
Portland State University
PDXScholar
Computer Science Faculty Publications and
Presentations Computer Science

9-1998

A Feedback-driven Proportion Allocator for Real-Rate Scheduling
David Steere

Ashvin Goel

Joshua Gruenberg

Dylan McNamee

Calton Pu

See next page for additional authors

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

Part of the Computer Engineering Commons, and the OS and Networks Commons

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
"A Feedback-driven Proportion Allocator for Real-Rate Scheduling" David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan
McNamee, Calton Pu, and Jonathan Walpole, Oregon Graduate Institute CSE Technical Report 98-014, September 1998.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/37765479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/34
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Authors
David Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Calton Pu, and Jonathan Walpole

This technical report is available at PDXScholar: https://pdxscholar.library.pdx.edu/compsci_fac/34

https://pdxscholar.library.pdx.edu/compsci_fac/34?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages

1 Introduction
CPU scheduling in conventional general pur-

pose operating systems performs poorly for real-
rate applications, applications with specific rate or
throughput requirements in which the rate is driven
by real-world demands. Examples of real-rate
applications are software modems, web servers,
speech recognition, and multimedia players. These
kinds of applications are becoming increasingly
popular, which warrants revisiting the issue of
scheduling. The reason for the poor performance is
that most general purpose operating systems use
priority-based scheduling, which is inflexible and
not suited to fine-grain resource allocation. Real-
time operating systems have offered another
approach based on proportion and period. In this
approach threads are assigned a portion of the CPU
over a period of time, where the correct portion and
period are analytically determined by human
experts. However, reservation-based scheduling
has yet to be widely accepted for general purpose

systems because of the difficulty of correctly esti-
mating a thread's required portion and period.

In this paper we propose a technique to dynami-
cally estimate the proportion and period needed by
a particular job based on observations of its
progress. As a result, our system can offer the ben-
efits of proportional scheduling without requiring
the use of reservations. With these estimates, the
system can assign the appropriate proportion and
period to a job’s thread(s), alleviating the need for
input from human experts. Our technique is based
on feedback, so the proportions and periods
assigned to threads change dynamically and auto-
matically as the resource requirements of the
threads change. Given a sufficiently general,
responsive, stable, and accurate estimator of
progress, we can replace the priority-based sched-
ulers of the past with schedulers based on propor-
tion and period, and thus avoid the drawbacks
associated with priority-based scheduling.

This project was supported in part by DARPA contracts/grants N66001-97-C-8522, N66001-97-C-8523, and
F19628-95-C-0193, and by Tektronix, Inc. and Intel Corporation.

A Feedback-driven Proportion Allocator for Real-Rate Scheduling

David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee,
Calton Pu, and Jonathan Walpole

Department of Computer Science and Engineering
Oregon Graduate Institute

Abstract

 In this paper we propose changing the decades-old practice of allocating CPU to threads based on pri-
ority to a scheme based on proportion and period. Our scheme allocates to each thread a percentage of
CPU cycles over a period of time, and uses a feedback-based adaptive scheduler to assign automatically
both proportion and period. Applications with known requirements, such as isochronous software devices,
can bypass the adaptive scheduler by specifying their desired proportion and/or period. As a result, our
scheme provides reservations to applications that need them, and the benefits of proportion and period to
those that do not. Adaptive scheduling using proportion and period has several distinct benefits over either
fixed or adaptive priority based schemes: finer grain control of allocation, lower variance in the amount of
cycles allocated to a thread, and avoidance of accidental priority inversion and starvation, including
defense against denial-of-service attacks. This paper describes our design of an adaptive controller and
proportion-period scheduler, its implementation in Linux, and presents experimental validation of our
approach.

The fundamental problem with priority-based
scheduling is that knowledge of a job's priority by
itself is not sufficient to allocate resources to the
job properly. For example, one cannot express
dependencies between jobs using priorities, or
specify how to share resources between jobs with
different priorities. As a result, priority-based
schemes have several potential problems, including
starvation, priority inversion, and lack of fine-grain
allocation. Use of adaptive mechanisms like the
multi-level feedback scheduler[3] alleviate some of
these problems, but introduce new ones as the
recent deployment of fixed real-time priorities in
systems such as Linux and Windows NT can attest.

Our approach avoids these drawbacks by using
a controller that assigns proportion and period
based on estimations of a thread’s progress. It
avoids starvation by ensuring that every job in the
system is assigned a non-zero percentage of the
CPU. It avoids priority inversion by allocating CPU
based on need as measured by progress, rather than
on priority. It provides fine-grain control since
threads can request specific portions of the CPU,
e.g., assigning 60% of the CPU to thread X and
40% to thread Y.

The key enabling technology to our approach is
a feedback-based controller that assigns proportion
and period to threads based on measurements of
their progress. For example, the progress of a pro-
ducer or consumer of a bounded buffer can be esti-
mated by the fill level of the buffer. If it is full, the
consumer is falling behind and needs more CPU,
whereas the producer has been making too much
progress and has spare CPU to offer. In cases
where progress cannot be directly measured, we
provide heuristics designed to provide reasonable
performance. For example, the scheduler can give
interactive jobs reasonable performance by assign-
ing them a small period and estimating their pro-
portion by measuring the amount of time they
typically run before blocking.

The remainder of this paper describes our
approach in more detail. Section 2 motivates the
need for adaptive proportion/period schedulers.
Section 3 presents our solution, including a
description of our implementation. Section 4 dis-
cusses implications of our solution, and presents
experimental measurements of our prototype. Sec-
tion 5 describes similar approaches to the question
of scheduling.

2 Motivation
The limitations of priority-based scheduling

were graphically demonstrated to the world
recently when NASA’s Mars Pathfinder robot expe-
rienced repeated resets due to priority inversion
[13]. Occasionally, a high priority task was blocked
waiting for a mutex held by a low priority task.
Unfortunately, the low priority task was starved for
CPU by several other tasks with medium priority.
Eventually, the system would detect that the high
priority task was missing deadlines and would reset
itself. More insidious than the problem itself is the
difficulty of finding the bug when it occurs. In this
case, the mutex was buried under several layers of
abstraction; no reasonable amount of code inspec-
tion would have discovered the bug. Fortunately, a
combination of good engineering, run-time debug-
ging support, and the fact that a mutex was the
source of the inversion helped NASA engineers to
correct the bug [12][17].

The problems of priority inversion and starva-
tion occur because priorities alone are not expres-
sive enough to capture all desired relationships
between jobs. As a result, priority-based schemes
are forced to use kludges to compensate, such as
passing priorities through mutexes or decreasing
the priority of CPU-bound jobs. These mechanisms
have worked well in the past, but they have unto-
ward side-effects.

For example, to ensure that the kernel allocates
sufficient CPU to an important CPU-bound job
running on Unix, one could nice it. However, as it
continues to use its time-slice the kernel will auto-
matically reduce its priority until it is running at or
below the priorities of less important jobs. Alterna-
tively, one could assign it a fixed real-time priority
which is higher than the normal priorities, guaran-
teeing that it will run. Unfortunately, it will then
run to the exclusion of all jobs in the system with
lower priority. Consider a job running at a (fixed)
real-time priority that spin-waits on user input.
Since the X server typically runs at a lower priority
than the real-time thread, it will be unable to gener-
ate the input for which the thread is spinning, and
the system will livelock. Note that the solution
used by the Mars Pathfinder of passing priority
through mutexes[18] will not help in this situation.

3 Our Solution
Our solution is based on the notion of progress.

Ideally, resource allocation should ensure that
every job maintains a sufficient rate of progress
towards completing its tasks. Allocating more CPU
than is needed will be wasted, whereas allocating
less than is needed will delay the job. In essence,
our solution monitors the progress of jobs and
increases or decreases the allocation of CPU to
those jobs as needed. In our terminology, a job is a
collection of cooperating threads that may or may
not be contained in the same process.

Figure 1 shows the high-level architecture of
our design. The scheduler dispatches threads in
order to ensure that they receive their assigned pro-
portion of the CPU during their period. A control-
ler periodically monitors the progress made by the
threads, and adjusts each job’s proportion automat-
ically. We call this adjustment actuation or adapta-
tion, since it involves tuning the system’s behavior
in the same sense that an automatic cruise control
adjusts the speed of a car by adjusting its throttle.
Readers should note that the diagram resembles a
classic closed-loop, or feedback, controlled sys-
tem. This dynamic adaptation controlled by feed-
back is necessary because the needs of jobs, and
the composition of jobs running on the system vary
with time. The following subsections address each
of the key points in the architecture.

3.1 The Reservation Scheduler
Our scheduler is a standard “reservation-

based” scheduler that allocates CPU to threads

based on two attributes: proportion and period. The
proportion is a percentage, specified in parts-per-
thousand, of the duration of the period during
which the application should get the CPU, and the
period is the time interval, specified in millisec-
onds, over which the allocation must be given. For
example, if one thread has been given a proportion
of 50 out of 1000 (5%) and a period of 30 millisec-
onds, it should be able to run up to 1.5 milliseconds
every 30 milliseconds.

Intuitively, the period defines a repeating dead-
line. To meet the deadline, the application must
perform some amount of work. Hence, to satisfy
the application the scheduler must allocate suffi-
cient CPU cycles, which in our case is the propor-
tion times the period times the CPU’s clock rate. If
the scheduler cannot allocate the appropriate
amount of time to the thread, the thread is said to
have missed a deadline.

 An advantage of reservation-based scheduling1

(RBS) is that one can easily detect overload by
summing the proportions: a sum greater than or
equal to one indicates the CPU is oversubscribed.
If the scheduler is conservative, it can reserve some
capacity by setting the overload threshold to less
than 1. For example, one might wish to reserve
capacity to cover the overhead of scheduling and
interrupt handling.

Figure 1: Diagram of Closed-loop Control

ThreadThread Thread Thread

Scheduler/DispatcherController

Monitor
Progress

Actuate

Allocate
Resources

This diagram shows the rough architecture of our scheduler. A feedback controller monitors the rate of
progress of job threads, and calculates new proportions and periods based on the results. Actuation
involves setting the proportion and period for the threads. The scheduler is a standard proportion/
period reservation-based scheduler. The controller’s execution period and the dispatch period can be
different.

1. Our use of the term “reservation” is some-
what loose, since we do not need strict guar-
antees from the scheduler. As a result, a
good enough best-effort proportion/period
scheduler would suffice.

Upon reaching overload, the scheduler has sev-
eral choices. First, it can perform admission control
by rejecting or cancelling jobs so that the resulting
load is less than 1. Second, it can raise quality
exceptions to notify the jobs of the overload and
renegotiate the proportions so that they sum to no
more than the cutoff threshold. Third, it can auto-
matically scale back the allocation to jobs using
some policy such as fair share or weighted fair
share. In our system, these mechanisms are imple-
mented by the controller, and are discussed below.

We have implemented a RBS scheduler in the
Linux 2.0.35 kernel by adding a new scheduling
policy that implements rate-monotonic scheduling
(RMS)[14] using Linux’s basic scheduling mecha-
nisms[2]. Linux implements a variant of the classic
multi-level feedback scheduling that uses one run-
queue, and selects the thread to run next based on a
thread property called goodness. At dispatch, i.e.
when deciding which thread to run next, Linux
selects the thread with the highest goodness on the
run queue. If all threads on the run-queue have a
zero goodness value, Linux recalculates goodness
for all threads in the system. Each thread has a
scheduling policy that is used by Linux for calcu-
lating goodness. Our policy calculates goodness to
ensure that threads it controls have higher goodness
than jobs under other policies, and that jobs with
shorter periods have higher goodness values. When
a thread has used its allocation for its period, it is
put to sleep until its next period begins. Because
enforcement of our RBS scheduling policy can
only be made at dispatch time, we call this low-
level scheduler the dispatcher, and the time
between dispatches the dispatch interval. The
interval is bounded above by the timer interval,
which we have set to be 1 millisecond for our pro-
totype. The key features of this prototype RBS are
very low overhead to change proportion and
period, and fine-grain control over proportion and
period values. We could equally well have used
other RBS mechanisms such as SMaRT [15],
Rialto [11], or BERT [1] had one been available on
our platform.

3.2 Monitoring Progress
The novelty of our approach lies in the estima-

tion of progress as the means of controlling the
CPU allocation. Unfortunately, estimating an

application’s progress is tricky, especially given the
opaque interface between the application and the
operating system. Good engineering practice tells
us that the operating system and application imple-
mentations should be kept separate in order that the
operating system be general and the application be
portable.

Our solution to this problem is based on the
notion of symbiotic interfaces, which link applica-
tion semantics to system metrics such as progress.
For example, consider two applications with a pro-
ducer/consumer relationship using a shared queue
to communicate. A symbiotic interface that imple-
ments this queue creates a linkage to the kernel by
exposing the buffer’s fill-level, size, and the role of
each thread (producer or consumer) to the system.
With this information, the kernel can estimate the
progress of the producer and consumer by monitor-
ing the queue fill level. As the queue becomes full
(the fill-level approaches the maximum amount of
buffering in the queue), the kernel can infer that the
consumer is running behind and needs more CPU
and that the producer is running ahead and needs
less CPU. Similarly, when the queue becomes
empty the kernel can infer the producer needs more
CPU and the consumer less. This analysis can be
extended to deal with pipelines of threads by pair-
wise comparison. Over time, the feedback control-
ler will reach equilibrium in steady-state provided
the design is stable.

 Our solution is to define suitable symbiotic
interfaces for each interesting class of application,
listed below. Given an interface, we can build a
monitor that periodically samples the progress of
the application, and feeds that information to the
controller.

• Producer/Consumer:
The applications use some form of bounded

buffer to communicate, such as a shared-mem-
ory queue, unix-style pipe, or sockets. Pipes
and sockets are effectively queues managed by
the kernel as part of the abstraction. By expos-
ing the fill-level, size, and role of the applica-
tion (producer or consumer), the scheduler can
determine the relative rate of progress of the
application by monitoring the fill-level.

• Server

Servers are essentially the consumer of a
bounded buffer, where the producer may or
may not be on the same machine.

• Interactive
Interactive jobs are servers that listen to ttys

instead of sockets. Since interactive jobs have
specific requirements (periods relative to
human perception), the scheduler only needs to
know that the job is interactive and the ttys in
which it is interested.

• I/O intensive
Applications that process large data sets can

be considered consumers of data that is pro-
duced by the I/O subsystem. As such, they
need to be given sufficient CPU to keep the
disks busy. Using informed prefetching inter-
faces such as TIP[16] or Dynamic Sets[19], or
delayed write-back buffers for writes, allows
the system to monitor the rate of progress of
the I/O subsystem as a producer/consumer for
a particular job.

• Other
Some applications are sufficiently unstruc-

tured that no suitable symbiotic interface
exists, or may be legacy code that predates the
interface and cannot be recompiled. In such
cases where our scheduler cannot monitor
progress, it uses a simple heuristic policy to
assign proportion and period based on whether
or not the application uses the allocation it is
given.

When an application initializes a symbiotic
interface (such as by submitting hints, opening a
file, or opening a shared queue), the interface cre-
ates a linkage to the kernel using a meta-interface
system call that registers the queue (or socket, etc.)

and the application’s use of that queue (producer or
consumer). We have implemented a shared-queue
library that performs this linkage automatically,
and have extended the in-kernel pipe and socket
implementation to provide this linkage.

3.3 Adaptive Controller
Given the dispatcher and monitoring compo-

nents, the job of the scheduler is to assign propor-
tion and period to ensure that applications make
reasonable progress. Figure 2 presents the four
cases considered by the controller: real-time, aperi-
odic real-time, real-rate, and miscellaneous
threads. Real-time threads specify both proportion
and period, aperiodic real-time threads specify pro-
portion only, real-rate do not specify proportion or
period but supply a metric of progress, and miscel-
laneous threads provide no information at all.

• Real-time threads
Reservation-based scheduling using pro-

portion and period was developed in the con-
text of real-time applications [14], applications
that have known proportion and period require-
ments. To best serve these applications, the
controller sets the thread proportion and period
to the specified amount and does not modify
them in practice. Such a specification (if
accepted by the system) is essentially a reser-
vation of resources for the application. Should,
however, the system be placed under substan-
tial overload, the controller may raise a quality
exception and initiate a renegotiation of the
resource reservation.

• Aperiodic real-time threads2

For tasks that have known proportion but
are not periodic or have unknown period, the
controller must assign a period. With reserva-

Proportion
Specified

Progress
Metric

Period Specified Period Unspecified

Yes N/A Real-time Aperiodic real-time

No
Yes Real-rate

No Miscellaneous

Figure 2: Taxonomy of Thread-types for Controller

tions, the period specifies a deadline by which
the scheduler must provide the allocation, and
hence is more of a jitter-bound than an operat-
ing frequency. Too large a period may intro-
duce unacceptable jitter, whereas too small a
period may introduce overhead since dispatch-
ing happens more often. Without a progress
metric with which to assess the application’s
needs, our prototype uses a default value of 30
milliseconds. This provides reasonable jitter
bounds for interactive applications while limit-
ing overhead to acceptable levels.

• Real-rate threads
We call threads that have a visible metric of

progress but are without a known proportion or
period real-rate since they do not have hard
deadlines but do have throughput require-
ments. Examples of real-rate threads are multi-
media pipelines, isochronous device drivers,
and servers. During each controller interval,
the controller samples the progress of each
thread to determine the pressure exerted on the
thread. Pressure is a number between -1/2 and
1/2; negative values indicate too much progress
is being made and the allocation should be
reduced, 0 indicates ideal allocation, and posi-
tive values indicate the thread is falling behind
and needs more CPU. The magnitude of the
pressure is relative to how far behind or ahead
the thread is running.

Figure 3 contains the formula used by the
controller to calculate the total pressure on a
thread from its progress metrics, or input/out-
put queues. For shared queues, Ft,i is calculated
by dividing the current fill-level by the size of
the queue and subtracting 1/2. We use 1/2 (Ft,i
= 0) as the optimal fill level since it leaves
maximal room to handle bursts by both the
producer and consumer. Rt,i is used to flip the
sign on the queue, since a full queue means the
consumer should speed up (positive pressure)
while the producer should slow down (negative
pressure).

 The individual progress pressures are then
summed and passed to a proportional-integral-
derivative (PID) control to calculate a cumula-
tive pressure, Qt. A PID controller combines
the magnitude of the summed pressures (P)
with the integral (I) and with the first-deriva-
tive (D) of the function described by the
summed progress pressures over time. PID
control is a commonly applied technique for
building controllers to provide error reduction
together with acceptable stability and damping
[5].

For aperiodic real-rate threads, the control-
ler must also determine the period. Currently,
we use a simple heuristic which increases the
period to reduce quantization error when the
proportion is small, since the dispatcher can
only allocate multiples of the dispatch interval.
The controller decreases the period to reduce
jitter, which we detect via large oscillations rel-
ative to the buffer size. The controller deter-
mines the magnitude of oscillation by
monitoring the amount of change in fill-level
over the course of a period, averaged over sev-
eral periods. Although this heuristic appears to
work well for our video pipeline application,
we do not have significant experience with its
applicability to other domains.

• Miscellaneous threads

The controller uses a heuristic for threads
that do not fall into the previous categories. For
proportion, the controller approximates the

2. To be honest, we are unaware of any appli-
cations that fall into this category. We have
included it in this discussion for complete-
ness.

Qt, the progress pressure, is a measure of the
relative progress of thread t using its progress
metric(s). Ft,i is a value between -1/2 and 1/2,
derived from the progress metric i (e.g. buffer
fill level), Rt,i flips the sign of Ft,i for produc-
ers. G calculates a PID control function of the
queue pressures.

Figure 3: Progress Pressure Equation

Qt G Rt i, Ft i,
i

∑

=

Rt i,
1– If t is a producer of i

1 If t is a consumer of i

=

thread’s progress with a positive constant. In
this way there is constant pressure to allocate
more CPU to a miscellaneous thread, until it is
either satisfied or the CPU becomes oversub-
scribed. For period, the controller uses a
default period of 30 milliseconds.

Estimating Proportion
After calculating the queue pressure for a

thread, the controller must then calculate the new
allocation for the thread. Figure 4 presents the
equation used by the controller to estimate propor-
tion. In normal circumstances, we multiply the
queue pressure by a constant scaling factor to
determine the desired allocation. However, increas-
ing the allocation may not improve the thread’s
progress, as might happen for example if another
resource (such as a disk-as-producer) is the bottle-
neck for this application.

To reclaim the unused allocation, the controller
compares the CPU used by a thread with the
amount allocated to it.3 If the difference is larger
than a threshold, the controller assumes the pres-
sure is overestimating the actual need and the allo-
cation should be reduced.

 Responding to Overload
When the sum of the desired thresholds is

greater than the amount of available CPU, the con-
troller must somehow reduce the allocations to the
threads. This increase can result either from the
entrance of a new real-time thread, or from the con-
troller’s periodic estimation of real-rate or miscel-
laneous threads’ needs. In the former case, the
controller performs admission control by rejecting
new real-time jobs which request more CPU than is
currently available. We chose this approach for
simplicity, we hope to extend it to support a form
of quality negotiation such as that used in BBN’s
Quality Objects [22].

In the latter case, the controller squishes current
job allocations to free capacity for the new request.
After the new allocations have been calculated, the
controller sums them and compares them to an
overload threshold. If the allocations oversubscribe
the CPU, it squishes each miscellaneous or real-
rate job’s proposed allocation by an amount pro-
portional to the allocation. In the absence of other
information (such as progress metrics), this policy
results in equal allocation of the CPU to all com-
peting jobs over time.

We have extended this simple fair-share policy
by associating an importance with each thread. The
result is a weighted fair-share, where the impor-
tance is the weighting factor. Our use of impor-
tance is different than the concept of priority, since
a more-important job cannot starve a less important
job. Instead, importance determines the likelihood
that a thread will get its desired allocation. For two
jobs that both desire more than the available CPU,
the more important job will end up with the higher
percentage.

Note that this squishing solves the same prob-
lem addressed by TCP’s exponential backoff [9].
Unlike TCP, our controller is centralized and can
easily detect overload, allowing us to provide pro-
portional sharing while enforcing compliance.

Implementation
We have implemented this controller using the

SWiFT software feedback toolkit [6]. SWiFT
embodies an approach to building adaptive system
software that is based on control theory. With
SWiFT, the controller is a circuit that calculates a
function based on its inputs (in this case the

3. We assume that the RBS is giving threads as
much CPU as the controller allocated, since
we reserve some spare capacity. If the RBS
is missing deadlines, it notifies the control-
ler which can increase the amount of spare
capacity by reducing the admission thresh-
old.

Pt'
kQt Pt on target

C– Pt too generous

=

Pt’ is the new allocation for thread t calcu-
lated from the progress pressure Qt and the
previous allocation Pt. Normally, the controller
multiplies the progress pressure by a constant
scaling factor to determine the new desired
allocation. If the previous allocation overesti-
mated the application’s needs, the controller
reduces the allocation by a constant factor.

Figure 4: Proportion Estimation Equation

progress monitors and importance parameters), and
uses the function’s output for actuation.

For reasons of rapid prototyping, our controller
is implemented as a user-level program. This has
clear implications on overhead, which limits the
controller’s frequency of execution, which in turn
limits its responsiveness. We have plans to move
the controller into the Linux kernel in order to
reduce this overhead. Nonetheless, our experiments
discussed below show the overhead to be reason-
able for a prototype system for most common jobs.

In our prototype, jobs must either explicitly reg-
ister themselves in order to be scheduled by our
RBS scheduler (as opposed to the default Linux
scheduler) or be descended from such a job. In the
future, we hope to schedule all jobs using our
scheduler. Currently we limit it to specific jobs
such as real-time applications, the controller pro-
cess, and the X server.

4 Discussion
The following sections discuss various aspects

of our solution in more detail. Section 4.1 charac-
terizes our prototype’s performance. Section 4.2
examines the responsiveness of our controller to
variable-rate real-rate applications, with and with-
out competing load. Section 4.3 discusses ways to
improve the accuracy and responsiveness of the
system, while Section 4.4 justifies our claims about
the benefits of our approach. The experiments were
run on a 400 Mhz Pentium 2 with 128MB of mem-
ory, running our modified version of Linux 2.0.35.

In all the experiments, we disabled the period
estimation aspect of the controller. Period adjust-
ment and buffer size are inter-related, since both
are used to reduce jitter and both affect the likeli-
hood of completely filling or emptying the buffer.
A proper discussion of the interactions between
period adjustment and buffer size adjustment are
unfortunately beyond the scope of this paper.

4.1 Characterization
To better understand the characteristics of our

system, we discuss its overhead and responsive-
ness; presenting an analysis of its stability is
beyond the scope of this paper. At the lowest level,
the overhead of dispatch depends on the execution
time of two routines in the Linux scheduler,
schedule() and do_timers(). Sched-

ule() is called on dispatch and runs in time linear
with the number of threads on the run queue, and in
the worst case linear with the number of threads in
the system. Do_timers() is called on timer
interrupts, checks for expired timers, and moves
threads waiting on expired timers to the run-queue;
preempting the current thread if the woken thread
is under our control and has higher goodness. We
keep a list of timers used by RBS threads, sorted by
time of expiry, and cache the next expiration time
to avoid doing any work unless at least one timer
has expired. As a result, this routine typically runs
in constant time, but in the worst case runs linearly
with the number of threads under our control.

To assess the overhead of our use of feedback,
we measured the overhead of our user-level con-
troller. Figure 5 depicts the controller’s overhead in
terms of additional CPU utilization, where the first
process is the controller itself, running with a 10
msec period and the additional processes are
dummy processes that consume no CPU but are
scheduled, monitored, and controlled. At each con-
troller period, the controller must read the progress
metrics from the kernel, calculate new allocations,
and send the new values to the in-kernel RBS. As a
result, the overhead of the controller grows linearly

0 5 10 15 20 25 30 35 40

Number of Controlled Processes

0.00

0.01

0.02

0.03

0.04

Co
nt

ro
lle

r O
ve

rh
ea

d

Figure 5: Overhead of Controller

This figure shows the overhead of our user-
level controller. Our experimental results are
linear, y = .00066x + .00057, with a coefficient
of determination of .999. The y-axis is the
amount of CPU consumed by the controller,
where 1 corresponds to 100% utilization. For
40 jobs (x = 40), the overhead is 2.7% of CPU
capacity.

with the number of threads it controls. The slope of
this line is small, .064% of the CPU per process,
even though our prototype is not an optimal imple-
mentation.

Overhead that is linear with the number of
threads under control is a necessary evil for feed-
back-controlled systems. The benefit is that the
system dynamically and rapidly detects changes in
the threads’ resource requirements, which results
in very efficient resource utilization. Fortunately,
this recalculation need only happen at the rate at
which a process’s needs change, and not as often as
thread dispatch. The controller is sampling the
resource needs of the threads, and need only sam-
ple twice as fast as the highest rate of change.
Using a suitable low-pass filter, we can schedule
jobs with reasonable responsiveness and low over-
head while keeping the sampling rate reasonably
high (100 Hz in our prototype). For example, we

currently schedule both the controller and the X
server, and see no noticeable delays in interactive
response time even when the CPU is fully utilized.

4.2 Controller Responsiveness
To characterize the responsiveness of our sys-

tem, we wrote a program that simulates a pulse
function for our controller. The program is a simple
pipeline of a producer and consumer connected by
a bounded buffer. Both the producer and consumer
loop for some number of cycles before they
enqueue or dequeue a block of data. We fix the
allocation (cycles/sec) given to the producer by
specifying a reservation for it, and control the rate
at which it produces data (bytes/cycle). For the
consumer, we fix the rate of consumption, but let
the controller determine the allocation. Ideally, the
producer’s rate of progress in bytes/sec should
match the consumer’s. By manipulating the pro-
ducer’s production rate we can determine the
responsiveness of the controller as it adjusts the
consumer’s allocation to achieve the same rate of
progress.

 Figure 6 shows the results of running this pro-
gram on an otherwise idle system. The producer
generated rising pulses of various widths, doubling
its rate of production in bytes/cycle for a period of
time before falling back to the original rate. To
maintain the queue at half-full, the controller must
double the allocation to the consumer since the
producer has specified its proportion and period,
the controller does not affect its allocation. After
running for three rising pulses, the producer keeps
its default rate high and generates three falling
pulses.

Figure 6 contains two graphs, the rates of
progress of the producer and consumer calculated
by multiplying the measured allocation in cycles/
sec by the controlled rate of production or con-
sumption in bytes/cycle, and the measured queue
fill level in the bounded buffer between the threads.
As shown in the graphs, the controller responds to
the change in the producer’s rate by rapidly
increasing the allocation to the consumer, even
though its knowledge of either the producer or con-
sumer is limited to their use of the queue. In addi-
tion, the shape of the fill level curve and the
consumer’s allocation match our expectations: the
allocation roughly follows the square wave set by

0 10 20 30 40
0

1000

2000

3000

4000

5000
R

a
te

 o
f

p
ro

g
re

ss

(b
y
te

s/
se

c)

consumer’s progress rate
producer’s progress rate

0 10 20 30 40

time in seconds

0.0

0.2

0.4

0.6

0.8

1.0

Q
u

eu
e

fi
ll

 l
ev

el

Figure 6: Controller Responsiveness

This figure shows the response of the controller
to a variable-rate real-rate job. The producer
runs at a predetermined variable rate, the con-
troller determines the consumer’s allocation so
that its progress matches that of the producer.
The top graph shows the progress rates of the
producer and consumer, the bottom graph
shows the corresponding queue fill-level.

the production rate, and the fill level changes more
drastically the farther it is from 1/2. The effect on
fill level from pulses with smaller width is smaller,
because the producer has less time to produce more
data. From our data, it takes the controller roughly

1/3 of a second to respond to the doubling in pro-
duction rate.

Figure 7 shows the same experiment run with
competing load. For simplicity, the load corre-
sponded to a miscellaneous job (no progress-met-
ric) that tries to consume as much CPU as it can.
The effect of the competing load is that the total
desired allocation of the producer, consumer, and
load threads is greater than the amount available,
and hence the controller must squish allocations.
The top two graph shows the resulting allocations
to these three jobs (separated for clarity). The pro-
ducer’s allocation is fixed because it has specified a
reservation. The load’s allocation is initially high,
but effectively loses allocation to the consumer
since its pressure Qt is constant over time while the
consumer’s grows as it falls further behind the pro-
ducer. If it were the case that there was not suffi-
cient CPU to satisfy all the jobs, the queue would
eventually become full and trigger a quality excep-
tion, allowing the application to adapt by lowering
its resource requirements.

One interesting result is the high frequency
oscillation in allocation between the load and the
consumer. This oscillation results from changes in
the relative pressures from the hog and the con-
sumer. When the consumer matches the fixed rate
of the producer, its Qt is low while the hog’s Qt
remains constant. As it falls behind, its Qt grows
until it exceeds that of the hog, and it gets more
allocation. This behavior matches our expectation
for real-rate jobs which must track some real-world
rate, such as the rate of requests arriving at a web
server. We believe that in the future most jobs will
have progress metrics, and the use of a constant
pressure, and hence the occurrence of such oscilla-
tion, will be infrequent.

4.3 Improving the Controller’s Behavior
We have several ideas for increasing the accu-

racy of the allocation. First, we plan to lower the
overhead of the controller in order to run it at a
higher frequency. Calculating the exponential and
linear curves more frequently causes the allocation
to change faster, and results in a more responsive
system without affecting its stability. In some sense
a priority-based scheme is perfectly responsive, but
is also inherently unstable.

0 10 20 30 40
0

200

400

600

800

1000
C

P
U

 A
ll

o
ca

ti
o
n

(p

a
rt

s
p

er
 t

h
o
u

sa
n

d
)

consumer’s allocation
producer’s allocation

0 10 20 30 40
0

200

400

600

800

1000

C
P

U
 A

ll
o
ca

ti
o
n

(p

a
rt

s
p

er
 t

h
o
u

sa
n

d
)

CPU hog’s allocation

0 10 20 30 40
0

50

100

150

200

P
ro

d
u

ct
io

n
 r

a
te

(b

y
te

s/
K

cy
cl

e)

0 10 20 30 40

time in seconds

0.0

0.2

0.4

0.6

0.8

1.0

Q
u

eu
e

fi
ll

 l
ev

el

Figure 7: Controller Response Under Load

This figure shows the same pipeline run con-
currently with a CPU hog. Since the total
desired allocation exceeds the capacity of the
CPU, the controller must squish the load and
consumer threads. It cannot squish the pro-
ducer since the producer has specified a fixed
reservation. Note that the Y-axis in the top
graph in Figure 6 has different units than those
used here.

Second, our controller currently suffers quanti-
zation errors because the minimum allocation is 1
msec. We are currently exploring possible solu-
tions to this. One possibility is a more efficient dis-
patch algorithm that can be run at a higher rate.
Another possibility is to provide better accounting,
e.g., microsecond granularity, while keeping the
dispatch interval at 1 msec. This reduces our ability
to guarantee proportion since we cannot prevent a
job from running for its full time-slice. However,
our controller could preempt earlier if the thread
makes a system call or an interrupt occurs. In addi-
tion, our use of feedback could account for instan-
taneous discrepancies by smoothing allocation over
time.

To determine the overhead of smaller dispatch
quanta, we measured the overhead of running
Linux with various time-slice lengths. We mea-
sured the amount of CPU available to applications
by running a program that attempts to use as much
CPU as it can. Figure 8 shows the results of this
experiment. The number plotted is the amount of
CPU the program was able to grab, normalized to
the amount it can grab on a kernel with a time-slice
of 10msec. The graph shows the results of the
higher overhead for smaller quanta, with a knee

around 4000 Hz (250 µsec). We conjecture that we
could run with a dispatch interval in the range of 50
µsec on faster CPUs with a small effort to optimize
our code.

4.4 Benefits of Real-Rate Scheduling
The benefit of scheduling based on progress is

that allocation is automatically scaled as the appli-
cation’s requirements change. In our system, the
amount of CPU given to a thread grows in relation
to its progress pressure and importance. For exam-
ple, we have a multimedia pipeline of processes
that communicate with a shared queue. Our con-
troller automatically identifies that one stage of the
pipeline has vastly different CPU requirements
than the others (the video decoder), even though all
the processes have the same priority. This results in
a more predictable system since its correctness
does not rely on applications to be well-behaved. In
other words, when a real time job spins instead of
blocking, the system will not livelock.

Another benefit is that starvation, and thus pri-
ority inversion, cannot occur. Dependent processes
(connected (in)directly by progess metrics) cannot
starve each other since eventually one will block
when its fill-level reaches full or empty. Further,
dependent processes can dynamically achieve sta-
ble configurations of CPU sharing that fair-share,
weighted fair-share, or priorities cannot. For inde-
pendent non real-rate threads, we prevent starva-
tion through our fair-share or weighted fair-share
policies. In particular, one process cannot keep the
CPU from another process indefinitely simply
because it is more important.

A third benefit of our approach is that it auto-
matically provides both “best-effort” and “real-
time” scheduling, in addition to the real-rate sched-
uling that motivates the work. However, we believe
the real-rate category to be the most important of
the three in the future, as people use computers to
interact with each other and with the real world.

4.5 Effect on Miscellaneous Applications
Although the importance of real-rate applica-

tions such as speech recognition, multimedia, and
Web servers will grow to dominance in the future,
many PCs still run a mix of more traditional appli-
cations that have no rate requirements and for
which priorities have sufficed. For these applica-

500 2000 4000100 1000 10000

Dispatcher Frequency (per second)

0.8

0.9

1.0
C

PU
 A

va
ila

bl
e

fo
r

us
er

 p
ro

ce
ss

es

Figure 8: Dispatch Overhead vs. Frequency

This figure shows the overhead of dispatch vs.
the size of the dispatch interval. The graph
shows the amount of CPU available to pro-
cesses, the area above the curve is the dispatch
overhead. There is a knee around 4000Hz. At
this point the overhead is around 2.7%.

tions, our approach can potentially reduce perfor-
mance (modulo responsiveness). However, these
applications can still suffer from priority inversion
and starvation, even if they do not benefit from pre-
dictable scheduling and fine-grain control. We sug-
gest the right solution for these applications is to
add a pseudo-progress metric which maps their
notion of progress into our queue-based meta-inter-
face. For example, a pure computation (finding
digits of π or cracking passwords) could use a met-
ric such as the number of keys it has attempted.
This could be done transparently by augmenting
the in-kernel resources such as ttys or sockets to
expose fill-levels to the scheduler. Although we
might be able to improve the performance of our
scheduler for miscellaneous jobs, we believe jobs
with no time or rate requirements will be uncom-
mon in the future and thus such an effort is likely to
have small returns relative to those gained by con-
verting the jobs to be real-rate.

5 Related Work

There exists a large body of work which has
attempted to provide real-time scheduling support
in operating systems, Jones et al. [11] provide a
nice summary. Linux, Solaris, and NT provide
“real-time” priorities, which are fixed priorities
that are higher in priority than regular priorities.
More relevant to this work are efforts to schedule
based on proportion and/or period
[11][15][20][21]. To date, all such approaches
require human experts to supply accurate specifica-
tions of proportion and/or period, and focus on how
to satisfy these specifications in the best way. None
of them try to infer the correct proportion, or adapt
dynamically to changing resource needs of the
applications.

In addition, several systems use hybrid
approaches to merge the benefits of reservation and
priority scheduling. Typically these approaches use
a heuristic that gives a static[4][8] or biased [7]
partition of the CPU to either real-time jobs or non-
real-time jobs. A new approach is taken by the
BERT and SMaRT schedulers, which dynamically
balances between the needs of both kinds of jobs.
The SMaRT scheduler lets users assign priority to
either conventional or real-time threads, but gives
weight to non-real-time threads within the same
equivalence class [15]. Although we implicitly give

precedence to real-time tasks (those that specify
both proportion and period), we expect most jobs
to fall into the real-rate category. This includes all
of what most people consider “soft-real-time”
applications such as multimedia.

The BERT scheduler handles both real-time and
non-real-time tasks using the same scheduling
mechanism. Jobs submit units of work to be sched-
uled, and the scheduler creates deadlines for the
work based on previous measures of the work’s
time to completion. BERT automatically assesses
whether a given job will meet its deadline, and if
not can either steal cycles from a lower priority job
or can cancel the job[1]. BERT is similar in philos-
ophy to our approach since it uses feedback of past
execution times in its scheduling, but it does not
use or measure application progress and as such is
subject to the same problems as traditional sched-
ulers.

Our solution is similar to Rate-based scheduling
proposed by Jeffay and Bennett [10], in that
resources are allocated based on rate specifications
of x units of execution every y time units. However,
their units are events which are converted to CPU
cycles using a worst-case estimate of event pro-
cessing time. Applications must specify x, y, and
the worst-case estimation, and an upper-bound on
response time. In addition, these values are con-
stant for the duration of the application Their sys-
tem also uses pipelines of processes so that
dependent stages do not need to specify their rate,
merely their event processing time. In contrast, our
system provides dynamic estimation and adjust-
ment of rate parameters, and only requires that the
process metric be specified.

In short, to the best of our knowledge we are the
first to attempt to schedule using feedback of the
application’s rate of progress with respect to its
inputs and/or outputs. The power of this approach
lets us provide a single uniform scheduling mecha-
nism that works well for all classes of applications,
including real-time, real-rate, and conventional.

6 Conclusion
Real-rate applications that must match their

throughput to some external rate, such as web serv-
ers or multimedia pipelines, and real-time applica-
tions are poorly served by today’s general purpose
operating systems. One reason is that priority-

based scheduling, widely used in existing operating
systems, lacks sufficient control to accommodate
the dynamically changing needs of these applica-
tions. In addition, priority-based scheduling is sub-
ject to failure modes such as starvation and priority
inversion that reduce the robustness of the system.

In this paper we have described a new approach
to scheduling that assigns proportion based on
measured rate of progress. Our system utilizes
progress monitors such as the fill-level in a
bounded buffer, a feedback-based controller that
dynamically adjusts the CPU allocation and period
of threads in the system, and an underlying propor-
tional reservation-based scheduler. As a result, our
system dynamically adapts allocation to meet cur-
rent resource needs of applications, without requir-
ing input from human experts.

7 Bibliography
[1] A. Bavier, L. Peterson, and D. Moseberger. BERT:

A scheduler for best effort and realtime tasks.
Technical Report TR-587-98, Princeton
University, August 1998.

[2] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R.
Magnus, and D. Verworner. Linux Kernel
Internals, pages 47-50. Addison Wesley, second
edition, 1998. Translated from the German
edition Linux-Kernel-Programmierung published
by Addison-Wesley GmbH.

[3] F. J. Corbato, M. Merwin-Daggett, and R.C. Daley.
An Experimental Time-Sharing System.
Proceedings of the AFIPS Fall Joint Computer
Conference. 1962. As cited in Operating System
Concepts, page 153. A. Silberschatz and P. B.
Galvin. Addison-Wesley, 5th edition.

[4] B. Ford and S. Susarla. CPU inheritance scheduling.
In Proceedings of the 2nd USENIX Symposium on
Operating System Design and Implementation.
Seattle, WA. October 1996.

[5] G. F. Franklin, J. D. Powell, and A. Emami-Naeini.
Feedback Control of Dynamic Systems, page 185.
Addison-Wesley, third edition, 1994. Reprinted
with corrections June, 1995.

[6] A. Goel, D. Steere, C. Pu, and J. Walpole. SWiFT: A
Feedback Control and Dynamic Reconfiguration
Toolkit. Technical Report CSE-98-009,
Department of Computer Science and
Engineering, Oregon Graduate Institute. June
1998.

[7] R. Govindan and D. P. Anderson. Scheduling and
IPC mechanisms for continuous media. In
Proceedings of the 13th ACM Symposium on
Operating System Principles, pages 68-80,
October 1991.

[8] P. Goyal, X. Guo, and H. M. Vin. A Hierarchical
CPU scheduler for multimedia operating systems.
In Proceedings of the 2nd USENIX Symposium on
Operating System Design and Implementation.
Seattle, WA. October 1996.

[9] V. Jacobson. Congestion avoidance and control. In
Proceedings of the SIGCOMM ’88 Conference
on Communications Architectures and Protocols,
1988.

[10] K. Jeffay, and David Bennett. A rate-based
execution abstraction for multimedia computing.
In Proceedings of the Fifth International
Workshop on Network and Operating System
Support for Digital Audio and Video, Durham,
NH, April 1995. Published in Lecture Notes in
Computer Science, T.D.C. Little and R. Gusella,
editors. Volume 1018, pages 64-75. Springer-
Verlag, Heidelberg, Germany, 1995.

[11] M. B. Jones, D. Rosu, and M-C. Rosu. CPU
reservations and time constraints: Efficient,
predictable scheduling of independent activities.
In Proceedings of the 16th ACM Symposium on
Operating System Principles, pages 198–211,
October 1997.

[12] Mike B. Jones. What really happened on Mars.
Email, available on the Web at http://
research.microsoft.com/~mbj/Mars_Pathfinder/
Mars_Pathfinder.html.

[13] B. W. Lampson and D. D. Redell. Experience with
processes and monitors in mesa. Communications
of the ACM, 23(2):105–117, 1980. Also appeared
in Proceedings of the 7th ACM Symposium on
Operating System Principles, Pacific Grove, CA,
1979.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46-61,
January 1973.

[15] J. Nieh and M. S. Lam. The design,
implementation, and evaluation of SMaRT: A
scheduler for multimedia applications. In
Proceedings of the 16th ACM Symposium on
Operating System Principles, pages 184–197,
October 1997.

[16] R. H. Patterson, G. A. Gibson, E. Ginting, D.

Stodolsky, and J. Zelenka. Informed prefetching
and caching. In Proceedings of the 15th ACM
Symposium on Operating System Principles,
December 1995.

[17] Glenn Reeves. Re: What really happened on mars.
Email, available on the Web at http://
research.microsoft.com/~mbj/Mars_Pathfinder/
Authoritative_Account.html.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on
Computers, September 1990.

[19] D. C. Steere. Exploiting the Non-determinism and
Asynchrony of Set Iterators to Reduce Aggregate
File I/O Latency. Proceedings of the 16th ACM
Symposium on Operating System Principles,
pages 252-263, October 1997.

[20] I. Stoica, H. Abdel-Wahab, and K. Jeffay. On the
Duality between resource reservation and
proportional share resource allocation. In
Multimedia Computing and Networking 1997.
SPIE Proceedings Series, Volume 3020. San
Jose, CA, February 1997, pages 207-214.

[21] C. A. Waldspurger, and W. E. Weihl. Lottery
scheduling: flexible proportional-share resource
management. In Proceedings of the First
Symposium on Operating System Design and
Implementation. November 1994, pages 1-11.

[22] J. A. Zinky, D. E. Bakken, and R. E. Schantz.
Architectural support for quality of service for
corba objects. Theory and Practice of Object
Systems, April 1997. http://www.dist-
systems.bbn.com/papers/TAPOS.

	Portland State University
	PDXScholar
	9-1998

	A Feedback-driven Proportion Allocator for Real-Rate Scheduling
	David Steere
	Ashvin Goel
	Joshua Gruenberg
	Dylan McNamee
	Calton Pu
	See next page for additional authors

	Let us know how access to this document benefits you.
	Citation Details
	Authors

	A Feedback-driven Proportion Allocator for Real-Rate Scheduling

