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A better nondimensionalization scheme for slender laminar flows:
The Laplacian operator scaling method

M. M. Weislogel,a� Y. Chen,b� and D. Bolleddulac�

Engineering Building, Room 401, Portland State University, 1930 SW 4th Avenue, Portland,
Oregon 97201, USA

�Received 30 October 2007; accepted 23 July 2008; published online 2 September 2008�

A scaling of the two-dimensional Laplacian operator is demonstrated for certain solutions �at least�
to Poisson’s equation. It succeeds by treating the operator as a single geometric scale entity. The
belated and rather subtle method provides an efficient assessment of the geometrical dependence of
the problem and is preferred when practicable to the hydraulic diameter or term-by-term scaling for
slender fully developed laminar flows. The improved accuracy further reduces the reliance of
problems on widely varying numerical data or cumbersome theoretical forms and improves the
prospects of exact or approximate theoretical analysis. Simple example problems are briefly
described that demonstrate the application and potential of the method. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2973900�

I. THE LAPLACIAN OPERATOR SCALING METHOD

Considering the Cartesian velocity field u= �u ,v ,w�, the
equation governing low-inertia, weakly time-dependent, and
predominantly z-directional flows is a Poisson equation de-
rived from the z-component momentum equation:

k = �w = � �2

�x2 +
�2

�y2 +
�2

�z2�w , �1�

subject to boundary conditions. As is often helpful, assuming
acceptable scales for x, y, z and k can be identified for the
problem, scale analysis may be performed on Eq. �1� to de-
termine the velocity scale for w with which Eq. �1� can in
turn be nondimensionalized. In situations where the “cross-
flow coordinates” x and y can be parametrized and scaled in
terms of z and t, it is proposed that such spatially and tem-
porally dependent length scales x� x̄s and y� ȳs with z�zs

=L may be employed to compute a spatially and temporally
dependent velocity scale w� w̄s. Provided the flow is slen-
der, �x̄s /L�2�1, treating � as a single scalable quantity such

that �� �̄s, “scale analysis” on Eq. �1� is performed to de-
termine

w � w̄s =
k

�̄s

�
k

1

x̄s
2 +

1

ȳs
2

�
kx̄s

2

1 + T̄sxy
2

, �2�

where T̄sxy = x̄s / ȳs. The overbar for x̄s and ȳs denotes local,
potentially z- and/or t-dependent x- and y-coordinate length
scales such that, in general x̄s= x̄s�z , t�, ȳs= ȳs�z , t�, L=L�t�,
k=k�z , t�, and thus w̄s= w̄s�z , t�. The method introduces a no-

tation �̄s for the local z- and t-dependent Laplacian operator
scale which is treated as its own term—a minor twist on the

more common and intuitive term-by-term scaling method.1

The “Laplacian scale” �̄s obeys commutative laws �e.g.,

�̄sw̄s= w̄s�̄s�—it is not an operator but the scale of an opera-
tor. Using velocity scale �2� and spatially dependent length
scales, Eq. �1� when nondimensionalized becomes

1 =
1

�1 + T̄sxy
2 �

�2w̄�

� x̄�2 +
T̄sxy

2

�1 + T̄sxy
2 �

�2w̄�

� ȳ�2 , �3�

where x̄�=x / x̄s, ȳ�=y / ȳs, and w̄�=w�̄s /k=w�1+ T̄sxy
2 � /kx̄s

2.
The result of Eq. �3� is forwarded as a modified two-
dimensional �2D� Poisson equation that, despite having z-
and t-dependent variables and coefficients, can lead to nar-
rower bounds for numerical coefficients for the area-
averaged velocity,

	w̄�
 =
x̄sȳs

A
� � w̄�dx̄�dȳ� � Fi, �4�

where A is the dimensional section area. We do not make any
significant effort to examine �or prove� the generality of this
claim. Instead we demonstrate the usefulness of the approach

with several basic example problems where �̄s=const, �̄s

= �̄s�z�, and �̄s= �̄s�z , t�.

A. Steady fully developed laminar flow
in a rectangular duct: �̄s=const=�s

A schematic of this historic flow is provided in Fig. 1
with coordinates and characteristic lengths identified. It is
frequently desirable to quickly determine the average veloc-
ity of the flow through the duct. Applying the present scaling
approach, noting that the length scales for the duct are sim-
ply constants, x̄s=a, ȳs=b, and z̄s=L, where �a /L�2�1, the
local dimensional velocity scale from Eq. �2� may be written
directly,
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w̄s =
k

�̄s

= −
Pz

�

1

� 1

a2 +
1

b2�
= −

Pz

�

x̄s
2

�1 + T̄sxy
2 �

= −
Pz

�

a2

�1 + a2/b2�
, �5�

where k= Pz /�, with Pz the pressure gradient along z and �
the dynamic viscosity of the fluid. �Subscript notation for
partial differentiation is only implied herein for z and t.� The
negative sign in Eq. �5� assures w̄s�0 when Pz�0. As re-
viewed by Shah and London �Ref. 2, Chap. 7A�, when the
hydraulic diameter scaling is applied to this problem, xs=ys

�ab / �a+b�, and term-by-term similar scaling of Eq. �1�
produces

w̄hyd = −
Pz

�

a2

�1 + a/b�2 . �6�

The exact analytic solution for the average velocity,2

	w
 = −
Pz

�

x̄s
2

3 �1 −
192

�5 T̄sxy 
i=1,3,5,. . .

�
tanh�i�/2T̄sxy�

i5 �
� Fiw̄s

� Fihydw̄hyd, �7�

is normalized by both the Laplacian �Eq. �5�� and hydraulic
diameter �Eq. �6�� velocity scales and plotted against duct
aspect ratio a /b in Fig. 2. Both approaches capture the order
of magnitude of the exact average velocity for all a and b.
However, the Laplacian scaling delivers at most a significant
fourfold reduction in the variance of Fi versus Fihyd.

The result of Eq. �5� is similar in form to that presented
by Bejan �Ref. 3, Eq. �3.33�� following integration of as-
sumed parabolic velocity fields expressed in terms of the
cross-flow coordinates. However, Eq. �5� is here determined

directly and simply by �̄s and provides a quick, concise, and
more geometrically representative approximation of 	w
 for
use in subsequent analytical solutions that are consequently
only weakly dependent on further cumbersome solution
forms or numerical data. The difference between Eqs. �5� and
�6� is subtle for this problem, but disparities can increase

dramatically in favor of the Laplacian scaling method for
problems of increased geometric complexity.4 Equality be-
tween 	w
 and w̄s is established in Eq. �7� by introducing the
narrowly varying function Fi, also defined in Eq. �4�; for the
rectangular section, 0.281. . . �Fi�a /b��1 /3. The fact that
Fi�1 /3 with at worst a 15.6% shortfall opens up further
possibilities for approximate analytical solutions.

Defined in this manner, the function Fi is inversely pro-
portional to previously determined friction factors.2,5,6 For
the rectangular section2 also reviewed by White,7 it can be
shown that the Poiseuille number is confined such that
14.2. . . �Po� f Re=8�1+a2 /b2� /Fi�1+a /b�2�24, where f
is the Fanning friction factor with hydraulic diameter Rey-
nolds number Re=	UDhyd /�, where Dhyd=4As / P, with As

and P as the total section area and wetted perimeter, respec-
tively. Not only is Fi or its inverse four times more confined

than Po but it is O�1�. Last, using the �̄s scaling it can be
shown that if a single viscous length r� was computed, char-
acterizing the average velocity for this flow, it would be r�

= �2Fi / �̄s�1/2��2 /3�1/2ab / �a2+b2�1/2. For such laminar
flows this “viscous length” is accurate, satisfying 	w

� Pzr�

2 /2�, and is more akin to a section area divided by a
section diagonal as opposed to a section area divided by a
section perimeter �i.e., the hydraulic diameter approach�.
Note that Po may be converted to Fi using Fi=Dhyd

2 �̄s /2 Po .

B. Constant rate laminar flow in a slender constant
area rectangular duct of varying aspect ratio:
�̄s= �̄s„z…

The accommodation of spatially varying scales can be
demonstrated with the pedagogical problem sketched in Fig.
3. For this duct, 	w
=const= 	wo
 and A=const=4ab. As
sketched, for a linearly tapering duct in the y-z plane, the
duct boundaries are defined by xw= 
ab / �b−mz� and yw

= 
 �b−mz�, where m= �b−a� /L.
One may want to quickly compute Pz or P�z� for this

flow in instances where 	wo
 is known. Using the Eq. �7�
definition 	w
�Fiw̄s, Eq. �2� is employed again but now
with z-dependent length scales. For example, when �a /L�2

FIG. 1. �Color online� Schematic of rectangular duct geometry; section at
right.

FIG. 2. Comparison of exact solution for 	w
 �Eq. �7�� normalized by the
Laplacian scale velocity �solid line, Eq. �5�, Fi� and hydraulic diameter
�dashed line, Eq. �6�, Fihyd�.
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�1, substituting the z-dependent length scales x̄s=xw and

ȳs=yw into Eq. �2� and noting T̄sxy =ab / �b−mz�2, solving for
Pz yields

Pz = −
�	wo


Fi
�b − mz

ab
�2� a2b2

�b − mz�4 + 1� . �8�

However, Fi�1 /3 and is a weak function of z. Treating Fi

=1 /3 and applying the boundary condition P�L�= PL, Eq. �8�
may be integrated to find

Ps � PL − �	wo


��3a2b2 + �a3 − 3ab2��b − mz� − �b − mz�4

a2b2m�b − mz� � , �9�

which is more accessible than the exact solution

Pe = − 3�	wo
� �b − mz

a2b2 ��1 −
192

�5

ab

�b − mz�2

� 
i=1,3,5,. . .

�
tanh�i��b − mz�/2ab�

i5 �−1

dz , �10�

subject also to P�L�= PL, which must be integrated numeri-
cally. �Subscripts s and e denote “scale” and “exact” forms
for pressure P�z�.� Choosing PL=0, from Eq. �9� the up-
stream pressure is

Ps�0� = �	wo
L�a2 + 4ab + b2

a2b2 � . �11�

Using this pressure to nondimensionalize Eqs. �9� and �10�
yields the respective dimensionless pressure distributions

Ps
��z�� =

�b − �b − a�z��4−�a3 − 3ab2��b − �b − a�z�� − 3a2b2

�b − a��a2 + 4ab + b2��b − �b − a�z��

�12�

and

Pe
��z�� = − 3� �b − �b − a�z��2

�a2 + 4ab + b2��1 −
192

�5

ab

�b − �b − a�z��2

� 
i=1,3,5,. . .

�
tanh�i��b − �b − a�z��2/2ab�

i5 �−1

dz�,

�13�

where z�=z /L. Lengths a and b are nondimensionalized by
A1/2 /2, such that in dimensionless form b�=a�−1. The func-
tions of Eqs. �12� and �13� are compared in Fig. 4�a� for a
selection of values for a�. The agreement is complete for
a��1 and a��1 and worsens to at most 15% as a� ap-
proaches 1. Any discrepancy at all is due to Fi being treated
as a constant in Eq. �9�. As will be presented in connection
with Figs. 7 and 9, it can be shown that a simple correlation
for Fi�a�� is Fi��1− 1

6sin 2� /3, where  for the rectangular
section is defined as =tan−1�a /b�=tan−1 a�2. Exploiting this
relationship in Eq. �8� leads to

Pc
��z�� =

Ps
��z��

�1 − 1
6sin 2� , �14�

where subscript c denotes a “correlated” scale value. Pc
��z��

is also compared to Pe
��z�� in Fig. 4�b�, where conditions

a��1, a�=1, and a��1 agree completely with intermediate
discrepancies �5%.

The simple �̄s scale solutions �12� and �14� do well in
capturing the z dependence of the flow with errors typically
less than 15% and 5%, respectively. Exact theoretical or nu-
merical solutions are preferable, but in many cases such so-
lutions mask the largely simple geometric dependence of the
flow typified by such examples, i.e., Eq. �5� versus Eq. �7�
and Eq. �9� versus Eq. �10�. The compact forms resulting
from the Laplacian scale approach further encourages the
notion that the method might be exploited to greater effect in
theoretical analyses where, say, 	w
 or P become variables in
subsequent derivations or models. A sample problem of this
kind is highlighted below in three steps.

FIG. 3. �Color online� Schematic of varying aspect ratio constant area rect-
angular duct �not to scale�; section at right.

FIG. 4. �a� Ps
��z�� �light� and Pe

��z��
�heavy� for select values of a�. Values
for a��1 and a��1 coincide. �b�
Pc

��z�� �light� and Pe
��z�� �heavy�. Val-

ues for a��1, a��1, and a�=1
coincide.
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C. Laminar gravity-driven flow
along a slender channel: �̄s= �̄s„z , t…

This contrived example flow illustrates how z- and

t-dependent scales within the Laplacian scale �̄s assist in the
formulation of governing evolution equations.

1. Rectangular channel section

A schematic with critical dimensions for this free surface
flow with negligible surface tension and �=� /2 contact
angle is provided in Fig. 5. The driving hydrostatic pressure
gradient is Pz=	ghz with 	 the density difference across the
free surface and g the gravitation in the negative y direction,
i.e., g= �0,−g ,0�. It is desirable for this flow to determine the
governing evolution equation using the Laplacian scaling
method. From Fig. 5 x̄s=const=a, ȳs=h�h�z , t�, and zs

=const=L� fcn�t�. For a slender column �a /L�2�1. Em-
ploying Eq. �5� and the definition of Fi, Eq. �7� becomes

	w
 = Fiw̄s = − Fi
Pz

�

x̄s
2

�1 + T̄sxy
2 �

= − Fi
Pz

�

a2

�1 + �a/h�2�
.

�15�

Conservation of volume along the z axis for this flow re-
quires

At = − �A	w
�z = − �AFiw̄s�z. �16�

In this case, A=2ah and substitution of Eq. �15� into Eq. �16�
yields the dimensional nonlinear governing equation,

ht =
	ga2

�
� Fihhz

1 + �a/h�2�
z

. �17�

This form is exact provided Fi from Eq. �7� is employed.
However, as demonstrated in Fig. 2, since Fi�1 /3, a wieldy
approximate solution form is obtained by absorbing Fi and
	ga2 /� into the time scale should further theoretical analysis
be pursued as will be momentarily.

It is noted that Eq. �17� is a dimensional evolution equa-
tion derived using local, weakly z- and t-dependent scales via

�̄s through h=h�z , t�. Because the local scales are unknown
and variable, Eq. �17� must be normalized by global scales
that are known and constant. For this simple flow the global
scales are x�a, h�H, z�L, and t�L /ws, where ws follows
from w̄s but incorporates the global scales in a global �note

the absence of overbar� Laplacian scale �s=1 /a2+1 /H2

such that

ws �
Pz

��s
�

Pzs

�

1

� 1

a2 +
1

H2� �
	gHa2

�L�1 + a2/H2�
, �18�

where Pzs�	gH /L. Nondimensionalizing Eq. �17� now by
the global scales yields the dimensionless nonlinear evolu-
tion equation

ht�
� = �Fi

�1 + �2�
1 + �2/h�2h�hz�

� �
z�

, �19�

where ��a /H. This form of the equation is O�1� in all
limits of the single parameter �2 since Fi is approximately
constant and O�1�. Equation �19� reveals different evolution-
ary behavior in the primary limits. For narrow channel flow,
�2 /h�2�1 �Fi�1 /3�,

ht�
� = �Fih

�hz�
� �z�. �20�

For thin film flow, �2 /h�2�1 �Fi�1 /3�,

�2ht�
� = �Fi�1 + �2�h�3hz�

� �z�. �21�

In essence, when �2 /h�2�1 the flow geometry transitions
from a narrow channel flow �Eq. �20��, to the full flow �Eq.
�19��, and then to a thin film flow �Eq. �21�� as h�→0. This
progression is qualitatively depicted by locations 1–3 in Fig.
5, respectively. The limiting equations �20� and �21� offer
significantly improved opportunities to develop analytical
solutions �exact, steady, similarity, etc.� to benchmark the
governing equation �19�, with the latter to be solved numeri-
cally in the majority. This result may be more appreciated for
more geometrically complex flows as will be demonstrated.

2. Triangular channel section

This flow geometry is sketched in Fig. 6 for �=� /2−
and is addressed identically as the rectangular channel flow
only, x̄s=h tan , ȳs=h, zs=L, and A=h2 tan . Again, taking
�h tan  /L�2�1 and substitution of the z-dependent scales
into Eq. �15� for 	w
 and then into Eq. �16�, the governing
equation for 0��� /2 becomes

FIG. 5. �Color online� Schematic of gravity-driven flow along a rectangular
channel; section at right �contact angle �=� /2�.

FIG. 6. �Color online� Schematic of gravity-driven flow in a triangular
“groove” channel; section at right ��=� /2−�.

093602-4 Weislogel, Chen, and Bolleddula Phys. Fluids 20, 093602 �2008�



�h2�t =
	g sin2 

�
�Fih

4hz�z. �22�

An exact solution is not available for Fi for all  for this
section. However, numerical results in various forms2,5–8 are
�in Ref. 2 see solutions for rhombi�, the most recent of which
are plotted in Fig. 7. It is found that for the triangular chan-
nel 0.1405. . . �Fi���1 /6, or Fi�const�1 /6—
approximately 50% that of the rectangular channel, which is
also plotted in Fig. 7 in terms of , where tan =a /b. Non-
dimensionalizing Eq. �22� using the relevant global scales for
this problem x�H tan , h�H, z�L, and t�L /ws, where
�s=1 /H2 tan2 +1 /1H2=1 /H2 sin2 , produces the govern-
ing evolution equation

�h�2�t� = �Fih
�4hz�

� �z�. �23�

3. Trapezoidal channel

In keeping with the schematic of Fig. 8 for this flow,
x̄s= �a+h tan �, ȳs=h, z̄s=L, and A= �2a+h tan �h. Using
global scales x�a+H tan , h�H, z�L, and t�L /ws and
taking ��a+h tan � /L�2�1 produces the governing dimen-
sionless equation

�A��t� = �A�Fi� w̄s

ws
��

z�

= �A�Fi��s

�̄s
�hz�

� �
z�

, �24�

where it is observed that all interesting geometric depen-
dence is contained within the ratio of global-to-local Laplac-
ian scales. The expanded form of Eq. �24� is

��2� + h� tan �h��t� = ��2� + h� tan �h�Fi�� + h� tan 

� + tan 
�2

�� 1 + �� + tan �2

h�2 + �� + h� tan �2�h�2hz�
� �

z�

,

�25�

where again ��a /H. By inspection of Eq. �25�, rectangular
channel form �19� is recovered when →0 �or h� tan  /�
�1, tan  /��1�, and triangular channel form �23� is recov-
ered when �→0 �h� tan  /��1, tan  /��1�.

Fi�h� ; ,�� for the trapezoidal section is computed nu-
merically using Eqs. �3� and �4�. Equation �3� is solved using
MATLAB® and the PDE toolbox8 and an adaptive mesh of
�50 000 finite elements. The results are also plotted in Fig. 7
�dots� with the limiting values for the rectangular �→0�
and triangular ��→0� channel sections noted. Thus, in ap-
proximation, Fi��=0�=1 /6�Fi�1 /3=Fi�=0� for all val-
ues of , �, and h� for the trapezoidal channel flow.

Furthermore, it can be shown for such Cartesian scaled
geometries that

Fi �
Fn

3

Asect

Arect
=

Fn

3

Atrap

Arect
=

Fn

6

�2� + h� tan �
�� + h� tan �

, �26�

where Asect is the local quadrant area of the section and
Arect= x̄sȳs is the scale quadrant area. The numerical values of
Fi in Fig. 7 are converted using Fn from Eq. �26� and replot-
ted in Fig. 9. “Worst case” limiting values for Fi are repre-
sented in Fig. 10, revealing that the weak h� dependence is
largely confined to h��0.1. The collapse of the numerical
data to Fn�0.97 �
0.08 standard deviation for all values
computed� favors the use of Eq. �26� and appears suitable for

FIG. 7. Exact numerical values �dots� for Fi in terms of  for trapezoidal
section channel flow; limiting values rectangular and triangular sections are
noted by symbols and dashed line �ellipse values provided for reference,
Fi=1 /4�.

FIG. 8. �Color online� Schematic of gravity-driven flow in a flattened trian-
gular groove or “trapezoidal” section; section at right ��=� /2−�.

FIG. 9. Fn�� for elliptical �3 /��, rectangular, triangular, and trapezoidal
sections. Solid symbols indicate further correlated values for rectangular and
triangular sections employing Fi��1− 1

6sin 2� /3.
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a family of duct sections possessing x- and y-axis symmetry
such as simple even-sided convex polygons and ellipses
sketched in Fig. 11. It is also suitable for free surface flows
where the free surface is coincident with zero shear stress
symmetry planes. Substituting Eq. �26� into Eq. �25�, the full
evolution equation for the trapezoidal channel section is

��2� + h� tan �h��t� � ��2� + h� tan �
Fn

6

�2� + h� tan �
�� + h� tan �

��� + h� tan 

� + tan 
�2

�� 1 + �� + tan �2

h�2 + �� + h� tan �2�h�3hz�
� �

z�

,

�27�

where 0.825�Fn�h� ; ,���1.125 and Fn�1 might be a
reasonable approximation. A concise assessment of the error
incurred by taking Fn=1 is provided in Fig. 12 where exact
numerical solutions to the steady solution of Eq. �27� are
compared. The exact solutions employ a sixth order polyno-
mial for Fi and thus Fn before solving Eq. �27� numerically.
The agreement is excellent. For the worst case a=0.02° and
�=3.49�10−4, errors �3% are typical with maximum errors
�7% near z�=1 where the function h� becomes vertical. For
the other more typical values of  shown, the scaled Laplac-
ian and exact numerical solutions are essentially coincident.

Equation �27� is quickly obtained using the present
method and embodies the majority of the sought geometric
dependence of the flow. It serves as an adequate “starter”
form for subsequent analysis. Such equation formulations are
particularly helpful for analysis for more intricate geometries
where limiting behavior may not be perceived a priori. The
example of capillary-driven flow along interior corners that
are rounded4 provides a case in point �see Fig. 13�. Such free
surface flows can possess a variety of limiting behaviors for
a single geometry and require fully numerical solutions.
Nonetheless the Laplacian method quickly captures the cor-
rect form and order of terms in a governing evolution equa-
tion facilitating theoretical understanding as well as numeri-
cal setup, solution, and benchmark.

II. IMPLICATIONS OF LAPLACIAN SCALE
TO POISEUILLE NUMBER

As briefly mentioned in Sec. I A, the Laplacian scaling
method characterizes the geometric dependence of viscous
diffusion with greater accuracy than the hydraulic diameter
scaling. It does so by characterizing the effective viscous

FIG. 10. Bounding values of Fn�h� ; ,�� for the trapezoidal section from
Fig. 7 replotted against h�. Values indicated for =90° are computed at
89.999°.

FIG. 11. Family of symmetric sections suitable for the Laplacian scale
method.

FIG. 12. Comparison of Laplacian scaled �Fn=1, thin line� and exact nu-
merical �heavy line� steady solutions to trapezoidal channel flow �Eq. �27��
for various values of  and �. Curves are essentially coincident except for
worst case condition =0.02° and �=3.49�10−4, where errors are in gen-
eral �3% �note that =89.999° is implied by =90° on the plot�.

FIG. 13. �Color online� Example of capillary-driven flow along a rounded
interior corner: �a� The fully numeric flow is readily reduced to analytic
forms by the Laplacian scaling method �Ref. 4�, �b� sharp corner, �c� rect-
angular domain, and �d� thin film flow.
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length with greater accuracy. If one exploits these benefits to
compute Fanning friction factors f for such flows �Fig. 11�
one might define a Laplacian diameter,

D� � � Fi

�̄s
�1/2

= � FnAs

3�T̄sxy + T̄sxy
−1 �

�1/2
, �28�

and a Laplacian Reynolds number, Re�=	UD� /�, to find
that

2.67 . . . � Po� � f Re� � 2�3. �29�

This result implies that the Laplacian Poiseuille number,
PoD�3�
10%�, is a weak O�1� function of the section ge-
ometry and may be treated approximately as a constant for
laminar flows. As a consequence, f �3 /ReD for all appli-
cable cross sections. This compares to 14.2. . . �Po� f Re
�24 for traditional laminar flows, where Re is scaled on
Dhyd.

III. CONCLUDING REMARKS

In summary, the Laplacian scaling method amounts to
nothing more than treating the operator as its own geometric

scale quantity, �̄s. It appears to be a quick and effective
method for certain predominately 2D fields with possibilities
for weak three-dimensional as well as temporal dependence.
The subsequent process of nondimensionalization yields a
modified 2D Poisson equation with z- and t-dependent vari-
ables and coefficients �Eq. �3��, which when solved for the

dimensionless area-averaged velocity 	w̄�
�Fi �Eq. �4�� pos-
sesses a weak dependence on numerical data—a dependence
that is further reduced when Fn from Eq. �26� is employed.
In such situations exact or approximate average quantities
are readily determined as are the subsequent equations that
depend on them.
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