
Portland State University
PDXScholar
Computer Science Faculty Publications and
Presentations Computer Science

12-1993

Script-Based QOS Specifications for Multimedia Presentations
Richard Staehli
Oregon Graduate Institute of Science & Technology

Jonathan Walpole
Oregon Graduate Institute of Science & Technology

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

Part of the Computer and Systems Architecture Commons, and the OS and Networks Commons

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
"Script-Based QOS Specifications for Multimedia Presentations", Richard Staehli and Jonathan Walpole, OGI Technical Report No.
CS/E 93-021, December 1993.

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/75
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Script-Based QOS Specifications for Multimedia
Presentations*

Richard Staehli, Jonathan Walpole
{staehli, walpole} @cse. ogi. edu

Department of Computer Science & Engineering
Oregon Graduate Institute of Science & Technology

20000 N.W. Walker Rd., PO Box 91000
Portland, OR 97291-1000

ABSTRACT

Multimedia presentations can convey information not only by the sequence of events
but by their timing. The correctness of such presentations thus depends on the timing of
events as well as their sequence and content. This paper introduces a formal specification
language for playback of real-time presentations. The main contribution of this language
is a quality of service (QOS) specification that relaxes resolution and synchronization
requirements for playback. Our definitions give a precise meaning to the correctness of
a presentation. This specification language will form the basis for a QOS interface for
reservation of operating system resources.

Keywords: Resource Reservations, Real Time Multimedia Authoring, Operating Sys­
tems, Synchronization

1 Introduction

Multimedia systems typically support both static and dynamic media types. The static types
include text and graphics that the viewers peruse at their leisure. Dynamic types such as video and
animations present information that changes with time, and in fact the rate of change is a part of the
information that is being communicated. In order to communicate effectively, a system that supports
dynamic media types must be able to preserve the meaningful temporal relationships in a multimedia
presentation. Digital audio and video are known as continuous media because they approximate an
analog signal. Such media have natural synchronization constraints for playback that arise from
the sample recording rate. A multimedia presentation may also include synthetic synchronization
constraints, specified by the presentation's author, to create a meaningful relationship between
media objects. Synthetic constraints can be specified in most multimedia authoring tools [10, 5,
7, 4] both through explicit synchronization between objects and through rate control of continuous
media. Playback quality depends on how close the presentation events are to the specification. In
these systems, the playback quality of service (QOS) depends on scheduling mechanisms and the
availability of operating system resources that are not easily understood by a user.

In our architectural model, shown in Figure 1, an author uses a presentation specification
tool, which we refer to as a scripting tool, to define a presentation. A user views a presentation
via a playback tool that may be separate from the scripting tools. The playback tool may execute
concurrently with other unrelated applications in a general purpose computing system. While the

• This research is supported by NSF Grant IRI-9117008and by funds from Tektronix, Inc. and the Oregon Advanced
Computing Institute.

1

Playback Tool

QOS request

- -- -Object Services Resource Manager Real-Time Tasks

Figure 1: Specification of content and playback quality in multimedia presentations.

playback tool is responsible for the correct timing of the presentation it must rely on the underlying
operating system for timely access to resources. To limit the scope of the specification problem this
paper assumes that presentations are not interactive.

Presentation timing depends on the playback algorithm, the clock that provides time values,
the availability of required resources and the latency of presentation operations. Assuming that
the playback algorithm is correct, timing errors can arise from each of the latter three sources
independently. For example, if the rate of audio playback is controlled exclusively by a clock on
the output device then the audio may drift out of synch with a video stream that is controlled
by a different clock. A display process can miss deadlines while waiting in a ready queue while
another process executes on the CPU. A display process may have all needed resources before a
deadline, but still miss the deadline because of the inherent processing time required. A playback
algorithm can be designed to anticipate timing errors and reduce their impact on the remainder of
the presentation. An operating system can make this task easier by providing more information
about resource availability, system latencies and clock rates.

When resource loads make it impossible to satisfy all constraints in a presentation, a multimedia
system can either preserve the data content at the expense of timing or it can shed some of the
data processing load in order to meet more timing constraints. Some playback tools[5, 4] allow
presentation events to occur late, as scheduled by a non-real-time operating system. The alternative
is a real-time scheduling policy that chooses which deadlines to meet and and which tasks to defer or
drop. If a system does not provide resource reservations, then overload conditions will cause service to
degrade during multimedia presentations. Some playback tools incorporate algorithms that attempt
to preserve QOS for audio streams while video streams that can tolerate a greater loss in bandwidth
are allowed to miss frames. [8] As load increases, however, sharing a degradation of service eventually
leads to effective service to none! Resource reservations can be used as an alternative to provide
service guarantees for at least some users. A system that provides service guarantees must also have
an acceptance test that checks for availability of resources before providing guarantees to any user.

2

In other words, this approach avoids overloads by occasionally denying service to new users, rather
than degrading service for existing ones. To provide service guarantees, a service provider must
know which resources are needed and how much to reserve of each.

Recent research into protocols for network bandwidth reservation has yielded a number of pro­
posals for QOS specifications consisting of parameters such as max-message-size, max-msg-frequency,
average-message-rate, average-error-rate and averaging-interval.[12, 2] For multimedia presentations,
a reservation protocol must be able to ensure synchronized delivery of data from a number of sources.
Bandwidth reservations alone are insufficient because they do not provide an upper bound on start­
up latency. That is, the first unit of data on a guaranteed bandwidth connection might arrive too
late relative to data already presented from other connections. For simple presentations it might be
sensible to delay the start until connections have been set up for all media components, but in gen­
eral it is necessary to create and release connections during a presentation in order to use resources
efficiently.[14] In this paper, we define a QOS specification technique for multimedia presentations
that is based on timing constraints for individual presentation events. We argue that bandwidth
requirements for data channels are an implementation concern and may be derived from the out­
put timing constraints and a playback algorithm. The combination of output timing and content
constraints and a specification of acceptable timing and content errors define the QOS needed for a
presentation.

In multimedia systems, acceptable QOS depends both on the presentation author's content
specification and the user's preferences for playback. Although no multimedia system can achieve
the synchronization goals of a presentation perfectly, most playback tools do not allow one to specify
tolerances for errors. In other words, they lack a formal semantics for imperfect execution. If a
multimedia system is to service a maximum number of playback requests without allocating excessive
and costly resources, then a QOS interface is needed to enable the playback tools to specify their
requirements more precisely.

This paper describes Timesync: a language that specifies synchronization for all multimedia
presentation actions relative to a single clock. Real-time specification I anguages [3 , 1, 13] provide a
formal basis for proving correctness in real-time systems, but these languages do not dictate how one
is to specify tolerances for errors. The Timesync language shows one way to accomplish this, starting
with a real-time script and adding constraints on the number and type of exceptions to be allowed.
Timesync has a formal interpretation for its specification of timing constraints and error tolerances.
Such a specification can be used by an operating system to understand service requirements and,
with adequate support for resource reservations, provide presentation service guarantees.

The next section outlines the requirements that motivate the design of the Timesync language
followed by a discussion of related work in Section 3. Section 4 reviews the CSP notation that is
used in section 5 to define our language. In section 6 we assess the strengths and weaknesses of the
Timesync approach for specifying multimedia presentations. Our conclusions and a discussion of
future work is given in section 7.

2 Requirements for a Presentation Specification Language

A specification language for non-interactive multimedia presentations must be able to identify
the presentation contents as well as describe the synchronization and spatial layout of the contents
on the output devices. In addition to these basic requirements, we feel that a presentation language
should also attempt to meet the following goals:

• Physical data independence. A specification should have the same meaning across implemen­
tations of data sources.

• Recursive composition of presentations. Arbitrarily complex presentations can be specified by
composing simpler specifications.

• Formal semantics for error tolerances. It must be possible to detect when a presentation fails
to deliver its meaningful timing and contents.

3

• Completeness in expressibility. It should be possible to specify all meaningful synchronization
and layout of media objects.

• Soundness in constraint specifications. It should not be possible to specify conflicting con­
straints in a presentation.

• Simplicity. Common presentation types should be easy and compact to express. Unusual
presentation requirements should not be unnecessarily difficult.

3 Related Work

There are a large number of scripting tools for multimedia presentations, both in commercial
and experimental systems. QuickTime[ll], the well known commercial product from Apple, assigns
a playback time for each display action relative to a single clock. By translating each playback time
t to the clock interval (t', t'), where t' is the closest integral clock value closest to t, we can interpret
QuickTime movies directly as scripts with Timesync's formal semantics. There is, however, no
existing standard for specifying playback quality for QuickTime movies. Instead, the typical playback
algorithms perform a best effort scheduling of playback actions. In particular, an unbounded number
of video frames may be dropped when the video data path has insufficient bandwidth so that playback
is frequently unacceptable on an overloaded system.

The MAEstro system[5] provides a graphical timeline editor that allows easy specification of
synchronization between media objects that are represented as segments of various tracks within
the timeline. Again, the timeline editor specifies synchronization goals, not playback requirements.
In fact, the playback of a MAEstro composition is accomplished by best-effort dispatching of play
commands to separate (possibly remote) applications that support the playback of individual media
types. Naturally, on a Unix platform, a number of resource limitations may cause unpredictable
delays in the playback.

Little and Ghafoor have described an interval-based approach to specifying synchronization of
multimedia elements.[IO] Their approach provided some of the inspiration for the recursive compo­
sition of complex presentations described in this paper. However, their work still does not address
the specification of playback quality. An algorithm is given for playback that assumes ample system
resources are available to meet presentation deadlines.

4 A Brief Review of CSP

Our process specifications will use the definitions and notation developed by C.A.R. Hoare for
his Communicating Sequential Processes (CSP) [6]. We assume that the reader is familiar with this
work and that this section need only provide a brief review of terminology.

A process describes the behavior pattern of an object in terms of a finite set of events from
some alphabet. For example, we could describe the order of push and pop events in a stack using
the alphabet {push,pop}:

STACK = Po

Po = (push -+- PI)
Pn+1 = (push -+- Pn+21lPop -+- Pn)

A trace of a process execution is a finite sequence of events observed by the process in the order
that they occurred. Simultaneous events may be recorded in any order since there is no implication
of time elapsing between events. A process description constrains the order in which events occur
and traces(P) denotes the set of all possible traces of a process P.

Specifications are predicates on a trace that constrain the allowable sequences of events within
it. We use the following notation to talk about properties of a trace:

#t the number of events in a trace

4

t[i] is the ith event in trace t

A specification requiring that the number of pop events never exceed the number of push events in
a trace tr is written:

#pop in tr ~ #push in tr

We say that a process P satisfies a specification S if, for every possible trace tr of P, the predicate
S holds. We abbreviate this relation to

P sat S

5 Script-Based QOS Specification

To give our language a formal basis, we first define the low-level timing constraints based
on observable presentation and clock events. Later, we will introduce high level constructs and
composition operators that will make it easier to express common presentation components such as
synchronized audio and video segments.

5.1 Time.

A clock produces a monotonically increasing sequence of integer time values. A real-time
clock advances independently of an observer process but may communicate its value through read
operations. In general, a read operation may incur some delay so that the value of the clock read
may be somewhat smaller than the clock's current value. We model such a real-time clock with the
following CSP process:

RTCLOCI< = PollREAD

Pn = (tick -+ Pn+dlt.n -+ Pn)

READ = (bef.t.n -+ t.n -+ aft.t.n -+ READ)

where tick increments the clock value and bef.t.n, t.n and aft.t.n correspond to the initiation of a
read, assignment of the clock value n and completion of a read respectively.

A clock interval is a pair of time values (i,j) where i ~ j. An interval (i,j) contains another
interval (k, l) iff i ~ k 1\ 1 ~ j. For containment, we use the notation for a subset so that for two
intervals, [and [', [' C [means that [contains ['. Addition of an integer to an interval is defined
so that k + (i,j) == (i + k,j + k).

5.2 Actions.

While a CSP event is the instantaneous recording of an observation in the trace of a process,
multimedia presentation actions such as the transfer of a frame of video data to an output device,
may have non-zero duration and significantly overlap other presentation actions. An action produces
an observable state change that can be delimited in time by a pair of events. For example, a function
that displays a video frame is delimited by call and return events. Since a real-time specification
requires a total ordering of a constrained event with observations of the constraining time values, we
require that before and after events in the observing process causally precede and follow respectively
the initiation and completion of an action. For an action a we will let bef.a and aft.a denote these
events.

We would like to specify when significant actions occur in a process with respect to a (possibly
remote) real-time clock. As before, let t.i denote the action of reading a clock with i being the
value returned. An action a is said to occur during a clock interval (i, j + 1) iff a sequential process
reads the clock value i before the action and the value j after completion of the action. That is, the
trace of the process observes the event sequence < aft.t.i ... bef.a ... aft.a ... bef.t.j >. Figure 2
illustrates this synchronization with a minimum number of communications. Note that even if the
observer reads the same clock value i before and after the action, the clock interval during which
the event occurred, (i, i + 1), is non-zero.

5

observer

clock

action

aft.t.O
~

bef.a

__ ---.i_/
o
time

aft. a
~

bef.t.2 aft.t.2

t
~ r---,-_. __Ir-

2 3

Figure 2: From the event sequence < aft.t.O, bef.a, aft.a, bef.t.2 > the observer concludes that that
action a 0 in the interval (0,3).

5.3 Scripts.

A script is a mapping of actions to clock intervals. We write a script as a set of pairs (a, I)
where a is the description of an action and I is a clock interval. The lowest time value in a script is
defined to be the start time. We define the addition of an integer to a script as:

i + S == {(a, i + I)I(a, I) E S}

Logically a script is a real-time process specification with a timing constraint for each action.
In order to formalize this meaning for a script, we need to develop some machinery to help us relate
the pattern of events in the trace of a process to the constraints in a script. The following three
conditions allow us to define a unique interval for the occurrence of every action.

To interpret clock readings as times we must require that they are monotonically increasing as
mentioned previously:

CLOCK == Vi,j, k,l: (i < j /\ tr[i] = aft.t.k /\ tr[j] bef.t.l) => k ~ I

Requiring the first and last events in a trace to give us a bounding clock interval for the rest of the
events ensures that there exists at least one clock interval for every action:

BOUN DED 3i,j: tr[l] = aft.t.i /\ tr[#tr] = bef.t.j

Finally, if the same action a occurs more than once, that is, we observe the sequence of events
< bef.a ... aft.a . .. bef.a . .. aft.a >, then we must require that there be a reading of the clock
between the occurrences so that we can distinguish them:

DISTINGU ISH _ Vi < j : (s[i] = aft.a /\ s[j] bef.a) =>
(3k, I, m : i < k < I < j /\ s[k] bef.t.m /\ s[/] = aft.t.m)

We say that a process is 2 if all of its possible traces satisfy these requirements:

P sat CLOCK /\BOUNDED/\DISTINGUISH

In the rest of this paper, we will assume that all processes are 2 so that our timing specifications
have their intuitive meaning.

Let obs(tr) be the set of all traces that observe some subset of the events in tr in the same
order as they occur in tr:

obs(tr) == {slVi E {l .. . #s}3k: sri] = tr[k] /\ Vj E {i + 1 .. . #s}31: k < 1/\ s[j] = tr[/]}

6

Script

%~~ ~ % c!J trace a1 a2 a7

:!!!III
time

MI
·

L 0 · xl · V: ·

Figure 3: Example mapping of actions in a trace to the constraints in a script.

For any trace of a real-time process, the following definition gives us the set of most tightly con­
strained time intervals for each occurrence of an action in the trace:

tim(tr) == {(a, (i, j))l{aft.t.i, bef.a, aft.a, bef.t.j) E obs(tr)
/\-,3k, I: (aft.t.k, bef.a, aft.a, bef.t./) E obs(tr) /\ (k > i V I < j)}

Let R121 be the set of all one-to-one relations. Formally, we interpret the meaning of a script S,
abbreviated M(S), as a logical formula with free variable for a trace of a process tr:

M(S) == 3M E R121 : dom(M) = S /\ ran(M) = tim(tr) /\ V'«a, I), (a', 1')) E IV! : a = a' /\ I' c I

In other words, the constraints of the script should each be satisfied when mapped one-to-one onto
the timings of a trace. We say that a 2 process P satisfies a script S if, for every possible trace tr
of P, the constraints in M(S) hold. We abbreviate this relation to

P sat M(S)

5.4 Quality of Service Specification.

If the goal of a process is to satisfy a script, then an execution whose trace fails to satisfy the
script is of lower quality than one that does. A quality of service (QOS) specification may relax the
constraints on satisfying a script by telling what type of exceptions and how many of each can be
tolerated. Our definition for sat allows us to group exceptions in three sets:

V A one-to-one relation mapping elements of the script with elements in the trace that violate
either the action description or the timing constraints.

L Lost actions in the script that are not mapped to actions in the trace.

X Extra actions in the trace that are not mapped to actions in the script.

Figure 3 illustrates the definition of these sets. Set lV! shows those actions that satisfy the
script. Note that if a script constraint is not met by a given trace, it is ambiguous whether the
constrained action should be considered lost or whether it is somehow related to an action in the
trace that is in violation of the constraint. This ambiguity can only be resolved through constraints
on V that use knowledge of the application semantics.

We refer to the definition of the sets M, V, L and X as MAP:

MAP == 3M E R121 : dom(M) C S /\ ran(M) C tim(tr)

7

AL 8 - dom{M)

AX == tim{tr) - ran(M)
A3V eM: V((a, I), (al,I')) E M - V: a = a' A I' C I

A QOS specification may allow for specific actions to be lost, or it may place some constraint
on the number or pattern of missing actions. Similarly, extraneous actions and constraint violations
may be allowed for individually or with constraints on groups of actions. In general, the QOS
specification is a conjunction of logical formulae that express constraints on these three groups of
exceptions.

The "perfect" QOS specification, Qp(8), allows no exceptions, that is:

Qp(8) == MAP A (V = X = L = {}) == M(8)

We would like to be able to require that no more than one percent of the actions in a script are
missing in a trace. Using the definition of the set L, our QOS specification can restrict the size of
this set:

MAP A (V = X = {}) A (ILl :5 0.01181)

As another example, a QOS specification may allow for a range of offsets for the script's start time:

In general, a script-based QOS specification can be written as a logical formula of the form

3t : tl :5 t:5 t2 A MAPs+t // s A EXCEPTION8

where EX C E PT ION 8 contains free variables for the sets M, V, L and X defined in MAP.

5.5 Example Specification of Audio Playback.

To see how a QOS specification can be used in a practical example, consider the requirements
for real-time playback of digital audio. On a Sun Sparcstation, the audio device consumes a byte
stream at the rate of 8K bytes/sec. The audio hardware takes care of the digital to analog conversion
and the precise control of the sample output rate. The actions that we are concerned with are the
writing of data from a user process to /dev/audio. Let's assume that the user process writes 1K of
data at a time (enough for 1/8 second) and the device can buffer up-to 8K. The user process must
ensure both that the buffer does not overflow, causing a loss of data and that the buffer does not
become empty, causing the device to go silent.

The clock events can be derived from the audio device, by subtracting the number of bytes
in the buffer from the total number written. If starvation occurs (the buffer runs empty), we will
set the clock to its maximum value rather than having it pause. Clearly, this clock will mark any
actions that occur after starvation as having occurred late. Ideally, the write process will satisfy a
script that maps the writing of the nth 1K block of data to the clock interval (1000· n, 1000· n):

8 = {(writeo, (0, 0)), (write!, (1000, 1000)), .. . (write n , (lOOOn, 1000n))}

Recall that this constraint implies that the action writen begins after clock event t.(1000n) and
completes before t.{lOOOn + 1). If our user process obeys this script perfectly then there can be no
buffer overflows or starvation. This script is unnecessarily strict though, because it does not allow
the user process to work ahead, filling the 8K buffer. Also, many audio applications can tolerate
occasional noise and lost data and the user process may be more easily implemented if a perfect
stream of data is not required.

The following functions allow us to quantify constraint violations for a pair of constraints
(a,(i,j)) and (a', (i',j/)):

early((a,(i,j)), {a', (i/,j'))) == i - i'

8

late((a, (i,j)), (a', (i',j'))) == j' - j

while these boolean functions compare the actions and the intervals respectively:

same((a,(i,j)), (a', (i',j')))==a=a'

be/ore((a, (i,j)), (ai, (i',j'))) == j < i'

The timing constraints in S can be relaxed to allow workahead (up-to 7 1K blocks) with the
following constraint:

WORKAH EAD == 'V(c, c') E V : same((c, c')) A early((c, c')) ~ 7000 A late((c, c')) ~ 0

To insure that blocks are still written in order to the output device we add another constraint:

INORDER 'V(c,c'), (d,d') E V: (same(c,c') A same(d,d') A be/ore(c,d)):::} be/ore(c',d/)

Note that all intervals in the trace will be non-overlapping since they are performed serially.

Since failure to write a block of data would cause a loss of synchronization in the playback,
we must require that a replacement block of data be written for each block that is unavailable even
though this will cause noise. We can map each such replacement action to the appropriate action
in the script, but these mappings will be in the set of violations since the value of the data copied
does not meet the specification. Constraints on the frequency of data substitutions can be expressed
easily with a new definition. Let span(S) be the distance between the lowest and highest clock values
from all intervals in the set S. For example:

span({(a, (0,2)), (b, (1,2)), (c, (4, 6))}) 6

Then the following constraint prohibits more than 5 blocks of substituted data in any interval of
less than 50 seconds (at 8000 samples/second).

NOISE = ...,3N C V : 'V(c, c') E N...,same(c, c') A span(N) < 400000 A INI > 5

The full QOS specification for the user process that writes the audio data is then:

MAP A WORKAHEAD A INORDERA NOISE A (L X = {})

5.6 Multimedia Scripts

Multimedia scripts are created by. specifying synchronization of a set of media presentation
actions. A single media presentation action specifies the transfer of data from a typed data source
to a logical output device. For example, an action can specify the copying of the nth frame from
an MPEG compressed color video file to a window on a one-bit display. In this case, the source is
the output of a pipeline of processes which respectively read from the file, decompress the data and
transform the single frame (compressing in a different way) to a one-bit representation. The output
device is a window that is accessed via a window system display function. The only action that the
script will directly constrain in time is the transfer of data to the logical window.

The specification of sources and sinks for a presentation action do not specify implementation.
In particular, while the video pipeline could write directly to the window, the constraints on the
presentation action can also be met by introducing a buffer between the pipeline and a display
process so that writes to the window are decoupled from delays in the pipeline.

Similarly, the specification of the output device is a logical description of the device charac­
teristics so that user interface manager retains control of physical resources. The logical device
specification includes spatial layout and color mapping for graphics displays.

9

5.7 Script Composition Operators

In order to synchronize two actions in real-time they must be constrained according to the
same real-time clock. Since the clock events in a script refer to values of a common clock, all actions
in that script are synchronized with respect to each other. We would like to compose simple scripts,
synchronizing their elements, to form complex scripts. To make this easier, we define the following
composition operators, beginning with the time-shifting and scaling operators:

S+t == {(a,I +t)l(a,I) E S}

S * f == {(a, I * f)1(a, I) E S}

synch(Sl' S2)) == Sl U S2

Sl : S2 == synch(Sl, S2 + maxtime(Sd)

where maxtime(S) and mintime(S) are respectively the largest and smallest time values ref­
erenced in S.

iterate(n,S(i)) == S(l) : S(2) : ... S(n)

where S(i) is a script generation function that takes an integer argument.

clip((i,j), S) == {(a, (k - i,l- i))I(a, (k',l')) E S /\ k :::; 1/\ k = max(i, k') /\ 1= minU,I')}

The ability to clip suggests another operation to reverse the clipping operation:

source(clip(I, S)) == S

and another to modify it:

trim(i, j, clip((k ,I), S)) = clip(t3 + tl, t4 + t2, S)

If a script S has not been clipped from any other, then:

source(S) == S

One would like to extend these composition operators to apply to the QOS specifications
that may apply to sup-components of a presentation. In order to preserve the meaning of QOS
specifications when scripts are synchronized, the quantification of the MAP variables must continue
to apply to the same set of actions as before. For example:

These composition operators, along with standard parameterized definitions for error toler­
ances, can be used to specify common presentation types such as continuous media playback. More
work needs to be done to provide definitions for high-level specifications and to show how QOS
specifications are affected by the remaining composition operators.

6 Discussion

In Section 2 we listed 7 desirable features that a specification language for non-interactive
multimedia presentations should have. In this section, we consider how well the Timesync language
meets these goals .

• Physical data independence. Timesync specifications refer only to logical data objects, allowing
physical data pathways to be optimized as late as possible.

10

• Physical device independence. Both inputs and outputs are specified by logical attributes. A
Timesync specification may be executed on any configuration of devices so long as the output
resolution and other logical attributes are satisfied.

• Recursive composition of presentations. All the composition operations in Timesync can be
applied recursively with Timesync specifications as operands.

• Formal semantics for error tolerances. Timesync specifies its tolerance for errors via logical
formulae that are unambiguously true or false when bound to the trace of a presentation. The
value of this formalism is in exploiting knowledge of system resource availability and delays to
prove that a specification can be satisfied.

• Completeness in expressibility. 0 allows specification of a presentation trace with arbitrary
(within the resolution of the clock) synchronization between presentation actions. By widening
the timing constraints on individual actions it is also possible to specify a set of traces, all of
which satisfy the timing constraints. While it is desirable that a specification technique be
able to express the largest set set of traces that capture the meaning of a presentation, we
argue that, since Timesync can specify any single trace, it is complete.

• Soundness in constraint specifications. Since all primitive scripts are sound and all composition
steps preserve soundness, we conclude that all Timesync specifications are sound by induction.

• Simplicity. The primitive notion of a script is a simple way to specify synchronization of an
arbitrary number of actions. Iteration and recursive composition allow us to compactly specify
large sets of actions with complex timing relationships.

Although we argue that Timesync is complete in its ability to express synchronization, it is
worth discussing weather it shouldn't also be complete in its ability to specify allowable variations
in synchronization. For example, it seems natural to specify constraints on the rate of continuous
media presentations while making no restrictions on the amount of long-term drift from a static
schedule. Such rate constraints are expressed as synchronization relations between presentation
actions as opposed to the Timesync approach where actions are synchronized with the clock and
only indirectly with each other. In Timesync it is difficult to specify that event b should occur t
seconds after event a if a is constrained only to occur between tl and t2 with t2 - t1 > > t. Because
a Timesync script specifies all synchronization relative to a clock rather than between events, all
constraints between events must involve the exception specification.

Since we have already noted how a rate-based specification can be interpreted as constraints
relative to a real-time clock the question that remains is why would one want to allow drift? If the
concern is that we be able to use a physical clock that is imperfect, then the drift is transparent to
the playback tool since it does not see any other time source. On the other hand, if the concern is
for error handling, then we have a real debate. When a presentation action is delayed, a rate-based
approach might propagate the delay to subsequent actions to avoid skipping. The static scheduling
approach considers each late action as a constraint violation but expects subsequent actions to
maintain the original schedule. While the rate-based approach minimizes the loss of information in
a single stream, it makes it more difficult to maintain synchronization between multiple streams.
The static approach requires each stream to synchronize only with a single global clock.

7 Conclusions

This paper shows how to produce a formal process specification from a real-time script. Our
definition of a script is simple and intuitive as all synchronization is expressed relative to a single
real-time clock. Allowances for QOS degradation can be added to the formal specification through
constraints on the actions in a trace that do not strictly satisfy the script. The result is that
Timesync specifications can be used in a request for guaranteed service from an operating system.
The operating system's acceptance test must then analyze the Timesync specification in order to
identify resource requirements and to make reservations.

11

We intend to use Timesync specifications to request real-time services from a prototype of a
digital television editing workstation. In this application, each press of the play button initiates a
request for real-time service that the operating system may accept or reject depending on resource
availability. Such a prototype will require a method for generating Timesync specifications from the
playback tool, algorithms for planning real-time tasks to meet the timing constraints, analysis and
reservation of the resource requirements.

The idea that each play request is independently subjected to an acceptance test is admittedly
naive in that the user may demand predictable response during an entire editing session. The
specification of resource requirements for interactive editing sessions requires further research.

References

[1] M. Abadi, L. Lamport: An Old-Fashioned Recipe for Real Time. Tech. Rept. 91, DEC Systems
Research Center, October 1992.

[2] David P. Anderson: Metascheduling for Continuous Media. ACM Transactions on Computer
Systems, Vol. 11, No.3, August 1993, pp. 226-252.

[3] G. Berry, G. Gonthier: The Esterel Synchronous Programming Language: Design, Semantics,
Implementation. Tech. Rept. Res. Rept. No. 842, INRIA, 1988.

[4] Director 3.1, Studio Manual. Macromedia Inc., March 1993.

[5] G.D. Drapeau, H. Greenfield: MAEstro - A Distributed Multimedia Authoring Environment.
Proceedings of the Summer 1991 USENIX Conference, USENIX Association, pp. 315-328.

[6] C.A.R. Hoare: Communicating Sequential Processes. Prentice-Hall International, London, UK,
1985.

[7] M.E. Hodges, R.M. Sasnett, M.S. Ackerman: A construction set for multimedia applications,
IEEE Software, January 1989, pp. 37-43.

[8] K. Jeffay, D.L. Stone, T. Talley, F.D. Smith: Adaptive, Best-Effort Delivery of Digital Audio
and Video Across Packet-Switched Networks. Proceedings of the Third International Workshop
on Network and Operating System Support for Digital Audio and Video, November 1992, pp.
1-12.

[9] A. Lazar, G. Pacifici: Control of Resources in Broadband Networks with QOS Guarantees. IEEE
Communications Magazine, October 1991.

[10] T.D.C. Little, A. Ghafoor: Interval-Based Conceptual Models for Time-Dependent Multimedia
Data. IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No.4, August 1993, pp.
551-563.

[11] Apple Computer, Inc: Inside Macintosh: QuickTime, Addison-Wesley Publishing Co., 1993.

[12] Jean Ramaekers, Giorgio Ventre: Quality-of-Service Negotiation in a Real-Time Communica­
tion Network. Tech. Rept. TR-92-023, International Computer Science Institute, Berkeley, April
1992.

[13] G.M. Reed, A.W. Roscoe: A Timed Model for Communicating Sequential Processes, Proceed­
ings of the 13th International Colloquium on Automata, Languages and Programming, July
1986, Lecture Notes in Computer Science, No. 226, Springer-Verlag, pp. 315-323.

[14] R. Staehli, J. Walpole: Constrained-Latency Storage Access. Computer, Vol. 26, No.3, March
1993, pp. 44-53.

12

	Portland State University
	PDXScholar
	12-1993

	Script-Based QOS Specifications for Multimedia Presentations
	Richard Staehli
	Jonathan Walpole
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1391709735.pdf.4cOfq

