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ABSTRACT
The semantics of reader-writer locks allow read-side concur-
rency. Unfortunately, the locking primitives serialize access
to the lock variable to an extent that little or no concurrency
is realized in practice for small critical sections. Relativis-
tic programming is a methodology that also allows read-
side concurrency. Relativistic programming uses different
ordering constraints than reader-writer locking. The differ-
ent ordering constraints allow relativistic readers to proceed
without synchronization so relativistic readers scale even for
very short critical sections. In this paper we explore the dif-
ferences between the ordering constraints for reader-writer
locking and relativistic programs. We show how and why
the different ordering constraints allow relativistic programs
to have both better performance and better scalability than
their reader-writer locking counterparts.

1. INTRODUCTION
Concurrent programs control access to shared data using a
variety of synchronization techniques, the most common of
which is mutual exclusion. Since mutual exclusion serializes
accesses to shared data, it results in programs that have
sequential bottlenecks and hence limited scalability.

Reader-writer locks were developed in an attempt to allow
read-mostly workloads to scale by allowing read-side concur-
rency. However, many reader-writer lock implementations
use atomic read-modify-write instructions to a common lock
variable. Contention for the lock variable and the serializa-
tion caused by atomic read-modify-write instructions limit
both performance and scalability. In fact, Lev et. al. [12]
shows that the production Solaris reader-writer lock does
not scale at all for certain read-only workloads. Triplett et.
al. [18, 19] shows that the production Linux reader-writer
lock does not scale at all for certain read-only workloads.

There have been many attempts to improve performance
and scalability of reader-writer locks. Hsieh and Weihl [11]
proposed a reader-writer lock that used per-processor locks
for readers. This approach avoids contention between read-
ers allowing good scalability for read-only work loads. How-
ever, a writer must acquire all the read-locks. As the number
of readers increases, the cost to a writer for acquiring all the
read-locks becomes exorbitant. Read performance suffers
significantly in the presence of writers because readers are
excluded for the duration of the write, and writes are slow
because writers have to acquire a potentially large number
of read-locks.

Lev et. al. [12] present a reader-writer lock based on a Scal-
able Non-Zero Indicator (SNZI). Their observation is that
writers do not need to know the number of readers, only if
there are zero or not zero. They construct a tree of SNZI
objects where the root of each subtree knows whether the
subtree contains zero or non-zero readers. A node only needs
to communicate with its parent when that node moves in or
out of its zero state. Readers can be distributed throughout
the tree so that the number of other readers they contend
with is minimal. Writers can check the root of the tree for
the existence of readers. Their implementation scales for
read-only workloads but suffers significantly with even 1%
writers.

The lack of scalability in reader-writer locks presents a need
for another synchronization mechanism for read-mostly work
loads. RCU (Read-Copy-Update) fills that need within the
Linux kernel. RCU is similar to reader-writer locks in that it
distinguishes between readers and writers, it allows readers
to proceed concurrently, and it was designed for read-mostly
work loads. However, RCU provides better performance and
scalability than reader-writer locks [9, 18, 19]. Because of
its performance characteristics, RCU is gaining wide spread
use in the Linux kernel. Figure 1 shows that the use of
RCU within the Linux kernel is continuing to grow and has
exceeded that of reader-writer locks. RCU is not limited to
the Linux kernel. There is a user mode library [5, 4] that is
portable and is gaining use in non-kernel applications.

Although RCU bears a superficial similarity to reader-writer
locks, it is built on a very different premise and has differ-
ent ordering properties. This paper explores those differ-
ences. Section 2 introduces relativistic programming—the
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Figure 1: Count of the number of uses of RCU prim-
itives and Reader Writer Locking primitives in the
Linux Kernel.

methodology for using RCU. Sections 3–5 discuss the order-
ing properties of programs built using reader-writer locking
and relativistic programming. Section 6 validates the perfor-
mance claims made within the paper and Section 7 presents
concluding remarks.

2. THE BASIS OF RELATIVISTIC PROGRAM-
MING

Relativistic programming differs from other synchronization
mechanisms in the way it embraces concurrency. Mutual ex-
clusion allows local computations to run concurrently, but
prevents concurrent access to shared data. Reader-writer
locks allow read-read concurrency, but prevent read-write
concurrency. Fine grained locking allows concurrent access
to disjoint sets of shared data, but prevents concurrent ac-
cess to the same data. Optimistic techniques such as Trans-
actional Memory allow accesses to run concurrently, but
conflicting accesses involving at least one write require ei-
ther waiting or a rollback. Relativistic programming allows
read-read concurrency much as reader-writer locking, but
also allows read-write concurrency. Unlike fine grained lock-
ing or optimistic techniques, relativistic programming allows
read-write concurrency to the same data.

The one area of concurrency that relativistic programming
does not yet address is write-write conflicts. Relativistic
programming depends on other synchronization mechanisms
between writers. Most commonly this involves using a sin-
gle mutex, but can include fine grained locking [18] or even
transactional memory [10].

Many optimistic techniques that allow readers and writers
to access the same data (even though one or more will be
delayed or rolled back) place a large burden on readers to
check the consistency of the data. Readers must be able to
detect and handle concurrent changes to the data they are
accessing. In contrast, relativistic programming places the
burden on writers to maintain the level of consistency that
readers require. Doing so allows readers to proceed almost
as if the reader was sequential code (Section 4.4 discusses the
few restrictions on readers). The burden is shifted almost
entirely to writers.

Relativistic writers have two barriers that they can use to
control ordering. A light weight barrier is used to guarantee
that previous memory writes are visible to readers prior to
subsequent memory writes. This is used, for example, to

guarantee that any writes used to initialize a node are visi-
ble to readers prior to the point at which the node becomes
reachable. The heavier weight barrier allows writers to wait
for the completion of pre-existing readers. One use of this
primitive is for a writer to wait for any readers that might
have a reference to a deleted node to finish before reclaim-
ing memory for that node. We show in sections 3–5 that
these two primitives are sufficient to handle a wide range of
concurrent data structures.

Linearizability is a concurrency property that is often used
as a correctness criteria for concurrent objects. Linearizabil-
ity requires an equivalence between the linearizable compu-
tation and a legal sequential computation [8]. We claim that
linearizability is too strict a criteria for correctness, and that
there are correct solutions that are not linearizable. There
is a significant performance cost to linearizability [7]. One of
relativistic programming’s great strengths is that although it
can provide linearizable solutions if needed, it can also reap
the performance and scalability benefits of non-linearizable
behavior while still retaining ease of use.

We use the following as our correctness criteria for relativis-
tic data structures. If the relativistic data structure is an
implementation of an abstract data type (ADT), then rela-
tivistic programming provides the following properties:

1. Update operations on the ADT are serialized with re-
spect to each other and leave the ADT in a valid state.
If the data structure is partitioned, then updates to the
same partition are serialized.

2. Read operations on the ADT see the effects of all pre-
vious non-concurrent updates

3. Read operations do not see any of the effects of later
non-concurrent updates

4. For concurrent update and read operations, reads see
either the state of the ADT prior to the update or after
the update, but are not allowed to see any other state.

Items 1–3 are the same as for reader-writer locking. Item
1 states that the data structure invariants must be restored
before the write completes. Items 2 and 3 state that non-
concurrent operations form a total order that matches the
serial order. Item 4 deals with read-write concurrency, and
it states that a write can not affect an unrelated read. For
example: if a set includes the values 1..5 then a write insert-
ing the value 6 should not cause a concurrent read looking
for 5 to return not found. Item 4 is intended to allow non-
linearizable behavior in that not all concurrent readers have
to observe the same states. This aspect of relativistic pro-
gramming is covered in Section 5.

2.1 Complexities of Concurrent Programming
Modern hardware does not present a sequentially consis-
tent interface to bare metal programmers. Multiple levels of
cache, instruction pipelines, and out of order execution units
allow modern CPUs to be fast, but these features mean con-
current programmers can not assume sequentially consistent
behavior of their code [1, 14, 15, 2].



Optimizing compilers transform source code into efficient
machine code whose execution on single-threaded hardware
is equivalent to sequential execution of the source code. But
the key here is that they assume a sequential execution.
Both the compiler and the underlying hardware can rear-
range code in a way that is safe for a sequential execution
but may not be safe for a concurrent execution [3]. Listing 1
shows a function for initializing a shared structure. If an-
other thread was spinning on while (! data->init-complete)

prior to accessing the other fields in the structure, then
line 4 of Listing 1 must execute after lines 2 and 3 other-
wise readers may access uninitialized data. Since there are
no data dependencies between the three assignment state-
ments, both the compiler’s optimizer and the CPU’s out of
order execution unit can reorder the execution of init().
Even if the compiler and execution units leave the order in-
tact, the memory systems in some hardware architectures
can re-order memory writes unless they are explicitly told
not to.1

1 void init(struct some_struct *data) {
2 data->field1 = FIELD1_INIT;
3 data->field2 = FIELD2_INIT;
4 data->init_complete = TRUE;
5 }

Listing 1: Line 4 must execute after all the others.
The compiler, out of order execution unit, or
memory subsystem can each re-order this execution.

The impact of reordering can be localized in lock based code.
Use of mutual exclusion differentiates between three cate-
gories of code: that accessing only thread-private data, that
appearing in critical sections, and that comprising the lock-
ing primitives themselves. Local code can be treated as se-
quential because there is no shared data. The critical section
can also be treated as sequential because mutual exclusion
prevents conflicts involving writes. So only the locking prim-
itives are truly concurrent.

A programmer writing new locking primitives must be con-
cerned about all the complexities of concurrent program-
ming. They must ensure that the primitives enforce the
semantics of the lock on the target hardware. They must
account for whatever reorderings the CPU and memory sys-
tem allow. They must also ensure that the locking prim-
itives contain whatever compiler barriers are necessary to
prevent the compiler from moving code across a critical sec-
tion boundary.

If locking primitives work correctly and are used correctly,
a programmer using those primitives to develop a multi-
threaded system can view both their local code and critical
section code as if it was sequential code.2 They do not have

1Implementations of the Java and C++ memory models
give programmers more explicit control over this kind of
re-ordering.
2Boehm [3] points out that in the absence of a memory
model, a compiler may transform code so that data races
are created that did not exist in the source. When this hap-
pens, code which the programmer thought was data race
free (and therefore viewable as sequential) will in fact be
concurrent.

to worry about the complexities discussed above. They still
have many other complex issues to worry about, but not
compiler, execution unit, nor memory system reorderings.

In contrast with reader-writer locking programs, relativistic
programs allow reads to run concurrent with writes. They
are truly concurrent in the sense that they contain data
races—multiple threads accessing the same data where one
of the threads performs a write. Because relativistic pro-
grams are truly concurrent, programmers need to be aware
of and manage the reorderings discussed earlier. Relativistic
programming identifies specific operations that need to be
ordered and provides a small number of ordering primitives
with simple rules for their placement. If these primitives
work correctly and used correctly, they will only allow cor-
rect orderings of execution. We demonstrate the validity of
these claims in the next several sections.

3. INTRODUCTION TO ORDERING CON-
TROL

In this section, we introduce some of the ordering relation-
ships that occur in concurrent programming. We use those
relationships to show how various primitives are used to con-
trol ordering so that only orderings that yield correct results
are allowed. The primitives handle the complexities dis-
cussed in Section 2.1 so the programmer can view their code
almost as if it were sequential.

In this section, we use a linked list delete operation to il-
lustrate ordering relationships. The linked list in Figure 2
begins with three nodes labeled A, B, and C. A write thread
removes node B leaving nodes A and C and then reclaims
the memory used by B.

A B C

Figure 2: Linked list showing the removal of node
B. The dashed line shows the link out of A after the
removal.

We use the following names for specific events whose order
is critical:

obtain ref Obtain a reference to the node following A.
This could either be a reference to B or C de-
pending on whether the reference is obtained
before or after B is removed from the list.

drop ref The thread no longer has a reference to the
node following A. In most cases, code does
not explicitly drop references, so drop ref is
implied just after the last use of the reference
in question.

unlink The writer removes B by changing A so that
it points to C instead of B.

reclaim The writer reclaims the memory used by B
allowing this memory to be used for another
purpose.



Figure 3 shows which orderings must be preserved. Three
types of arrows are used to portray three types of happens-
before relationships. Normal arrows indicate orderings that
are implied by program order. Memory or compiler barriers
may be required to preserve these orderings. Dashed ar-
rows show happens-before relationships that are not explic-
itly controlled; they are simply a notation that one event
occurred before another. We refer to these as occurred-
before relationships. Bold arrows indicate orderings that
must be preserved to preserve correctness. We refer to these
as required-before relationships.

Notation: Within text, we use → to mean occurred-before
so that when we say A → B we mean A occurred-before B.
We use ⇒ to mean required-before so that when we say A ⇒
B we mean A is required-before B. If we want to specify an
operation for a particular thread, we use subscripts so that
AT1 → BT2 means operation A of thread T1 occurs-before
operation B of thread T2.

Reader 1 obtain ref drop ref

Writer unlink reclaim

Reader 2 obtain ref drop ref

Figure 3: Orderings that have to be enforced by syn-
chronization. Since Reader 1 obtained a reference
to a node before it was unlinked, Reader 1 must
drop that reference before the node is reclaimed.
Reader 2 obtained the reference after the node was
unlinked, so there is no dependency between Reader
2 dropping the reference and the writer reclaiming
the memory.

The occurred-before relationships between threads can only
be inferred when one thread observes a change, or the lack
of a change, made the other thread. If A → B then either A
made a change that was observed by B or B made a change
that was not observed by A (because A occurred-before the
change was made).

Required-before relationships are often the consequence of a
previous occurred-before relationship. Figure 3 shows obtain
refReader 1 → unlink. This occurs-before relationship imposes
the relationship drop refReader 1 ⇒ reclaim. Since unlink →
obtain refReader 2, there is no ordering constraint between
Reader 2’s drop ref and the reclaim.

3.1 RWL Ordering Control
Reader-writer locking uses locking primitives to control or-
dering. There are separate read and write primitives. The
semantics of reader-writer locks enforce the following con-
straints:

1. if read-lock1 → write-lock then read-unlock1 ⇒ write-
lock

2. if write-lock → read-lock then write-unlock ⇒ read-lock

3. if write-lock1 → write-lock2 then write-unlock1 ⇒ write-
lock2

The first constraint prevents a writer from starting if any
readers hold the lock. The second constraint prevents a
reader from starting if a write holds the lock. The third
constraint prevents a second writer from starting if another
writer holds the lock. Note that there is not a constraint
that prevents a second reader from starting if another reader
holds the lock. The absence of this constraint is what allows
read-read concurrency.

In order for the lock primitives to guarantee mutual ex-
clusion, the primitives must be capable of communicating
with other threads. There is two-way communication: read-
lock must know the results of write-lock and write-lock must
know the results of read-lock. This communication is usu-
ally performed by atomic read-modify-write instructions on
lock variables. The atomic read-modify-write instructions
guarantee that there is a total order on the lock operations.

Figure 4a shows two readers and a writer deleting a node
from a linked list. For both readers, read-lock → write-
lock. This imposes the relationship read-unlock ⇒ write-lock
for both readers. However, since reader-writer locks allow
read-read concurrency, the relationship read-lock1 → read-
lock2 does not imply any other ordering between the other
elements of the two read-sections.

Figure 4b another reader and the same writer as Figure 4a.
The relationship write-lock → read-lock implies write-unlock ⇒ read-
lock.

The correctness of the reader-writer lock implementation de-
pends on program order dependencies being preserved. In
particular, if the drop ref in Figure 4a is delayed after the
read-unlock, then the required-before relationship between
drop ref and reclaim (see Figure 3) may be violated. Also,
if obtain ref in Figure 4b happens before the read-lock, then
the obtain ref may also happen before unlink meaning that
the entire reader should have happened before the writer,
not after. The locking primitives must not only enforce the
locking semantics, they must also contain whatever com-
piler and memory barriers are required to guarantee that
the contents of the critical section do not leak outside. If
the locking primitives preserve these properties, then only
correct orderings will be allowed.

3.2 Relativistic Programming Ordering Con-
trol

Relativistic programming does not use mutual exclusion to
control ordering. Relativistic readers can begin at any time
and never wait for writers or other readers (not even for
the duration of an atomic read-modify-write instruction).
Instead of mutual exclusion, relativistic programming uses a
write-side primitive called wait-for-readers to delay certain
operations to preserve required-before relationships. wait-
for-readers waits for all readers that existed at the beginning
of the wait to finish. Stated formally:

∀ readers r and any wait-for-readers w if (start of r) → (start
w) then (end r) ⇒ (end w)



Reader 1 read-lock obtain ref drop ref read-unlock

Writer write-lock unlink reclaim write-unlock

Reader 2 read-lock obtain ref drop ref read-unlock

a) Relationships between readers and a later writer

Writer write-lock unlink reclaim write-unlock

Reader read-lock obtain ref drop ref read-unlock

b) Relationships between a writer and a later reader

Figure 4: Reader-writer locks enforce the ordering through mutual exclusion. The lock and unlock primitives
enforce this ordering.

In Figure 5 the wait-for-readers is depicted in two parts—
the beginning of the wait and the end of the wait. Splitting
the wait makes it easier to identify the occurred-before and
required-before relationships in relativistic algorithms.

The start-read and end-read primitives require compiler and
memory barriers to prevent obtain ref from occurring before
start-read and to prevent drop ref from occurring after end-
read (these are the same barrier requirements for reader-
writer locking primitives). Similarly, the wait-for-readers
primitive must have compiler and memory barriers to pre-
vent unlink from occurring after start wait and to prevent
reclaim from occurring before end wait. With these barriers
in place, it can be seen from Figure 5 that any reader for
which obtain ref → unlink must also have start read → start
wait. This means that end-read ⇒ end wait is sufficient to
guarantee that drop ref ⇒ reclaim.

Note that in Figure 5 there is no happens-before relation-
ship between Reader 1’s obtain ref and the Writer’s unlink.
Figure 5 could have been drawn with the unlink to the left
of Reader 1’s obtain ref without affecting any other ordering
in the diagram. Using the start-read → wait-for-readers is
more conservative than using obtain ref → unlink because
wait-for-readers may wait longer than necessary, but it is
guaranteed to wait at least long enough. That is, wait-for-
readers might wait for readers that obtained their reference
after the unlink, but end-read ⇒ end wait is sufficient to
guarantee that any reader for which obtain ref → unlink
will drop ref prior to the reclaim. If start wait → start-
read as shown in Reader 2 of Figure 5 then it must also be
true that unlink → obtain ref so there is no required-before
relationship between drop ref and unlink.

With reader-writer locking, there is two way communication
between the locking primitives. Readers need to know about
the state of the write lock and writers need to know about

the state of the read lock. With relativistic programming,
the communication is only one way: writers performing wait-
for-readers need to know about the existence of readers, but
readers do not need to know about the existence of writers
(whether they are doing a wait-for-readers or not). The
asymmetry of the communication means that it is possible
to implement start-read and end-read with no more than a
memory barrier. Atomic read-modify-write instructions are
not required.

4. EXTENDING TO OTHER OPERATIONS
The previous section analyzed the ordering requirements for
a Delete operation. In this section, we will look at three
other operations. The first one is an Insert. The other
two are called Move Down and Move Up. The names are
taken from moving a node in a tree to a lower or higher
location within a tree but the principles apply any time a
node is moved within a directed acyclic graph. Down or Up
is relative to the traversal order of readers.

There is no reason to repeat the analysis of reader-writer
locking implementations because the analysis is the same
regardless of the operation: correctness is preserved using
mutual exclusion. So in this section, we only look at the
relativistic programming implementations.

4.1 Insert
The wait-for-readers primitive is a heavy weight barrier. We
illustrated its use in memory reclamation in Section 3.2. Rel-
ativistic programming has a lighter weight barrier called rp-
publish. In this section we illustrate the use of rp-publish
while inserting a node in a linked list.

Figure 6 shows a node D being added to a linked list. The
update takes place in two steps. In the first step, not vis-
ible to readers, the new node D is created and initialized
(including the pointer to E). In the second step, the node



Reader 1 start read obtain ref drop ref end read

Writer unlink start wait end wait reclaim

Reader 2 start read obtain ref drop ref end read

Figure 5: Relativistic programming enforces the ordering using the wait-for-readers primitive. Any reader
that began before the wait started must finish before the wait completes.

is made visible to readers by changing the pointer out of C.
These two steps must take place in this order to prevent a
reader from seeing a partially initialized node.

A B C

D

E

Figure 6: Linked list after adding node D. The
dashed arrow shows the original pointer out of node
C.

Figure 7 shows the timing relationships for adding a node
to a linked list. The operations are as follows:

obtain ref a reader obtains a reference out of C. This
could be a reference to D or E.

deref the reader accesses the contents of a the node
whose reference was obtained by obtain ref.
This includes dereferencing the pointer the
next node.

init the writer initializes node D.

link the writer links D into the list

Reader 1 obtain ref deref

Writer init link

Reader 2 obtain ref deref

Figure 7: Happens-before relationships for inserting
a node in a linked list. Reader 2 obtains a reference
to the new node, so the initialization of that node
must be visible to Reader 2 before Reader 2 accesses
that node.

In Figure 7, Reader 1 has obtain ref → link, so Reader 1
will not see node D. There are no further happens-before
relationships with Reader 1. Reader 2 has link → obtain ref
so it obtains a reference to D. To prevent Reader 2 from
seeing unitialized data, init ⇒ derefReader 2.

The relationship between init ⇒ derefReader 2 can be en-
forced by a memory barrier between init and link. In rel-
ativistic programming, pointers are updated using the rp-
publish primitive. rp-publish includes the necessary compiler
and memory barriers to guarantee that any prior initializa-
tion is visible to readers before the published pointer is vis-
ible. The rp-publish primitive is used any time a change is
made to a reader-visible pointer.

4.2 Move Down
We have introduced the two primitives used by relativistic
writers: wait-for-readers and rp-publish. Their use was illus-
trated using linked list delete and insert operations. These
are the only two primitives required to enforce ordering.
However, there are other aspects of program order that are
important to relativistic algorithms. We illustrate this with
a Move Down operation in the form of a red-black tree (RB-
Tree) rotation.

One of the operations used to balance an (RBTree) following
an insert or delete is a rotation [6, 16]. Figure 8 shows one
type of rotation. In this rotation, node F is moved to a
location lower in the tree, so this qualifies as a Move Down
operation.

The following pointers need to be updated to accomplish the
rotation:

1. The left child of H

2. The left child of F

3. The right child of D

Reader-writer locking uses mutual exclusion to prevent read-
ers from seeing intermediate steps in the rotation so the or-
der in which these pointers are updated does not matter.
Readers either see the state before the rotation or after the
rotation.

Relativistic programming allows read-write concurrency which
means that readers can see intermediate states. Care must
be taken in the order of the updates so that readers will al-
ways see a valid state. In this instance, a valid state means
that all of the nodes in the tree must be reachable by any
reader that is looking for them even if the tree changes dur-
ing the lookup.

Most hardware architectures do not have an operation that
can update three pointers atomically. If the pointers are
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F

E G

a) Initial subtree b) After rotation

Figure 8: Nodes B-D-F need to be rotated so that
D is the root of the subtree.

updated one at a time, an invalid intermediate step will
be visible as shown in Figure 9. Even a three-way atomic
update would not be sufficient to prevent concurrent readers
from observing an invalid state. A reader at F looking for
B at the time of the update would fail to find B. Howard [9]
showed how this rotation can be performed by making a copy
of node F . Figure 10 shows the intermediate step following
the insertion of the copy of F (labeled F ′ in the figure).

Figure 11 shows the happens-before relationships for three
different orderings of this rotation. The event deref(X) means
reading the contents of node X including following a pointer
to the left or right child of X. Readers 1 and 2 have deref(H)
→ unlink(F) so these readers observe F . Any reader that
observes F has deref(F) ⇒ reclaim(F). The required-before
relationship can be satisfied by placing a wait-for-readers
between unlink(F) and reclaim(F). This case is identical
to removing a node from a linked list as discussed in Sec-
tion 3.2.

Readers 2 and 3 have link(F’) → deref(D) so these readers
observe F ′. Observing F ′ means there is a required-before
relationship between init(F’) and deref(F’). This relation-
ship is satisfied using rp-publish to perform the link(F’) op-
eration. This situation is the same as adding a node to a
linked list as discussed in Section 4.1.

Reader 3 has unlink(F) → deref(H) meaning that the reader
did not observe F . If this reader is looking for the key in
F , it must observe F ′ (since it did not observe F ). The
relationship link(F’) ⇒ deref(D) captures this dependency.
The rp-publish primitive guarantees that all writes in pro-
gram order prior to the publish will be visible to readers be-
fore the published value. If rp-publish is used to unlink(F),
then any reader that observed the unlink, must also observe
any previous writes, namely, link(F’). This is precisely the
condition we need.

All of the required-before relationships can be satisfied by
using wait-for-readers prior to reclaim(F) and by using rp-
publish to update the pointers between nodes. These two
primitives are sufficient to guarantee correctness for this ro-
tation operation.

4.3 Move Up
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A C
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G

a) Left child of H updated first. F and G unreachable
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A C
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E G

b) Left child of F updated first leaving A, B, C, and D
unreachable

H

F

D

B

A C

E

G

c) Right child of D updated first leaving E unreachable
and a loop through D and F .

Figure 9: Possible intermediate steps in rotation of
nodes B-D-F .
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Figure 10: A relativistic programming rotate inserts
a copy of F (labeled F ′) below D before removing the
original F .



Writer init(F ′) link(F ′) unlink(F ) reclaim(F )

Reader 1 deref(H) deref(F ) deref(D) deref(E)

Writer init(F ′) link(F ′) unlink(F ) reclaim(F )

Reader 2 deref(H) deref(F ) deref(D) deref(F ′) deref(E)

Writer init(F ′) link(F ′) unlink(F ) reclaim(F )

Reader 3 deref(H) deref(D) deref(F ′) deref(E)

Figure 11: Happens-before relationships for various orderings of a writer performing a rotate and a reader.
Note: the same writer was repeated for clarity in drawing each of the readers.

Our final example shows how wait-for-readers can be used
to order the visibility of steps in an update process. This
example is also taken from Howard’s RBTree [9]. When
internal nodes are deleted from a tree, they are swapped
with a leaf node so the removal can happen at the bottom
of the tree. The swapped node moves to a location higher
in the tree, so this qualifies as a Move Up operation.

Figure 12 shows the removal of node B. A copy of C (labeled
C′) gets swapped up into the place of B. If C was removed
from the bottom of the tree at this point, any readers at
B which were looking for C would complete their lookup
without finding C. Any readers above C′ (including any
new readers) can find the key for C at C′. A wait-for-readers
between adding C′ and removing C will allow any readers
at or below B to complete their lookup before C is removed.
Any new readers will see C′ and not need to see C.

Figure 13 shows the happens-before relationships for a swap
and two readers. Both readers are looking for the key in
C. In Reader 1, link(C’) → deref(F), so the reader finds the
key at C′ and stops its search. Since this reader accessed C′,
there is a required-before relationship between init(C’) and
deref(C’). This required-before relationship is guaranteed
by using rp-publish to perform the link(C’). This is the same
as inserting a node in a linked list as discussed in Section 4.1.

unlink(C).

In Reader 2, deref(F) → link(C’) so this reader does not
observe C′ and therefore must observe C. The relationship
deref(E) ⇒ unlink(C) captures this dependency.. A memory

barrier is not sufficient to enforce this relationship. If a
reader has read past F prior to link(C’), then a memory
barrier can not cause the reader to “back up” and observe
C′. Similarly, a memory barrier attached to unlink(C) will
not stall until the reader performs deref(E). The solution
proposed by Howard is to place a wait-for-readers between
link(C’) and unlink(C). The wait-for-readers will allow all
readers for which deref(F) → link(C’) to complete prior to
unlink(C) thus enforcing deref(E) ⇒ unlink(C).

The final required-before relationship in Reader 2 which ex-
ists between deref(C) and reclaim(C) can be satisfied by a
wait-for-readers between unlink(C) and reclaim(C). This is
the same a removing a node from a linked list as discussed
in Section 3.2

4.4 The General Case
The previous sections gave examples of the use of rp-publish
and wait-for-readers. In this section we give general guide-
lines in their use. We have published a technical report [17]
that gives a fuller treatment of these guidelines.

Nodes in relativistic data structures contain two types of
data: immutable and mutable. Generally, the immutable
data is the payload of the nodes and the mutable data is
the pointers used to connect the nodes. Writers must guar-
antee that once a reader obtains a reference to a node, the
immutable portion of the node will not change. If a writer
needs to change an immutable portion of a node, it must
make a copy of that node, change the node in its private
memory, and then replace the old node with the new one by
changing a mutable pointer. If multiple changes to the mu-
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Figure 12: Deletion of node B through a swap with
C

table portion of a node need to be made to appear atomic,
the same copy-on-update proceedure can be used.

There are two rules for the placement of the rp-publish and
wait-for-readers barriers. The first one is simple and deals
with rp-publish. Any time mutable data is changed, it must
be changed using rp-publish. Doing so guarantees that all
changes to mutable data from a single writer will be seen in
order by all readers.

The second rule deals with wait-for-readers. If readers have
a traversal order (e.g. from the root of a tree to a leaf), then
if two causally related changes to mutable data are made in
the same direction as the traversal, they must be separated
by a wait-for-readers. An example of this is the Move Up
described in Section 4.3. The Move Up required two changes
to mutable data: The copy of the swapped node was placed
high in the tree then the swapped node was removed from
the bottom of the tree. These changes are causally related
and they occurred in traversal order so a wait-for-readers
was required between them.

In the Move Down example described in Section 4.2 there

were two changes. The first one involved placing a copy of
F lower in the tree and then removing the original F from
higher in the tree. Since these operations happen in the
reverse of traversal order, wait-for-readers was not needed
between them.

The use of wait-for-readers for safe memory reclamation also
fits the traversal order rule. There are two changes in a recla-
mation. The first one is to remove the node from the data
structure, the second is the reclamation of the node’s mem-
ory. Removing the node from the data structure involves
changing the pointer which points at the node. This pointer
must be earlier in the traversal order than the contents of
the node which get reclaimed, so these two changes happen
in traversal order and thus need a wait-for-readers between
them.

Just as there are two rules for writers, there are two for
readers: rp-read must be used when reading mutable data
and each mutable data item must only be read once. The rp-
read accomplishes two things: it forces a read from memory
(instead of allowing a cached copy to be used) and it enforces
dependent read consistency. These actions are the same as
for the C++0x memory order consume load.

If a mutable data item is read multiple times, the value of
that item might change between each read. Listing 2 illus-
trates what might happen if a mutable item is read more
than once. The code snippet shows a condition for termi-
nating a linked list traversal. The pointer node->next may
change between the condition in line 1 and the return state-
ment in line 2. If this happens, the data returned will not
come from the same node that was examined.

1 if (node->next->key == key) {
2 return node->next->value;
3 }

Listing 2: Invalid coding pattern because node->next

may change between lines 1 and 2

5. CONSIDERING MULTIPLE WRITES
The previous sections examined the ordering constraints be-
tween a single reader and a single writer. There are other
considerations when considering a reader and multiple writ-
ers. We examine these considerations in this section.

The timeline in Figure 14 shows a writer performing a delete
and two readers. Using the terminology from Section 3 the
diamond on the write line marks the unlink. The diamonds
on the read lines mark the deref. Both readers begin before
the writer and in both cases deref → unlink. Reader R1
finishes its read-section prior to the unlink. Our claim is that
this case is indistinguishable from a reader-writer locking
reader that executed just prior to the write. But reader R2
continues well after the writer completed its operation. This
leaves open the possibility that reader R2 will be concurrent
with another write operation and it may see the results of
the subsequent write without observing the results of the
first one.

Figure 15 shows a reader concurrent with two writers. Our



Reader 1 deref(F ) deref(C′)

Writer init(C′) link(C′) unlink(C) reclaim(C)

Reader 2 deref(F ) deref(B) deref(E) deref(C)

Figure 13: Happens-before relationships for various orderings of a writer performing a delete with swap and
a reader looking for the key in C.

Writer

R2

R1

Figure 14: Timeline showing reader R1 which com-
pletes before the write takes effect and R2 which
observes the state of the data structure prior to the
write, but extends well after the write.

correctness criteria requires that a reader concurrent with
a write can see the state immediately prior to the write or
immediately after the write, but no other state. The case
presented in Figure 15 requires a clarification of this rule.
A reader concurrent with multiple writes can see the state
prior to any of the writes, or the state generated by any
combination of the concurrent writes being applied to that
initial state. If I is the initial state, then the reader in
Figure 15 can see one of the states I, I + W1, I + W2, I +
W1 + W2.

W1 W2

R

Figure 15: Operation R can see operations W1 and
W2 in any order.

If the second write is dependent on the first, then observ-
ing W2 without observing W1 could potentially lead to an
invalid observation. To prevent this from happening, a wait-
for-readers could be inserted between the two writes (for ex-
ample by calling wait-for-readers prior to releasing the lock
used for mutual exclusion between writers). The presence
of the wait-for-readers would guarantee that no reader was
concurrent with both W1 and W2. Any reader concurrent
with W2 would be guaranteed to see the state after W1.

The state observed by the reader is specific to that reader.
If Figure 15 had shown two readers both concurrent with
W1 and W2, then each reader could have observed differ-
ent states. One could have observed I + W1 and the other
I + W2. If this were so, the two readers would disagree on
the order of the updates. The first reader would claim that
W1 happened first (because it saw W1 but not W2). The
second reader would claim that W2 happened first. The or-
der of observations is local to (or relative to) a particular
reader. There is no “global observer” that defines the cor-

rect order. Each reader is allowed to observe writes in their
own reference frame. The potential reordering is limited in
scope to the length of any concurrent reader. If there are
two writes A and B such that there is no reader that is con-
current with both A and B, then all readers will agree on
the order of A and B—that is to say, A and B will be totally
ordered with respect to all reads.

Reader-writer locking provides a total order of writes by
delaying certain operations through mutual exclusion. If a
relativistic solution requires a total order on writes, then
wait-for-readers can be used to delay writes to preserve this
total ordering.

The delays to totally ordered relativistic writes are no worse
than the delays imposed by mutual exclusion in reader-
writer locking. This is shown in Figure 16. For both rel-
ativistic programming and reader-writer locking, the delay
can be up to the length of a reader. If the reader-writer
implementation favors readers, then the delay can be any
arbitrary length—the writer could starve. With relativistic
programming writer starvation can not happen.

Read-sections and write-sections do not just happen spon-
taneously. They happen in response to external or internal
events. When considering timing and ordering, it is useful to
not only look at the timing and ordering of the read-sections
and write-sections, but also the timing in relation to the
events that triggered the read-sections and write-sections.
Figure 17 shows the timing of four readers and a writer. The
circles show the external events that trigger the reading and
writing. The diamonds show the time when the writer up-
dated a pointer and when the readers observed that pointer.

In the relativistic programming approach, reads are allowed
to run concurrently with the write. Readers R1 and R2
observe the data structure prior to the update. Readers R3
and R4 observe the data structure after the update. This is
evident by the order of the diamonds.

The reader-writer lock read preference case shows how the
write is delayed until all readers have finished. The delay
is shown by the dashed line. In this case, all four readers
observe the data structure prior to the update. Note that
this violates the order of the events that triggered the read
and write operations. The reader-writer lock write prefer-
ence or fair case shows a delay in both the writer and readers
R3 and R4. In this case, the readers make the same obser-
vations as in the relativistic case, but the writer and two of
the readers are delayed. This type of delay has the potential
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R

a) Relativistic approach

delay W1 W2

R

b) Reader-Writer approach where R goes first

W1 delay W2

R

c) Reader-Writer approach where W1 goes first

Figure 16: Timelines showing different delays. In a)
W2 is delayed because W1 holds the write-lock until
R completes. In b) W1 is delayed because R acquires
the reader-writer lock first. In c) W1 acquires the
lock first but W2 is still delayed for the full duration
of R. The relativistic version suffers the minimum
delay.

to significantly reduce scalability. The relativistic program-
ming approach did not have these delays, but the outcome
of the computations was the same as for the reader-writer
lock with writer preference case.

The reader-writer locking approach obtains consistency by
delaying operations. However, this delay has the potential
to cause operations to be ordered differently than the events
that triggered these operations. Relativistic programming
on the other hand allows the earliest possible completion of
operations.

6. PERFORMANCE
We do not intend to show the overall performance benefits
of relativistic programming in this paper. Papers on specific
relativistic algorithms [9, 10, 18, 19] have made the case
that relativistic algorithms are both high performance and
highly scalable. In this section will will examine some of the
specific performance claims made earlier in the paper.

It is our claim that reader-writer lock readers will not scale
for sufficiently small critical sections because of the con-
tention for the lock variable, and that relativistic program-
ing readers should scale for any size critical section because
there is no shared variable to contend for. To test this,
we created a micro benchmark using linked lists. The data
in the list was sorted and operations included lookups, in-
serts, and deletes. The length of the critical section can be
varied by changing the length of the linked list. The tests
were run on a four processor quad-core Intel Xeon system
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R2

R3

R4

Relativistic Programming

Writer

R1

R2

R3

R4

Reader-writer lock with read preference

Writer

R1

R2

R3

R4

Reader-writer lock with write preference or fair

Figure 17: Timing of a writer and four readers us-
ing the relativistic approach and reader-writer locks
with read preference and write preference or fair.
The relativistic approach allows both the earliest
possible writes and earliest possible reads.

(16 hardware threads) running Linux 2.6.32. The relativis-
tic programming implementation was supplied by Usermode
RCU developed by Desnoyers et. al. [5, 4]. The following
synchronization mechanisms were benchmarked:

nolock No synchronization was used. This is valid for
read-only work loads but could lead to data cor-
ruption in the presence of updates. nolock is in-
cluded as a potential upper bound on performance.

rp Relativistic programming using the Usermode RCU
implementation. The write-lock is a pthread mu-
tex.

torp Totally Ordered Relativistic programming using
the Usermode RCU implementation. torp is the
same as rp except that wait-for-readers is called
before releasing the write-lock.

rwlr Reader-writer locks that favor readers. The im-
plementation is based on Mellor-Crummey and
Scott [13].



rwlw Reader-writer lock that favors writers. The im-
plementation is based on from Mellor-Crummey
and Scott [13].

Figure 18 shows read performance for a linked list of size
one—the shortest meaningful critical section. Both nolock
and rp scale linearly. There is overhead associated with
the rp read-side primitives, so the performance of rp is less
than that of nolock, however the overhead is both small
and fixed—additional threads do not increase the overhead.
Both of the reader-writer locks do not scale because addi-
tional threads mean more contention for the lock variable.
The additional contention for the lock variable exceeded any
benefit of parallelism so that the best performance was with
a single thread.
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Figure 18: Read performance with a list size of 1.
Reader-write locks do not scale because of the short
critical sections.

Figure 19 shows read performance with a list of size 1,000.
All synchronization mechanisms show good scalability be-
cause the critical section is large with respect to the cost of
synchronization. However, even for lists of size 1,000, the
performance of rwlw (and to a lesser extent rwlr) is notice-
ably less than linear for higher thread counts. The effects
of lock contention can be seen even for critical sections that
involve thousands of instructions.
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Figure 19: Read performance with a list size of 1000.
All synchronization mechanisms scale because the
size of the critical section is large with respect to
the cost of synchronization.

Figure 20 shows the update performance of rp and torp
across a range of list sizes. There were 15 concurrent read-
ers. Since torp has a wait-for-readers between each update,
and since the length of wait-for-readers should be propor-
tional to the length of read-sections (that is wait-for-readers

is O(N) where N is the length of the list), longer lists should
have a proportionally larger impact on torp. However, both
read-sections and write-sections are O(N), so both rp and
torp are affected by the list size in the same way.
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Figure 20: Update performance with 15 concurrent
readers. Larger list sizes do not adversely affect torp
despite the longer wait-for-readers because both the
wait and the write performance are O(list size).

In order to see the effect of wait-for-readers on torp, the list
update routines were changed so that updates were always
made to the first element of the list. The list was no longer
sorted, so lookups had to scan the entire list looking for the
desired element. With this configuration, writes were O(1)
with small constant and reads (and thus wait-for-readers)
were O(N). Update performance for this configuration is
shown in Figure 21. For larger lists, rp clearly outperforms
torp. The performance of rp is better for larger lists because
there is less contention for the first element of the list (the
one that gets updated) because readers spend a higher per-
centage of their time on later list elements with longer lists.
The performance of torp does not improve for longer lists
because the wait-for-readers takes longer.
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Figure 21: Update performance with 15 concurrent
readers using a O(1) update and O(N) read. The
difference between rp and torp gets progressively
bigger with larger lists because of the duration of
wait-for-readers.

In Section 5 we claimed that the delay in releasing the lock
for torp was no worse than the delay for acquiring the lock in
rwl. Figure 22 demonstrates this. The update performance
of torp tracks fairly closely with rwlw. However, as Figure 23
shows, torp has significantly better read performance than
rwlw. The read performance of torp is better than rwlr for
small list sizes, but about the same for larger list sizes.
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Figure 22: Update performance with 15 concurrent
readers. The performance of torp and rwlw because
torp has to wait for all current readers before re-
leasing the write lock and rwlw has to wait for all
current readers before acquiring the write lock.
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Figure 23: Read performance with 15 reader threads
and one writer.

7. CONCLUSION
We have argued that the correctness of a concurrent imple-
mentation can be maintained by limiting what order opera-
tions occur. We showed the ordering constraints required by
reader-writer locking and those required by relativistic pro-
gramming. The two relativistic programming primitives, rp-
publish and wait-for-readers can be used by relativistic writ-
ers to limit what orderings are visible to concurrent readers.
The rules for using these primitives are simple and easy to
understand. When these primitives are used correctly, only
orderings which yield correct reads are allowed. The bur-
den for correctness is placed on writers so that readers can
proceed without the need for heavy weight synchronization.
The different ordering requirements of relativistic programs
allows them to have higher performance and better scalabil-
ity than their reader-writer locking counterparts.
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