
Portland State University
PDXScholar
Computer Science Faculty Publications and
Presentations Computer Science

12-2003

Using Dynamic Optimization for Control of Real Rate CPU
Resource Management Applications
Varin Vahia
Oregon State University

Ashvin Goel
Oregon Graduate Institute of Science & Technology

David Steere
Oregon Graduate Institute of Science & Technology

Jonathan Walpole
Oregon Graduate Institute of Science & Technology

Molly H. Shor
Oregon State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

Part of the Computer and Systems Architecture Commons, and the OS and Networks Commons

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications
and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Vahia, Varin; Goel, Ashvin; Steere, David; Walpole, Jonathan; and Shor, Molly H., "Using Dynamic Optimization for Control of Real
Rate CPU Resource Management Applications" (2003). Computer Science Faculty Publications and Presentations. 85.
https://pdxscholar.library.pdx.edu/compsci_fac/85

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/37765482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/85
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac/85?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Paper ID: ACC03-SHT0068

Using Dynamic Optimization for Control of Real Rate CPU Resource Management

Applications*

Varin Vahia�, Ashvin Goel�, David Steere�, Jonathan Walpole�, Molly H. Shor�

Abstract:

In this paper we design a proportional-period optimal controller for allocating CPU to real rate multimedia

applications on a general-purpose computer system. We model this computer system problem in to state

space form. We design a controller based on dynamic optimization LQR tracking techniques to minimize

short term and long term time deviation from the current time stamp and also CPU usage. Preliminary

results on an experimental set up are encouraging.

Introduction/Motivation:

General-purpose computers must fulfill the CPU and network needs of real-rate multimedia and sensor-

based real-time applications. These real-rate flows have bounded end-to-end delay requirements in addition

to other jitter and dithering requirements. Current approaches to tackle this problem in the computer system

community, such as selective data dropping so that the data rate matches available resources, specialized

hardware for particular applications, and reservation-based schemes perform well, but they have their own

limitations. For example, in poorly designed data dropping systems, quality can quickly degrade to

unacceptable levels. Reservation based schemes waste resources, as the reserved amount of resources may

not be optimal. Design and testing of such methods is approached as an experimental science.

 Recently, several researchers have started looking into the use of feedback control algorithms for

resource allocation. For example, Goel et al. designed a PI controller for Network and CPU resource

management for real-rate systems [1], [2]. In this paper we design a feedback controller for real-rate

systems based on optimal control and dynamic programming techniques. We set up the computer system

problem as a LQR infinite horizon dynamic optimization tracking problem with modified state feedback.

* This work was supported part by DARPA/ITO under the Information Technology Expeditions, Ubiquitous Computing, Quorum,
and PCE5 programs, NSF grants ECS-998843 and CCR-9966440 and EIA-0130334, and by Intel
� Department of Electrical and Computer Engineering, Oregon State University, Corvallis OR 97331
� Department of Computer Science and Engineering, Oregon Graduate Institute, Portland.

Overview of System:

This controller is a modification of the PI controller designed earlier by Goel et al [1], [2] and uses the

same system setup. We describe the system briefly here. For more details, refer to [1], [2]. Our multimedia

real-rate systems use a pipelined abstraction from source to sink having intermediate stages (Figure 1).

These real-rate flows require CPU, network and possibly other resources at various pipeline stages.

Figure 1. Pipeline configuration

At each pipeline stage, a feedback mechanism decides how much of the resource to allocate based

on only local measurements. This will separate the control of each pipeline stage from the others and allow

cascading of individual stages without difficulty of implementation.

 To control such a system, we need a measurement that tells how far ahead or behind a flow is from

the sender�s real rate. This can be achieved by marking each packet with a time stamp that indicates the

time offset from the first packet in the flow. These time-stamps represent the application�s logical time. For

example, this logical time may be the playback time of the video application. The real-rate mechanism aims

to transmit data in such a way that real system time stays aligned with these time stamps.

 If ti is the time-stamp of the packet at the head of the buffer, where i is the current sampling

instant of the controller, and the sampling period is s, then ti - ti-1 would be the logical time-stamp interval

between the packets transmitted one sampling period apart and the real rate of the flow at sampling instant i

would be (ti - ti-1)/s. We define the error variable z1 to be the difference between this current real rate and

the target real rate of one.

 We also need another error variable z2
 to keep track of the long-term behavior of the real rate. For

this, we can simply add the individual real rates at each sampling instant. This should be equal to the total

real time progress made until the current time. These two error variables need to be minimized.

 iitsiz

itsiz

−=

−−−=

)/1(2

(1) 1)1it)(/1(1

Source

Controller

Resource
Scheduler

Buffer

Time-stamps

Source
Resource
Scheduler

Controller

System Modeling:

The next step needed to design a controller is the system�s mathematical model, which will describe our

system. The following model describes our system reasonably well.

 (2) 1)/1(1)/1(1 −−−+−= inikipikitit

Here, pi-1 is the allocation assigned during the last period, ni-1 is the amount of assigned allocation not used

by the application in the last period, and ki is the variable that relates the amount of progress made to the

allocation actually used by the application. The variable ki is random by nature and varies by a factor of

two. This variable relates the amount of progress made in terms of time-stamps to the cycles actually run by

the system.

Control Design Setup as a Dynamic Optimization Tracking Problem:

We have a state-space system model (2) and errors that we want to minimize (1). The error variable z1

includes the previous state 1−it , so we augment the state space in order to obtain error variables in terms of

current state variables. These augmented states are selected as 1
ix = 1

iz + 1 and 2
ix = 2

iz + 1. Then the

new state equations are:

1))/(1(1))/(1(2
1

2
1))/(1(1))/(1(1)1it)(/1(1

−+−+−=

−+−=−−−=

insikipsikixix

insikipsikitsix

Also we have =− np number of cycles run, which is directly measurable from the system. The controlled

variable p dominates, and the noise n relatively very small, so we neglect n in our control design. Taking u

= p, we write the state equations in matrix form:

The next step is to come up with a cost function to be minimized. In our case, we want the augmented

states to track unity. In addition we also want to minimize the resource allocated to avoid over-allocating to

the application, so we include the input variable in the cost function. After all these considerations, the cost

function is given in the equation below:







 ′
∑
=

+−′−
→∞

=
N

i iuiRiuxixiQxix
N

LimJ
0

))()((Where, 







=

1

1
x

1)(1

)(1

2
1

1
1

10
00

2

1

−+

−

−= 




































iu

sik/

sik/

ix

ix

ix

ix

Here, x is the state vector, u the input allocation and i the index of the sampling period. The matrices Q and

R are the weightings given to the state and input variables and they are positive semi-definite and positive

definite respectively. We have selected Q to be around 1000 times more than R. It is also possible to weight

the first and second state variables differently. We have weighted them the same.

Minimizing this cost function, we find that we should use the allocation given in equation (3),

which is the steady-state solution to the standard LQR tracking problem with the augmented states. This

steady-state solution is applicable under the condition that pair (A, B) is controllable. This condition is

satisfied in our case.

 vvKiKxixu +=)(

xQvBKAv

BRSBBvK

QASBRSBBkSBSAS

SABRSBBK

+′−=

′−+′=

+′−+′−′=

′−+′−=

)(

1)(

(3)]1)([

1)(Where,

K is the feedback gain for our system and Kv is the feed forward gain. S is the solution to the Riccati

equation. We must solve this Riccati equation in order to calculate the gain. I have solved the Riccati

equation using generalized eigenvalue problem [7, 8]. We wanted to have very simple controller with less

overhead in computation. So, we have solved the equation analytically.

 Generalized Riccati equation is:

0)('
1

1
1121

'' =++−− − HXFGXGGGXGFXXFF t

Comparing it with our Riccati equation,

'
1

1
21

21 ,,,

GGGG

HQRGBGFA
−=

====

 G [] 







=








= 22

22

/1/1
/1/1

/1/1/1
/1
/1

/1
cc
cc

Rcc
c
c

R



















=







=



















−
−

=







−

=

1000
0000

)/(1)/(110
)/(1)/(101

0

1010
0101
0010
0000

0

22

22

'

RcRc
RcRc

F
GI

L

IH
F

M

Hence, for getting eigenvalues,

010
101

1/10
1/

110
001

1/10
1/

101
010

1/1/1

1010
0101

1/1/10
1/1/0

−
−

−−
−+

−−
−

−−
−−

−−

−−−
−=−



















−−
−

−−−
−−−

=−

c
c

c
c

cc
LM

cc
cc

LM

λλ
λ

λ

λλ
λ

λ

λλλ
λλ

λ

λλλ
λλλ

λ

 Solving 0=− LM λ , we get following eigenvalues,

0,
)1(*2

54)32(

1

11

+
+±+

=
c

cc
λ

Where,

2
1)(* skRc i=

Now computing eigenvectors,



















=





































−−
−

−−−
−−−

0
0
0
0

4
3
1
1

1010
0101
//10
//0

11

11

e
e
e
e

cc
cc

λ

λλλ
λλλ

Solving this we get,

1
)1(

4,1
1

2,31 2 eeeeee 







−
−=








−
−−==

λ
λ

λ
λ

So, for λ = 0



















=

0
1
0
1

r1eigenvecto

For other stableλ,



















=

4
1

2
1

2

e

e
reigenvecto








=⇒
















==








=






=⇒



















=

−
−

2/40
01

20
11

40
11

40
11

 ,
20

11

40
11
20

11
,

1
1

12

21

ee
S

ee
UUS

e
U

e
U

e

e
U

So

This is the solution of the Riccati equation.

Hence, feedback gain K for our controller would be:

SABRSBBK '1')(−+=

Computing the K,

[]

)2/41(/1

/1
/1

2/40
01

/1/1

2'

'

eecSBB

c
c

ee
ccSBB

+=⇒

















=

[]

[])2/4(/10

10
00

2/40
01

/1/1

'

'

eecSAB

ee
ccSAB

=⇒
















=

 [])2/4(/10*])2/41(/1[12 eecReecK −++=

Computing Feed forward gain Kv,

[]ccReecvK

BRSBBvK

/1/1])2/41(/1[12

1)(
−++=

′−+′=

From equation (3) we can calculate v. So, now input will be:

 vKxKu v
i += −1*

The steps to calculate allocation online would be:

1. Calculate eigenvalue,

)1(*2
54)32(

1

11

+
+−+

=
c

cc
λ

Where,)(*1 skRc i=

2. Calculate z for eigenvector.

1
)1(

4

1
1

2

131

2 ee

ee

ee









−
−=









−
−−=

==

λ
λ
λ
λ

3. Calculate feedback and feed forward gain.

 [])2/4(/10*])2/41(/1[12 eecReecK −++=

[]ccReecvK /1/1])2/41(/1[12 −++=

4. And finally calculate, input u.

 vKxKu v
i += −1*

Statistics collected from running the system are used to estimate the average ik in the state equation, and

the estimated value of ik is used to compute the controller. Two extreme approaches are to compute

average ik and compute the controller once, as done in the experiment below, or to update the controller

frequently as ik changes.

Test on experimental setup:

We have implemented this controller on the Linux-2.2 operating system using Kernel developed at OGI

[4]. We have used a simple application structured as a producer and a consumer thread (Figure 2).

Figure 2 Producer Consumer application structure

The period for this producer-consumer system is 16 msec. The producer works for some number of cycles

and writes data into the buffer. We pre specify the allocation to the producer at the command line. Producer

varies the rate at which it produces data by factor of two from period to period. The consumer reads from

the buffer and works on the data for the number of cycles allocated by the controller in each period.

Figure 3 shows the sample run of the experiment to test the controller. The allocation of the

producer is kept fixed at around 20 % of CPU per period. The controller determines the allocation to the

consumer to keep up with the producer�s real rate. As can be seen, the long-term error and instantaneous

error remain close enough to zero. When the producer changes the amount of data produced the consumer

has to change its allocation to new value. At this instance, time errors deviate from zero instantaneously.

But in a very short time, the controller adjusts the allocation to the consumer and errors return to zero. This

instantaneous deviation is less than 20 msec, which is quite acceptable. Also, note that there is no

accumulation of error as can be seen from plot of long tem error. Cost function J�s value is decreased by

around 7 % from the cost of the previous PI controller. So, the controller performs quite well on the

experimental setup.

Producer PP Scheduler

Real Rate
Controller

Buffer

Gain Time Stamp

Figure 3 Plots for z1 and z2 vs. Time for optimizing controller

Figure 4 Plots for z1 and z2 vs. Time for earlier PI controller

Conclusion and future work:

This is our first attempt to apply dynamic optimization to this computer system resource allocation

problem. Initial results are encouraging and more dedicated research in this area can go a long way in

helping computer system designers.

 Future work includes more testing of the controller on real MPEG videos. MPEG frames have

time stamps that are quantized at 33 msec time intervals at each frame. The progress made by a MPEG

decoder is only observed by the controller once a complete frame is decoded. This creates some sampling

issues that must be addressed because our controller sampling interval is currently 16 msec. We also need

to modify our design problem to avoid emptying the buffer of the next stage, in case it is a video display

stage.

The related work of Luca [6] uses a priori information on the type of video frames to be decoded

to allocate CPU for each frame in a real-time O/S. Our goal is to determine control strategies without

use of a priori information.

References:

[1] David Steere, Molly H Shor, Ashvin Goel, Jonathan Walpole and Calton Pu, Control and Modeling

issues in computer Operating Systems: Resource Management for Real-Rate Computer Applications, In

Proceedings of 39th IEEE Conference on Decision and Control (CDC) December 2000.

[2] Ashvin Goel, Molly H. Shor, Jonathan Walpole, David C. Steere, and Calton Pu Using Feedback

Control for a Network and CPU resource Management Application, In Proceedings of the 2001 American

Control Conference (ACC), June 2001.

 [3] Frank L. Lewis and Vassilis L. Syrmos, Optimal Control, Second Edition, Wiley-Interscience

Publications, 1995.

[4] Quasars software and OGI Linux kernel: http://www.cse.ogi.edu/DISC/projects/quasar/releases/

[5] Longer version of paper: ftp://cse/ogi/edu/pub/tech-reports/2002/02-007.pdf

[6] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan Walpole, Analysis of a Reservation-Based

Feedback Scheduler. Proceedings of the IEEE Real-Time Systems Symposium, December 2002.

[7] Thrasyvoulos Pappas, Alan j. Laub and Nils R. Sandell Jr. On the Numerical Solution of the Discrete-

Time Algebraic Riccati Equation. IEEE Transactions on Automatic Control, Vol. AC-25, No.4, august

1980.

[8] A. Laub, A Schur Method for Solving Algebraic Riccati Equations.IEEE transaction on Automatic

Control, AC-24 1979.

	Portland State University
	PDXScholar
	12-2003

	Using Dynamic Optimization for Control of Real Rate CPU Resource Management Applications
	Varin Vahia
	Ashvin Goel
	David Steere
	Jonathan Walpole
	Molly H. Shor
	Let us know how access to this document benefits you.
	Citation Details

	Microsoft Word - 3D865500-7021-0DF4.doc

