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Paper ID: ACC03-SHT0068 

Using Dynamic Optimization for Control of Real Rate CPU Resource Management 

Applications* 

Varin Vahia�, Ashvin Goel�, David Steere�, Jonathan Walpole�, Molly H. Shor� 

Abstract: 

In this paper we design a proportional-period optimal controller for allocating CPU to real rate multimedia 

applications on a general-purpose computer system. We model this computer system problem in to state 

space form. We design a controller based on dynamic optimization LQR tracking techniques to minimize 

short term and long term time deviation from the current time stamp and also CPU usage. Preliminary 

results on an experimental set up are encouraging. 

Introduction/Motivation: 

General-purpose computers must fulfill the CPU and network needs of real-rate multimedia and sensor-

based real-time applications. These real-rate flows have bounded end-to-end delay requirements in addition 

to other jitter and dithering requirements. Current approaches to tackle this problem in the computer system 

community, such as selective data dropping so that the data rate matches available resources, specialized 

hardware for particular applications, and reservation-based schemes perform well, but they have their own 

limitations. For example, in poorly designed data dropping systems, quality can quickly degrade to 

unacceptable levels. Reservation based schemes waste resources, as the reserved amount of resources may 

not be optimal. Design and testing of such methods is approached as an experimental science.

 Recently, several researchers have started looking into the use of feedback control algorithms for 

resource allocation. For example, Goel et al. designed a PI controller for Network and CPU resource 

management for real-rate systems [1], [2]. In this paper we design a feedback controller for real-rate 

systems based on optimal control and dynamic programming techniques. We set up the computer system 

problem as a LQR infinite horizon dynamic optimization tracking problem with modified state feedback.  

* This work was supported  part by DARPA/ITO under the Information Technology Expeditions, Ubiquitous Computing, Quorum, 
and PCE5 programs, NSF grants ECS-998843 and CCR-9966440 and EIA-0130334, and by Intel 
� Department of Electrical and Computer Engineering, Oregon State University, Corvallis OR 97331 
� Department of Computer Science and Engineering, Oregon Graduate Institute, Portland. 
 



 

Overview of System: 

This controller is a modification of the PI controller designed earlier by Goel et al [1], [2] and uses the 

same system setup. We describe the system briefly here. For more details, refer to [1], [2]. Our multimedia 

real-rate systems use a pipelined abstraction from source to sink having intermediate stages (Figure 1). 

These real-rate flows require CPU, network and possibly other resources at various pipeline stages. 

 

   

 

Figure 1. Pipeline configuration 

At each pipeline stage, a feedback mechanism decides how much of the resource to allocate based 

on only local measurements. This will separate the control of each pipeline stage from the others and allow 

cascading of individual stages without difficulty of implementation.  

 To control such a system, we need a measurement that tells how far ahead or behind a flow is from 

the sender�s real rate. This can be achieved by marking each packet with a time stamp that indicates the 

time offset from the first packet in the flow. These time-stamps represent the application�s logical time. For 

example, this logical time may be the playback time of the video application. The real-rate mechanism aims 

to transmit data in such a way that real system time stays aligned with these time stamps.  

 If ti  is the time-stamp of the packet at the head of the buffer, where i is the current sampling 

instant of the controller, and the sampling period is s, then ti  -   ti-1   would be the logical time-stamp interval 

between the packets transmitted one sampling period apart and the real rate of the flow at sampling instant i 

would be (ti  -   ti-1)/s.  We define the error variable z1 to be the difference between this current real rate and 

the target real rate of one. 

 We also need another error variable z2
   to keep track of the long-term behavior of the real rate. For 

this, we can simply add the individual real rates at each sampling instant. This should be equal to the total 

real time progress made until the current time. These two error variables need to be minimized.  
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System Modeling: 

The next step needed to design a controller is the system�s mathematical model, which will describe our 

system.  The following model describes our system reasonably well.    

  (2)                             1)/1(1)/1(1 −−−+−= inikipikitit  

Here, pi-1 is the allocation assigned during the last period, ni-1 is the amount of assigned allocation not used 

by the application in the last period, and ki is the variable that relates the amount of progress made to the 

allocation actually used by the application. The variable ki is random by nature and varies by a factor of 

two. This variable relates the amount of progress made in terms of time-stamps to the cycles actually run by 

the system.   

Control Design Setup as a Dynamic Optimization Tracking Problem: 

We have a state-space system model (2) and errors that we want to minimize (1). The error variable z1 

includes the previous state 1−it , so we augment the state space in order to obtain error variables in terms of 

current state variables. These augmented states are selected as 1
ix  = 1

iz  + 1 and 2
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iz + 1. Then the 

new state equations are: 
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Also we have =− np number of cycles run, which is directly measurable from the system. The controlled 

variable p dominates, and the noise n relatively very small, so we neglect n in our control design. Taking u 

= p, we write the state equations in matrix form: 

 

 

The next step is to come up with a cost function to be minimized. In our case, we want the augmented 

states to track unity. In addition we also want to minimize the resource allocated to avoid over-allocating to 

the application, so we include the input variable in the cost function. After all these considerations, the cost 

function is given in the equation below: 
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Here, x is the state vector, u the input allocation and i the index of the sampling period. The matrices Q and 

R are the weightings given to the state and input  variables and they are positive semi-definite and positive 

definite respectively. We have selected Q to be around 1000 times more than R. It is also possible to weight 

the first and second state variables differently. We have weighted them the same.  

Minimizing this cost function, we find that we should use the allocation given in equation (3), 

which is the steady-state solution to the standard LQR tracking problem with the augmented states. This 

steady-state solution is applicable under the condition that pair (A, B) is controllable. This condition is 

satisfied in our case.  
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K is the feedback gain for our system and Kv is the feed forward gain. S is the solution to the Riccati 

equation. We must solve this Riccati equation in order to calculate the gain. I have solved the Riccati 

equation using generalized eigenvalue problem [7, 8]. We wanted to have very simple controller with less 

overhead in computation. So, we have solved the equation analytically.   

  Generalized Riccati equation is: 

0)( '
1

1
1121

'' =++−− − HXFGXGGGXGFXXFF t  

Comparing it with our Riccati equation, 
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Hence, for getting eigenvalues, 
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 Solving 0=− LM λ , we get following eigenvalues, 
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Now computing eigenvectors, 
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Solving this we get, 
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For other stableλ, 
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This is the solution of the Riccati equation.  

Hence, feedback gain K for our controller would be:  
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Computing the K, 
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Computing Feed forward gain Kv, 
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From equation (3) we can calculate v. So, now input will be: 

 vKxKu v
i += −1*  

The steps to calculate allocation online would be: 

1. Calculate eigenvalue, 
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2. Calculate z for eigenvector. 
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3. Calculate feedback and feed forward gain. 
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4. And finally calculate, input u. 

            vKxKu v
i += −1*  



Statistics collected from running the system are used to estimate the average ik in the state equation, and 

the estimated value of ik is used to compute the controller. Two extreme approaches are to compute 

average ik and compute the controller once, as done in the experiment below, or to update the controller 

frequently as ik changes. 

Test on experimental setup: 

We have implemented this controller on the Linux-2.2 operating system using Kernel developed at OGI 

[4]. We have used a simple application structured as a producer and a consumer thread (Figure 2).  

 

 

 

 

 

Figure 2 Producer Consumer application structure 

The period for this producer-consumer system is 16 msec. The producer works for some number of cycles 

and writes data into the buffer. We pre specify the allocation to the producer at the command line. Producer 

varies the rate at which it produces data by factor of two from period to period. The consumer reads from 

the buffer and works on the data for the number of cycles allocated by the controller in each period.  

Figure 3 shows the sample run of the experiment to test the controller. The allocation of the 

producer is kept fixed at around 20 % of CPU per period. The controller determines the allocation to the 

consumer to keep up with the producer�s real rate. As can be seen, the long-term error and instantaneous 

error remain close enough to zero. When the producer changes the amount of data produced the consumer 

has to change its allocation to new value. At this instance, time errors deviate from zero instantaneously. 

But in a very short time, the controller adjusts the allocation to the consumer and errors return to zero. This 

instantaneous deviation is less than 20 msec, which is quite acceptable. Also, note that there is no 

accumulation of error as can be seen from plot of long tem error. Cost function J�s value is decreased by 

around 7 % from the cost of the previous PI controller. So, the controller performs quite well on the 

experimental setup.  

Producer PP Scheduler 

Real Rate 
Controller 

Buffer 

Gain Time Stamp



 

Figure 3 Plots for z1 and z2 vs. Time for optimizing controller 

 

Figure 4 Plots for z1 and z2 vs. Time for earlier PI controller 

Conclusion and future work: 

This is our first attempt to apply dynamic optimization to this computer system resource allocation 

problem. Initial results are encouraging and more dedicated research in this area can go a long way in 

helping computer system designers. 

    Future work includes more testing of the controller on real MPEG videos. MPEG frames have 

time stamps that are quantized at 33 msec time intervals at each frame. The progress made by a MPEG 

decoder is only observed by the controller once a complete frame is decoded. This creates some sampling 

issues that must be addressed because our controller sampling interval is currently 16 msec. We also need 

to modify our design problem to avoid emptying the buffer of the next stage, in case it is a video display 

stage. 

The related work of Luca [6] uses a priori information on the type of video frames to be decoded 

to allocate CPU for each frame in a real-time O/S. Our goal is to determine control strategies without 

use of a priori information. 
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