favor the EKS tracker.

The SPKS multiharmonic frequency tracker has a few of
parameters that the EKS tracker does not have. Those param-
eters and their chosen values are described in Section 2.3.1.

3.3. Performance Measures. There are two main issues that
need to be addressed when comparing the performance of

frequency trackers: accuracy and lock-on time. The accuracy
quantifies how closely the tracker estimates the state. The
lock-on time is a measure of how quickly the tracker can
converge to the true state.

Depending on the application, the primary objective of
frequency tracking may be accurate tracking of an instanta-
neous frequency or “signal denoising”. When the rhythmicity
in a given signal is intermittent, it is also important that
the frequency tracker can regain its track of the intermittent
instantaneous frequency as quickly as possible [10].

We used three metrics to compare the accuracy and
speed of the EKS and FBSL-SPKS multiharmonic frequency
trackers. The first metric is the normalized mean-square-
error (NMSE):

NMSE =
∑N

n=1

(
sn − ŝn|N

)2

∑N
n=1 (sn − s)2 , (46)

where N is the signal duration.
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Figure 3: (a) NMSE versus SNR (b) NFMSE versus SNR. In the plots the shaded regions represent the 5th and 95th percentile ranges of the
NFMSE and NMSE, respectively.
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Figure 4: Convergence Speed (SFE(n) versus Time) at SNR =
−3. In this figure the shaded regions represent the 5th and 95th
percentile ranges of the SFE(n).

The second metric is normalized frequency mean-
square-error (NFMSE):

NFMSE =
∑N

n=1

(
fn − f̂n|N

)2

∑N
n=1

(
fn − f

)2 , (47)

where fn is the instantaneous frequency (IF), f̂n is the
estimated IF, and f is the mean IF. NFMSE has a natural
scale ranging from 0 to 1. A value NFMSE = 1 means
that the average accuracy of the estimated IF is no better
than simply using the mean IF as an estimate. Values of
NFMSE > 1 indicate poorer frequency tracking than a simple
mean estimator and those of NFMSE � 1 indicate accurate
frequency tracking.

The third metric is the square-frequency-error (SFE(n)),
which can be written as

SFE(n) =
(

fn − f̂n|N
)2
. (48)

When this metric is averaged over an ensemble of synthetic
signals, it visualizes how rapidly the trackers lock on to the
true frequency. In contrast to NMSE and NFMSE, SFE(n) is
a function of time that shows the squared difference between
the true IF and its estimate at a given time. For all of our
results we calculated the NFMSE, NMSE, and SFE(n) over
an ensemble of 300 synthetic signals.

4. Results and Discussion

4.1. Synthetic Signals. Two plots in Figure 1 show the
estimated multiharmonic frequencies using the EKS (a) and
FBSL-SPKS (b) trackers on top of the spectrogram of a syn-
thetic signal generated using (1)–(3) whose SNR was −3 dB.
At 1.1 s the EKS tracker lost track of the true frequency
because the estimated third harmonic started tracking the
fourth harmonic of the signal. The same situation occurred
toward to the end of the signal at 2.7 s. However, the FBSL-
SPKS tracker never lost its track of the true IT during
the entire signal duration. Two plots in Figure 2 show the
spectrograms of estimation residuals using the EKS (a) and
FBSL-SPKS (b) trackers. The residual spectrogram (a) in
Figure 2 depicts some harmonic structures between 1.1–1.7 s
and 2.7–3.0 s due to the estimation error of the EKS tracker.

Figure 3(a) shows NMSE versus SNR of the EKS and
FBSL-SPKS trackers. It demonstrates that the FBSL-SPKS
tracker can estimate the true signal better than the EKS
tracker over a wide range of SNR. Figure 3(b) depicts NFMSE
versus SNR of two multiharmonic trackers. The FBSL-SPKS
tracker outperformed the EKS tracker over the entire range
of SNR. The performance difference is larger at low SNR
values. This is probably due to a better approximation of the
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(b) FBSL-SPKS at SNR = −3

Figure 5: (a) Estimated frequencies using the EKS on top of an intermittent rhythmicity signal at SNR = −3. (b) Estimated frequencies
using the FBSL-SPKS on top of an intermittent rhythmicity signal at SNR = −3.
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(b) FBSL-SPKS residuals at SNR = −3

Figure 6: (a) Spectrogram of a residual signal using the EKS tracking of an intermittent rhythmical signal. (b) Spectrogram of a residual
signal using the FBSL-SPKS tracking of an intermittent rhythmical signal.
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Figure 7: (a) Estimated frequency using the EKS on top of the spectrogram of a photosensor insect activity signal. (b) Estimated frequency
using the FBSL-SPKS on top of the spectrogram of a photosensor insect activity signal.
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(a) EKS residuals (NMSE = 0.104)
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Figure 8: (a) Spectrogram of residuals using the EKS tracking of a photosensor insect activity signal. (b) Spectrogram of residuals using the
FBSL-SPKS tracking of a photosensor insect activity signal.
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Figure 9: (a) Estimated frequency using the EKS on top of the spectrogram of an ABP signal. (b) Estimated frequency using the FBSL-SPKS
on top of the spectrogram of an ABP signal.
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Figure 10: (a) Spectrogram of residuals of the EKS tracking of an ABP signal. (b) Spectrogram of residuals of the FBSL-SPKS tracking of an
ABP signal.
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state and error covariances with the sampling approach of the
FBSL-SPKS as compared to the local linearization approach
of the EKS.

Figure 4 depicts the SFE(n) of the two multiharmonic
trackers. It demonstrates that on average the FBSL-SPKS
tracker can regain its track of the true IF faster than the EKS
tracker.

Plots in Figure 5 show the estimated instantaneous
frequencies using the EKS and FBSL-SPKS trackers on top
of the spectrogram of a synthetic signal whose rhythmicity
is present only during 0-1 s and 2-3 s. The FBSL-SPKS
tracker started tracking the true IF accurately at 2.5 s while
the EKS frequency tracker failed to regain its track of
the true IF. Plots in Figure 6 show the spectrograms of
estimation residuals using the EKS Figure 6(a) and FBSL-
SPKS Figure 6(b) trackers. The EKS tracker barely started
tracking the true frequency toward the very end of the signal.
However it took only 0.4 seconds for the FBSL-SPKS to start
tracking the true frequency after the rhythmicity came back
at 2 seconds.

4.2. Real Signal Examples. We applied both trackers to two
different types of real signals: a photosenor insect activity
signal and an arterial blood pressure (ABP) signal. The
photosensor insect activity signal has a clear harmonic struc-
ture, which carries important entomological information.
The instantaneous frequency and the harmonic amplitudes
help entomologists determine what kind of insects flew over
the photosensor [23, 24]. The ABP signal also has many
harmonics by nature. Accurate tracking of the harmonics
in the ABP signal is critical to check a patient’s heart
condition. However, the ABP signal can often be noisy due to
signal drops and medical device interference. The following
example will demonstrate that the FBSL-SPKS harmonic
tracker is more robust to this type of noise than the EKS
harmonic tracker.

The sampling frequency of the photosensor insect activ-
ity signal was 16 kHz and its duration was 10s. Figures 7(a)
and 7(b) show the estimated harmonics using the EKS (a)
and FBSL-SPKS (b) multiharmonic trackers on top of the
spectrogram of a photosensor insect activity signal. Figures
8(a) and 8(b) are the spectrograms of estimation residuals
using the EKS and FBSL-SPKS, respectively. The NMSE
between the true and reconstructed bug signals using the
FBSL-SPKS was 0.038 while that using the EKS was 0.104.
The FBSL-SPKS tracker could track the harmonics during
the entire time period while the EKS tracker lost its track
between 2.3 s and 2.9 s, which is marked with two dark grey
bars. The performance difference may not be apparent in
Figures 8(a) and 8(b). However, the estimated harmonic
frequencies between two grey bars in Figure 7(a) show that
the slight error in fundamental frequency estimation results
in the complete mismatch of higher harmonic frequency
estimation. This result matches the simulation results shown
in Figure 3.

The ABP signal was sampled at 500 Hz and its duration
was 30 minutes. Figures 9(a) and 9(b) depict the estimated
harmonics using the EKS (a) and FBSL-SPKS (b) multi-
harmonic trackers on top of the spectrogram of an arterial

blood pressure (ABP) signal. Figures 10(a) and 10(b) are
the spectrograms of estimation residuals using the EKS and
FBSL-SPKS trackers, respectively. Figure 9 shows a typical
example of signal drops at 25 minutes, which is common
in ABP signals. While the EKS tracker could not regain its
track of the right frequencies after this signal drop, the FBSL-
SPKS tracker was able to regain its track. This result again
demonstrated that the FBSL-SPKS harmonic tracker is more
reliable than the EKS harmonic tracker.

5. Conclusion

We implemented the multiharmonic tracker using the
recently proposed FBSL-SPKS technique and made the head-
to-head performance comparison between the FBSL-SPKS
and EKS multiharmonic trackers based on synthetic and real-
world signals. Using three difference performance metrics,
we demonstrated that the FBSL-SPKS multiharmonic tracker
is more accurate and robust to noise than the EKS multihar-
monic tracker.
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