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Abstract 

Advances in hardware technology has fueled the proliferation of dynamically configurable 
network interface cards. This empowers mobile laptop users to select the most appropriate 
interface for their current environment. Unfortunately, the majority of system software remains 
"customized" for a particular network configuration, and assumes many network characteristics 
remain invariant over the runtime of the software. Physical Media Independence (PMI) is 
the concept of making assumptions about a particular device explicit, detecting events which 
invalidate these assumptions, and recovering once events are detected. 

This paper presents a model supporting PM!. Based on device availability, the model iden­
tifies implicit device-related assumptions made by contemporary network stacks, describes a 
methodology for making them explicit, and outlines what adaptation should occur when they 
are invalidated. The model is used to construct a new kernel entity, called the Interface Man­
agement Module (IMM), that supports PMI in the FreeBSD operating system. The benefits 
and limitations of the system are illustrated using a variety of network applications. The results 
show that transparency is difficult to maintain for all applications because they cache infor­
mation such as IP addresses and network bandwidth characteristics. We conclude that while 
low level support for PMI is important, the IMM needs to provide an interface for mapping 
application-level semantics down to low-level policy decisions. 

'This research is partially supported by ARPA grant N00014-94-1-0845. Jon Inouye is partially supported by an 
Intel Foundation Graduate Fellowship. Jim Binkley is supported by ARPA and the U.S. Air Force Rome Laboratory 
under contract F30602-95-1-0046. 
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1 Introd uction 

The goal of Physical Media Independence is desktop equivalence for network management. l Laptop 
computers are inherently more difficult to manage compared to desktop computers because the 
former are mobile and therefore live in dynamic network environments. Laptop computers are 
also equipped with hardware technology that allows them to dynamically switch between network 
interface cards (NIC) without powering off the computer. This flexibility allows laptop users to 
select the "best" network interface for any particular environment. 

Physical media independence is a software response to the challenge offered by technological 
advances in computer hardware and wireless networks. Compact lightweight notebook computers 
are widely available, provide competitive price and performance compared to their desktop coun­
terparts, and are easily transported from one location to another. Un-tethered network interfaces 
such as wireless LANs, packet radio, and cellular modems provide network connectivity without an 
anchoring wire [19]. Hot swapping technologies, such as PCMCIA [4, 15], allow users to dynamically 
insert and remove network devices while the computer is operating. These advanced technologies 
provide the flexibility to dynamically alternate between diverse network devices. However, software 
is responsible for realizing this potential. Software must exhibit various abilities to enable seamless 
operation while network devices are added and removed. Several examples are listed below: 

• Event detection and identification. Events affecting the environment must be detected and 
identified so the system can adapt to them. Detecting some events, such as connectivity, in 
a distributed environment can be a difficult task. 

• Graceful degradation. There should be no catastrophic failures! Obviously, there is no way a 
cellular phone link is equivalent to an Ethernet link, but connectivity should not suffer, only 
bandwidth. 

• Auto-reconfiguration. Transparency is important. Adaptation should not require skilled user 
interaction. By skilled, we mean knowledgeable about system administration. 

• Customizable. While transparency is often a desirable feature, more sophisticated applications 
may prefer to direct the reconfiguration. Customizable systems become semi-transparent by 
allowing application programmers to override the default kernel reconfiguration policies. 

These abilities can be illustrated using an example. It is quite easy to imagine the scenario 
where a student is busy at work at his Ethernet-connected docking station building a new version 
of xemacs on another machine and using Netscape Navigator to read the New York Times. In the 
Times entertainment section he notices an advertisement for the new Star Trek movie and visits 
the Paramount Web site to play the advertised 6 minute MPEG "trailer". He only gets through the 
first couple of minutes when he notices the time, suspends his laptop, removes it from the docking 
station, and makes it to the bus stop in time to catch the bus home. During the hour-long bus ride 
home, he inserts a PC Card 2 packet radio modem and resumes his reading. Reaching his stop, 
he suspends the laptop once again until after dinner. Replacing the packet radio modem with a 
cable modem (to improve bandwidth) the student reconnects to the network and resumes watching 
his movie trailer while investigating several undefined symbols that appeared while linking xemacs. 

1 Desktop equivalence is a somewhat overloaded term. We concentrate on network management. This can be 
considered the number of caJIs you need to make to technical support before you can read email, surf the Internet, 
or transfer files. 

2 A term used to describe a component that adheres to to the PCMCIA standard. 
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He finishes watching the trailer, adds four more libraries to the Makefile, completes the build, and 
installs the new version. 

This scenario is somewhat possible today, and most of the features should be available within 
several years.3 The student has used multiple network devices (Ethernet, packet radio modem, and 
cable modem) without having to reboot the computer, restart applications, or become super-user 
and reconfigure by hand. 

Application 
Upper 

Presentation 
Layers 

Session 

Transport 

Lower Network 

Layers Link 

Physical 

Figure 1: OSI Reference Model 

Using the OSI reference model (shown in Figure 1) as a reference, the features in the example 
above can be supported at different layers. Physical media independence focuses on the link layer, 
at the interface between the network layer protocols and the network drivers. In the next section 
we describe related research at other layers of the reference model. Section 3 describes different 
classes of applications and their requirements for seamless operation. A model supporting physical 
media independence is presented in Section 4. Section 5 describes an implementation and Section 6 
evaluates of the implementation using a diverse suite of application programs. We follow this with a 
discussion about dynamic reconfiguration in Section 7 and summarize our experiences in Section 8. 

2 Related Work 

Seamless mobility can be provided by functionality within a module or by a combination from 
various system components. As a basis for covering related work, we continue to use the OSI 
reference model. The upper layers usually provide end-user services, like application programs. 
New applications can be constructed to be mobile aware with the assistance of new protocols. 
POP mailers4 allow users to retrieve mail during periods of connectivity! and read mail after 
disconnection. Rather than build new applications from scratch, toolkits such as Rover [12] and 
Wit [27] allow existing applications to be re-engineered for mobility. The drawback of application 
level toolkits is they only benefit re-engineered applications. 

File systems can support mobility by hoarding files on local disks for use during periods of dis­
connection. This benefits legacy applications by permitting them to function while disconnected or 
connected over low-speed links. Coda [24] and OS/2 [26] use a combination of spying and user-level 
directives to build profiles of which files to hoard. Coda also has a specialized re-integration proto-

only fea.ture of this scenario unlikely to emerge within the next decade are bus seats where one can type 
comfortably! 

4Mail readers built on top the Post Office Protocol [17]. 
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Table 1: Related Work Summary 

Level I Systems 

Application Rover, Wit, POP mailers 

OS/FS Coda, OS/2 
Network Mobile IP 
Link Physical Media Independence, Vertical Handoff 
Physical Cellular networks, WaveLAN Roaming 

col for weakly-connected operation [16]. However, file systems tend to emphasize data availability 
rather than network connectivity. 

Columbia's Mobile IP [11] investigated the problem of supporting seamless mobility at the net­
work level. Now the responsibility of an IETF working group, Mobile IP [20] allows mobile nodes 
(both hosts and networks) to retain their IP addresses while traveling. The implications of this are 
profound. Legacy applications using long-lived TCP connections (such as telnet, r1ogin, and remote 
XlI clients) will continue to retain connectivity. Clients can find mobile information providers no 
matter where they happen to be located (as long as the client retains connectivity with its home 
agent). The Daedalus Group at the University of California Berkeley has demonstrated "verti­
cal handoff" which provides mobile IP handoffs across heterogeneous networks [25]. Transfering 
connections across heterogeneous devices while mobile is also a goal of Stanford's MosquitoNet 
project [2]. 

Seamless mobility can also be supported entirely at the physical level. The best example, which 
already exists, is the cellular telephone network. A point-to-point connection over a cellular modem 
may be continuously maintained while the mobile computer roams about. Many wireless LANs 
also support roaming, but only within the same physical network. 

2.1 Discussion 

Table 1 summarizes various projects using a layered model quite similar to the OSI model. The 
examples show that seamless mobility can be supported at different system layers but often require 
communication between the layers for best performance. Application level toolkits that make use 
of existing network implementations assume they will provide the best connectivity possible at any 
given moment in time. This is not always the case, and we discuss such situations in Section 4. 

Rather than simply benefiting re-engineered applications, hoarding file systems benefit legacy 
applications. However, due to their coarse granularity (files) and lack of application level seman­
tics, they can be less efficient than re-engineered applications that have better knowledge of the 
granularity, integrity, consistency, and priority of the working data set. 

Mobile IP and cellular networks provide seamless network and link layer connectivity respec­
tively, but being low-level mechanisms, they do not know about higher-layer semantics or assump­
tions. There are known performance problems associated with certain transport protocols running 
over mobile IP and wireless networks. Caceres [5] demonstrated how handoffs and lossy wireless 
networks can affect reliable flow-controlled transport protocols like TCP. Developed primary on 
fixed and wired hosts, TCP's congestion control policies politely reduce throughput when packets 
are not acknowledged within a given time frame. This can inappropriately limit throughput after 
cell handoffs or while operating on lossy wireless links. To alleviate these problems, various strate­
gies have been used. Loss of throughput during cell handoff has been reduced by taking advantage 
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of features in modern TCP implementations to restart TCP's retransmission timer [5] and multi­
casting packets to adjacent cells [3]. Bandwidth over lossy wireless networks has been improved by 
the use of a snoop protocol [3] where a local agent retransmits packets over the wireless connection. 

File systems can also make assumptions about the characteristics of the underlying network. 
For example, you can move a NFS client away from its home network. Using Mobile IP, you can 
connect it to a foreign network and tunnel packets to and from the NFS server. Or you can dialup a 
modem on the server using a cellular modem and establish a point-to-point connection. While these 
solution provide connectivity, most applications making heavy use of the file system will notice a 
significant difference between local and remote operation! 

We do not want to claim that any particular level best supports mobility since each has its own 
advantages and disadvantages. Rather, we view the solution of seamless mobility to include support 
at, and cooperation between, all layers. In this paper we present the role we see for physical media 
independence and how it might be supported in contemporary systems. 

3 Requirements for Physical Media Independence 

A system supports physical media independence if it adapts gracefully to changes in the available 
physical media, such as the addition and removal of network interfaces. Conceptually, physical 
media independence presents a virtual link-layer interface to higher layer protocols. This virtual 
interface is available as long as some physical interfaces are available. It becomes unavailable only 
when no physical interfaces remain available. 

The definition of PMI presented above leaves room for a range of possible PMI solutions, 
each preserving a different degree of transparency for higher-level connections. One criterion for 
distinguishing among PMI solutions is their ability to establish new connections following changes 
in physical interfaces. Another is their ability to migrate existing connections transparently among 
physical interfaces. These characteristics dictate the class of higher-level applications that are 
well-supported by a particular PMI solution. 

• Fine-grain information clients. An information client obtains information from remote in­
formation sources. A client is fine-grain if its reliance on connection-oriented protocols is 
"short". World Wide Web browsers are a good example of fine-grain clients. While HTTP 
transactions are based on connection-oriented transfers, starting a new transfer does not re­
quire the use of the same link, network, or transport address on the client-side. An aborted 
transaction is not very obtrusive unless it is long lived, such as obtaining a 20 MB MPEG 
video over a 14.4 Kbps modem. To support fine-grain information clients, a physical media 
independent system only needs to be able to support new connections over a new interface. 
Connections are terminated when interfaces are removed or the network address changes. 

• Fine-grain server. An information provider requires that it clients be able to locate it no 
matter where is happens to be attached to the network. A more responsive DNS system 
might be able to support fine-grain servers without supporting seamless connectivity. Details 
of such as system are beyond the scope of this paper. Connections are terminated when 
interfaces are removed or the network address changes. 

• Continuous connectivity Connections bound to an interface are migrated to other available 
interfaces, or suspended and resumed when an interface becomes available. Applications that 
require this include long-lived, session-based, interactive applications such as remote login 
shells and telnet-based on-line library database searches. 
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Table 2: Device Characteristics 

I Present I Device is physically attached 

Power Power is available 
Connect Link-level connectivity 
Bound Network name is bound to device 
Price Cost of using device is within budget 
Enabled User allows the device to be enabled 

It is our opinion that mobile hosts will rarely be primary information providers. When a mobile 
host is disconnected or suspended, it is not able to service any requests for information making it 
ill-suited for such applications. 

4 A Model to Support Physical Media Independence 

A network interface is the software abstraction of a physical network device. Interfaces can be 
available or unavailable. When an interface is available, packets sent to it by the network layer are 
passed to the link layer where they are encapsulated into frames and sent out the physical network 
device. Packets received by the physical network device are passed by the device driver up to the 
network layer. Packets do not flow across an interface in either direction when it is unavailable. 

We define six characteristics that determine when an interface is available.5 An interface is 
present if both the hardware device and the software driver exists. An interface is connected if 
there exists a connection at the link layer.6 We only consider link layer connectivity here, not 
network connectivity. So a twisted pair Ethernet interface card connected to an isolated hub would 
be considered connected. An interface is bound when there exists a binding to a higher level name, 
such as a network address. An interface is powered if the network device has enough power to 
function. Because many wireless devices may be expensive to use, we also associated a price with 
each interface. An interface is enabled unless it is specifically disabled by user-level directives 
such as ifconfig. Equation 1 states the an interface [ is available if the conjunction of its six 
characteristics are true. 

Available(I) f- [present 1\ [power 1\ [connect 1\ hound 1\ [price 1\ [enabled (1) 

The truth values of characteristics may be changed by a variety of events. We denote Ec as 
an event changing the value of characteristic c. Hardware interrupts are generated when PCMCIA 
devices (PC cards) are inserted or removed. Theses interrupts are serviced within Card Services7 

where they are passed on to the PMI Manager via Epresent messages. Many device have the ability 
to detect changes in link layer connectivity and pass this information on to their drivers. For 
example, serial devices detect the loss of a data terminal ready (DTR) signal, twisted pair Ethernet 
devices detect loss in link integrity, and WaveLAN devices monitor signal strength. Drivers which 
either actively probe or handle device interrupts generate Econnected when link layer status changes 
are detected. Changes in binding and device status are initiated through the use of system calls 

SThese six are relevant for our domain, and we concede the likely existence of other useful characteristics, such as 
security, for other domains. 

6This characteristic is required since many users disconnect cables rather than remove cards. The latter operation 
is often unnecessarily difficult to do on some laptops. 

7This software module supports PCMCIA cards. 
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Figure 2: Characteristic Modifying Events 

using the operating system application programming interface (API). These system calls generate 
Ebo'Und and Eenabled messages. We follow the PC Card '95 Standard where Card Services (rather 
than the device drivers themselves) I generate Epower messages in response to power management 
operations. Both applications and other system modules can issue requests for notification, ReI if 
characteristic c changes. This includes device availability. The PMI Manager will respond with 
a signal notification, Nc on receipt of an Ee message. Figure 2 illustrates the model in a typical 
environment. Note that PCMCIA insertion and removal events will be masked by power suspension, 
and we assume the Card Services will generate the appropriate messages when power is restored. 

Contemporary network stack implementations often make assumptions about the availability 
of an interface and its characteristics. While these assumptions are correct for traditional fixed 
systems, they are invalidated by emerging mobile systems. Many of these assumptions take the 
form of binding associations where an interface is bound to another structure. Before a network 
layer protocol can use an IEEE 802 interface, it must establish a binding between the network 
and link layer address. For performance reasons, these bindings are often cached. Some protocols 
assume that bindings rarely change once they are established which obviates the need to maintain 
strong consistency between binding caches. ARP [21] maintains consistency using timers; bindings 
are cached until they expire. There is no mechanism to invalidate an ARP binding though such 
mechanisms have been proposed [13]. Routing daemons bind routes to interfaces. Routes are often 
cached in protocol control blocks to avoid searching the routing table for each packet. Connections 
are another type of binding association. Transport protocols like TCP [22] represent a connection 
as a binding between two endpoints. These endpoints are usually network addresses, which are 
in turn bound to interfaces. Other possible bindings include quality of service (QoS) agreements, 
scope, group management (IGMP), and security. 

While these assumptions are not always appropriate, we do not want to insert interpretation 
code to validate assumptions before using the code specialized on those assumptions. One worst case 
scenario would be to probe the device to determine whether it is present, powered, and connected 
each time its interface is referenced. This complicates the code and degrades performance. Our 
solution is to continue using assumptions, but make them explicit. This requires placing guards in 
locations that detect events invalidating assumptions. Because these events are relatively infrequent 
compared to the number of times the assumptions are used, making assumptions explicit has a 
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negligible impact on performance. 
When guards are executed, they trigger replugging actions which must invalidate the assump­

tions protected by the guard. This involves re-binding the data structures that assume a static 
network interface. Bindings associated with that interface can be reconfigured to adopt another 
available interface. For example, routes can be redirected to a different interface. If no other inter­
faces are available, then new requests for external connection are rejected and existing connections 
are suspended. If an entity has requested to be notified of changes in device unavailability, then it 
is sent a notification event. 

We depend on Mobile IP [20] to hide changes in network bindings from higher level protocols. 
Mobile IP supports this using a layer of indirection provided by intermediate routers (called the 
Home Agent and the Foreign Agent) that forward packets to and from the mobile host. 

5 Implementation 

We implemented a subset of the model in the FreeBSD operating system.8 We chose FreeBSD 
due to the freely distributed nature of the code, low cost, commercial quality of the network stack, 
documentation on the network stack, and it booted easily on our platform, a Toshiba T4900CT 
laptop computer. The disadvantages of choosing FreeBSD are the alpha nature of the PC card and 
APM [10] support. The FreeBSD network code is derived from the 4.4BSD-LITE distribution [28]. 

Table 3: Guarding Device Availability 

Characteristic I Guards 

Present PCMCIA callbacks (intercepted in CS) 
Bound ioctl (SIOCSIFADDR command) 
Connected network monitor events 
Powered APM events (intercepted in CS) 
Price cost monitor events 
Enabled ioctl (SIOCSIFFLAGS command) 

Table 3 list the six characteristics of an available device and the events which change their 
state. When cards are inserted or removed, PCMCIA socket controllers generate interrupts and 
the Card Services (CS) module probes to controller's registers to determine what event caused the 
interrupt. Changes in the bound and enabled state are detected by guards in the ioctl calls that 
set an interface's flags and addresses. Changes in link layer connectivity are much harder to detect 
since there is no uniform standard for this ability. The IEEE 802.3 lOBASE-T standard defines a 
twisted-pair Ethernet link integrity test but does not require all such devices to implement it. Many 
wireless LAN cards provide mechanisms for detecting the signal strength of other cards operating 
within its range. However, these features may not be available unless the device driver exports the 
capability. In cases where drivers lack the ability to detect changes in link layer connectivity, we 
use a network monitor to detects connectivity changes at the network layer. The network monitor 
lives outside the kernel in a user-level process. Periodically, it uses ioctl calls to build an image of 
the available interfaces. For each interface that does not support a link layer connectivity check, a 
connectivity node (CN) is selected using the following criteria. For a point-to-point interface, the 
node at the other end of the connection is chosen. For an 802-type interface, the network monitor 

8We used version 2.1-RELEASE with the pccard-test-960414 patchfile from the FreeBSD Nomad group. 
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Figure 3: Physical Media Independence in BSD Unix 

uses the network mask and IP address of the interface to create a su bset of the IP address space to 
search for a CN. At a configurable periodic interval, ICMP request messages are sent to each CN. 
If N pings in a row are lost, the monitor uses an ioctl call to signal that connectivity has been 
lost. 

This design suffers from having to retain a host route to the CN, which also requires the interface 
to remain "available" for the network monitor to continue pinging it. Without this, it is impossible 
to discover re-establishment of link-level connectivity. This design also does not work for a mobile 
host equipped with mobile IP. On a foreign network, a mobile host continues to use its own IP 
address.9 

We are currently re-implementing the network monitor to use the BSD packet filter to send 
out and receive ICMP packets. A better solution would be to standardize such a capability in the 
device driver interface and network devices. 

The cost monitor design is still in a state of fluctuation and has not been used in any of the 
experiments. The basic idea is that the user specifies the "cost" associated with each interface. 
The cost monitor uses this specification to keep track of how much network interfaces are costing. 
For "connection-oriented" interfaces like cellular phones, cost is monitored by the amount of time 
the interface is available. "Data-oriented" interfaces like CDPD modems are monitored using the 
BSD packet filter [14J which monitors the data flow through the interface in determining the cost. 

Figure 3 shows the block diagram of the implementation. The Interface Management Module 
(IMM) lives inside the kerne1. 10 The IMM receives events about changes in an interfaces traits. 
When an interface becomes available or unavailable, a replugging action is performed to reconfigure 
the network stack for the new environment. 

5.1 Replugging 

The 4.4BSD-LITE implementation represents interfaces using an ifnet structure. When an in­
terface becomes unavailable all bindings, i.e., references, to its ifnet structure must be updated. 
Figure 4 illustrate some of the primary data structures used in the 4.4BSD-LITE implementation. 

9Mobile IP also allows the host to acquire a care-of-address (COA). 
10 Actually, there is also a significant portion that lives outside the kernel. 
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Figure 4: Network Data Structures in 4.4BSD-LITE 

We used grep on the FreeBSD sources to track down the various possible bindings to an ifnet 
structure. We found direct references from various other kernel data structures including inter­
face address (ifaddr) back pointers, device-specific interfaces, the Berkeley packet filter, route 
table entries, multicast address structures (for IGMP), and virtual interfaces (for multicast rout­
ing). There are also many indirect references through these references. Pattern matching tools 
like grep are a poor match for this type of task and we are continuing to find new bindings that 
need to be replugged. We have collaborators developing both compiler-based and run-time tools 
to automatically track references (both direct and indirect) to particular data structures [6]. 

Interface flags. The ifnet structure is extended with additional flags representing the six device 
characteristics. The IMM toggles these characteristics on reception of Ec messages. After updating 
the flags, a check is performed to determine whether the availability status should be changed. 
When an interface becomes available we do not need to perform any additional operations beyond 
those performed by FreeBSD. ll When an interface becomes unavailable, its ifnet structure is 
marked down by clearing the IFF _UP flag. Operations to set and unset the IFF _UP flag are modified 
to use the IFF _ENABLED flag instead. 

Route table entries. All routing table entries associated with that interface are invalidated. 
This includes ARP entries for neighbors, static entries (like the default route), and entries with 
gateways using that interface. Static entries are preserved over the life of the operating system. 
For example, if a static route is removed because an interface becomes unavailable, it is restored 
when the interface becomes available and has the same name binding. Messages are sent to the 
routing socket to notify the routing daemon that an interface has been marked down. 

11 It may be useful for an existing connection to migrate to new interface for better bandwidth, QoS guarantees, 
etc. 
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IP multicast groups. Each interface may be associated with IP multicast groups as specified 
by RFC 1112 [7]. We needed to decide whether or not to migrate group membership information 
to another available interface. Migration is not always possible since not all interfaces support mul­
ticasting and there are other complications. Our first implementation migrates group information 
by searching the list of interfaces until one supporting multicast is found. This does not always 
lead to a better solution as our experiments illustrate, and we are reconsidering this decision. 

6 Evaluation 

Figure 5 shows the network configuration used by the experiments. There are five hosts, repre­
sented by rectangles, on three physical networks connected by a Cisco router (GW). An AT&T 
WavePOINT bridge [1] provides subnet 130.95.50 with WaveLAN access [23]. The mobile host, 
kehaar, is running FreeBSD while indurain, church, and orange are running HP-UX 9.03, So­
laris 2.3, and SunOS 4.1.3_U1 respectively. The PPP server lives on network 130.95.40 and is 
configured to assign IP addresses based on the dialup line. All dialup addresses are allocated from 
a separate virtual network (130.95.48). The netmask for all subnets in this example is 255.255.255.0. 

Several applications are used to evaluate the system. kehaar is running Mosaic (World Wide 
Web browser accessing pages on church), httpd (an Apache HTTP server), nv (MBONE network 
video conference tool using IP multicast), ttcp (network benchmark program that sends UDP 
packets to orange), and rlogin (login session to indurain). church is running another HTTP 
server, orange is running nv and ttcp, and indurain is running Mosaic (accessing Web pages 
on kehaar). kehaar can use three network interfaces: a serial device for PPP connections (tunO), 
Ethernet PC Card (edO), or WaveLAN PC Card (wlpO). The Ethernet and WaveLAN devices are 
hot swappable. 

6.1 Experiments 

We evaluate our initial implementation of a physical media independent system using a series 
of simple experiments. In the first experiment, kehaar starts with an Ethernet connection. The 
Ethernet card is removed and a connection to the PPP server is established using the serial interface 
and a 14.4 Kbps modem. Dynamic routing is being used in passive mode (routed with -q option) 
and the initial default route is set to the Cisco router (GW). The PPP client will set the default 
route to point to the other end of the point-to-point interface if one does not exist. 
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6.2 Results 

Table 4 summarizes the behavior of the three applications when switching from the Ethernet to the 
PPP interface. Since our mobile IP implementation is not finished, requests to httpd will never 
reach it when kehaar acquires a new IP address. If kehaar had registered a dialup IP addresses 
to its host name (multi-homed node) then an intelligent client that steps through each IP address 
in a hostent structure will eventually connect to kehaar, if kehaar is connected. Due to the hard 
assignment of IP address to dialin lines on the PPP server, that is not an option in this case and 
the approach is not scalable without a change to the Domain Name Service (DNS) system. 

The rlogin application faces a similar fate. While the IMM allows packets to flow out the 
interface, the source address of the packets remains 130.95.50.39. The return packets from orange 
never reach kehaar and the session becomes unresponsive. While it is possible to alter the packet's 
source address on kehaar, the other endpoint would reject them since it has already established 
a binding to address 130.95.50.39 and there is no mechanism to re-establish a new binding except 
for aborting the connection and creating a new one. Mobile IP would allow rlogin to continue 
operating. 

The new IP address does not produce a crippling affect on information clients. If the Mosaic 
browser was performing a transaction when the interface was removed, the connection will stall but 
this can be aborted at the GUI level by clicking on the spinning globe. New HTTP transactions can 
be initiated over the PPP interface. In the original FreeBSD system, an ARP entry to church is 
cached in the routing table so all new TCP connections to that host will fail with the message "host 
is unreachable" until the entry times out. 12 Since the IMM scrubs the ARP entries associated with 
neighbors of an unavailable interface, this is not a problem in our system. In this case, Mobile IP 
may provide less than optimal performance since the data sent in response to the request would be 
forwarded from the home agent. No such indirection exists if the kehaar uses the new IP address. 
There is current research in avoiding Mobile IP's "triangle routing" but it still requires network 
connectivity to the home agent for authentication before packets are forwarded [18]. 

The ttcp application fails in both cases, but due to different reasons. When a PC Card is 
removed, FreeBSD marks the interface down but doesn't touch the routes. UDP packets sent to 
orange will find a route but notice that the interface used by the route is down so a "Network 
is down" error will be generated. The IMM removes routes, so while no other external interfaces 
are available, UDP packets will not even find a route to orange so a "No route to host" error will 
be generated. While UDP is connectionless, applications that assume constant connectivity will 
not survive periods of disconnection while interfaces are swapped. If the user had started up the 
PPP server before removing the Ethernet card, an interface would always have been available, even 
though some packets might have been lost. 13 

nv is a video conferencing tool, but kehaar is sending output from the XlI display since it 
has no video capture hardware. Both IP multicast send and receive ability is lost during migration 
to the PPP interface. In the case of unmodified FreeBSD, the Ethernet interface is marked down 
and all packets sent to that interface will be discarded. With the IMM, the IP multicast group 
is migrated from the Ethernet device to the PPP device (whose flags indicate it has multicast 
capability). Unfortunately, the PPP server does not support IP multicast ability and appears to 
discard packets when it receives them. In both cases, packets are discarded but with the IMM 
migrating the group packets are sent out the PPP connection. While we only using a 64 Kbps 

default expiration time of an ARP entry is 20 minutes. 
131n the current implementation, mbufs attached to a device's output queue are not migrated to another available 

device. It is possible to migrate these buffers, but the link layer headers in them require transformation when 
migrating to another type of network interface. 
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stream this is enough to overwhelm a 14.4 Kbps connection and cause the UDP buffer to overflow. 
This results in less bandwidth available for other connections, and a new rlogin connection will 
notice this! Transparently migrating the multicast group results in no additional functionality and 
worse overall performance. We are currently debating whether or not IP multicast groups should 
be migrated, and if they should migrate, under what conditions is this acceptable. 

Table 4: Experiment 2 Results 

Application FreeBSD 2.1-RELEASE FreeBSD with IMM 

Mosaic HTTP requests to church normal operation 
block 

HTTP server becomes unavailable becomes unavailable 
ttcp exits when sendto returns er- exits when sendto returns er-

ror ENETDOWN ror EHOSTUNREACH 

nv fails but no packets sent over fails but packets sent over PPP 
PPP connection connection 

rlogin connection unresponsive connection unresponsive 

7 Discussion 

We have presented a model supporting physical media independence and an initial implementation 
of the model. The model is based on the availability of interfaces and follows an event-driven ap­
proach. An interface is represented as a state machine where a state is defined by its characteristics 
(present, connected, etc). A deficiency in our model is that it only detects events that cause state 
transitions. What our models fails to accomplish is motivate state transitions. While the user is the 
only one capable in creating Epresent events, there are sufficient mechanisms that allow the system 
to manufacture the other characteristics. Moving the responsibility of initiating these events away 
from the end user is closer to the desirable trait of auto-configuration. 

7.1 Dynamic Reconfiguration 

We use the term dynamic reconjiguration to imply the system has the responsibility of motivating 
and manufacturing state changes in device availability. For example, several PPP implementations 
support the ability to dial into a PPP server and acquire an IP address on demand, that is, when 
packets are sent to the interface. The device driver and PPP client (which contains the dial in 
and authentication information) are tightly integrated to provide the functionality of a virtual 
connection. Combining this capability with a cellular modem and a intelligent power managed 
device provides the system with the mechanisms to change the device's characteristics without user 
intervention. 

We break down this functionality into two parts. The first task is to determine when a device 
should attempt to change its availability status. This involves knowing a device's capabilities and 
being able to intelligently select which devices should be made available and which should be 
made unavailable. It also involves the determining the conditions that should initiate an interface's 
migration to a new state. For example, if you are flying cross-country, you can connect to home 
PPP server via a modem and a GTE AirFone. However, this connection will be rather expensive 
and therefore should not be transparent to the user footing the bill! 
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The second task is to determine how to initiate a change in a device characteristic. There are 
many ways of acquiring a binding to an IP address. Mobile IP allows you to use the same IP address 
of the host, no matter where it is connected. Router advertisement packets inform an unbound 
interface about the current network address and available routers on that network [8]. Interfaces 
can then automatically acquire a network address using either the MAC address14 or the Dynamic 
Host Configuration Protocol (DHCP) [9]. 

One active area of research we are investigating is a high-level specification language that allows 
users to request certain guarantees from the system and allows to system flexibility in meeting these 
goals. This may help pass user-level information down to the IMM to help in policy decisions such 
as choosing a default route, resolving power vs. connectivity conflicts, and selecting an appropriate 
monetary budget for network connectivity. 

8 Summary 

Physical media independence (PMI) hides significant link layer events from higher layer protocols 
unless they specify an interest in them. We have defined the concept of physical media independence 
and its role in supporting, at the link layer, the more ambitious goal of seamless mobility. An event­
driven model based on device availability is presented to support physical media independence in 
contemporary systems that retain assumptions about the persistence of network interfaces. This 
model makes such assumptions explicit by placing guards at locations where these assumptions 
may be invalidated. When an event invalidating an assumption is detected, a replugging operation 
is performed to invalidate or correct the bindings (assumptions) in use. 

We described a partial implementation of the model using the 4.4BSD-LITE network stack in 
the FreeBSD operating system. A simple experiment using a variety of applications has shown 
the advantages of the PMI-enhanced FreeBSD has over the original. However, there is one case 
where performance suffers because the link layer does not understand higher level semantics such 
as necessary bandwidth. The initial implementation is designed to react to events, but an example 
was given where an implementation may want to manufacture events and this is an area of ongoing 
research. Physical media independence will not, by itself, provide seamless mobility. But it is a 
useful and necessary tool in achieving it. 
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