
Portland State University
PDXScholar
Computer Science Faculty Publications and
Presentations Computer Science

1-1992

Porting Chorus to the PA-RISC: Building, Debugging, Testing and
Validation
Ravi Konuru
Oregon Graduate Institute of Science & Technology

Marion Hakanson
Oregon Graduate Institute of Science & Technology

Jon Inouye
Oregon Graduate Institute of Science & Technology

Jonathan Walpole
Oregon Graduate Institute of Science & Technology

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

Part of the Computer and Systems Architecture Commons, and the OS and Networks Commons

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Konuru, Ravindranath, Marion Hakanson, Jon Inouye, and Jonathan Walpole. Porting Chorus to the PA-RISC: Building, Debugging,
Testing and Validation. Technical Report CSE-92-7, Oregon Graduate Institute, 1992.

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/compsci?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/58
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Porting Chorus to the PA-RISC: Building,
Debugging, Testing and Validation

Ravindranath Konuru,
'Marion Hakanson,

Jon Inouye,
Jonathan 'Walpole"

Department of Computer Science and Engineering
Oregon Graduate Institute of Science and Technology

January 27, 1992

Abstract

This document is part of a series of reports describing the design decisions made in porting
the Chorus Operating System to the Hewlett-Packard 9000 Series 800 workstation. This doc
ument describes the environment for building the Chorus kernel, the various kernel tests, and
the debugging environment used for porting the Chorus operating system to the HP PA-ruSC.

The information contained in this paper will be of interest to people who wish to:

• Use the PA-Chorus kernel for development and/or modification,

• Know about the build environment for Chorus kernel on PA-RISC,

• Know about the PA-Chorus approach to debugging,

• Know about the Chorus kernel tests, their buHd environment, and the modifications made
to the kernel tests to port them to PA-ruse.

The aim of the document is to give a detailed overview of the various items mentioned above.
The document does not delve into the specific tails of configuration like the values for various
global macros and so on. For an in-depth understanding, one would have to study the sources.
For the purposes of this document the word kernel and nucleus mean the same and will be
used interchangeably.

·This research is supported by the Hewlett-Packard Company (HP). Chorus Systemes, a.nd Oregon Advanced
Computing Institute (OACIS).

1

Contents

1 Introduction

2 Build Environment for the Chorus kernel
2.1 builder directory . .
2.2 chorus_3.3 directory

3 Development Environment

4 Debugging

5 Testing and Validation
5.1 The Kernel test build Environment
5.2 The Kernel tests
5.3 Modifications to the portable layers of kernel tests

6 Remarks

7 Acknowledgements

2

3

3
4
5

6

7

9
9

10
11

12

12

1 Introduction

This document is part of a series of reports describing the design decisions made in porting the
Chorus Operating System to the Hewlett-Packard 9000 Series 800 workstation. This document de
scribes the Chorus build environment for the kernel and kernel tests on PA-RISC, and our approach
to debugging the Chorus kernel. The document is organized as follows. The PA-Chorus build en
vironment and configuration management is detailed in section 2. The PA-Chorus development
environment is detailed in section 3. Chorus facilities for debugging and the PA-Chorus approach
to debugging are detailed in section 4. The details of the build environment for the kernel tests, a
short description of the various kernel tests, and our modifications to the kernel tests to port them
to PA-RISC are presented in section 5.

2 Build Environment for the Chorus kernel

Chorus software is organized as showin in fig 1. The directory chorus-x.x contains the sources
for the Chorus nucleus version x.x. The directory Nm..x.x contains the sources for the Network
manager version x.x. The directory SVRx.x contains the sources for a set of actors (sub-system
implementing the UNIX System V version x.x interface. The directory build is used for configu
ration management and to build the main targets of the operating system i.e., the Chorus nucleus,
Network manager, the Unix sub-system objects, the boot actor and the boot archive[IHKW92].
The standard make utility is used to make the various targets. By convention, there exists a
makeTarget for each directory in the directory hierarchy. For a given directory d, the various
targets that should be built in that directory, the compilation options for the targets, and the pro
cedures to perform them are given in the file dj makeTarget. The makeTargets form a hierarchy
corresponding to the directory hierarchy. The make of all the targets of a sub-tree is performed
by typing in

make -f makeTarget

in the root directory of that sub-tree. The make utility is recursively invoked in the all the sub
directories of that sub-tree thus building all the specified targets in that sub-tree. For each make
in the sub-directories, the makeTarget in that directory is used as the input to the make utility.

~
root directory

~ ~ t t
build ehorus_3.3 Nm_3.2 SVR3.2

Figure 1: Chorus high-level directory organization

We will concentrate on the directories builder and chorus..x.x (chorus...3.3 in the case of
PA-Chorus) since these are the directories that are needed to build and test a Chorus kernel. The
contents of the builder directory are detailed in section 2.1 and those of the chorus.3.3 are
detailed in section 2.2.

3

2.1 builder directory

The builder offers a single point from which all the targets that are required can be made. In
addition, the creation of target specific configuration file[s] and rules for compilation for the target
environment is performed through the files in this directory. This creation is part of the software
tree initialization. The files in this directory are:

mkopt.gen : This file is the generic configuration file in which the the configuration parameters
are specified under #ifdef flags for each target machine. The configuration parameters are
global macros that are used in building the kernel and other targets. These macros should
be approriately assigned based on the target machine environment. For PA-Chorus, the
configuration parameters are specfied under flags HP800, HPUXLD, hpux, HPUX_CC, and
HPUXCPLUSPLUS. Some examples of global macros defined in this file are MAKE, AR,
CC, LD, BUILDDIR, PROLDIR, and MACHJ)IR.

mkrules.gen : This generic file specifies the compilation rules for various target environments.
These rules are used by make in creating various targets. For example, the compilation rule
to be applied for creating a .0 file from a . c file is specfied in mkrules.gen. There is usually
a set of such compilation rules for each target environment. For PA-Chorus, the compilation
rules have been defined under the flag HP800.

syst.HP800 : This file contains the list of actors that should be loaded into the boot archive.
This file has been created for PA-Chorus.

mk.HP800 : This file gives the procedures for creating the chorus symbol actor and the boot
archive. The symbol actor is basically a composition of the symbol tables of the various boot
actors enveloped as an executable image. Since each one of the boot actors is a seperate
executable image, the additional work to load the symbol tables of the boot actors into main
memory is performed through this file. We currently are not using the symbol actor.

makeTarget : This file is given as input to make. This file specifies the dependencies and the
procedure to build various targets. To build a particular target or to perform a set of actions
associated with a target name, the command has the following syntax:

make -f makeTarget [CONFIG=conf-file] [TARGET=target] [DEF=8UffixJ targetName

The macro CONFIG specifies the name of target specific configuration file. For PA-ChofUs,
this macro is set to "confHP800". This information is used only when makeing INITCON
FIG. The macro DEF specifies the suffix for the file defining the boot actors which have to be
loaded at boot time. DEF is the same as TARGET by default. For PA-Chorus, the DEF and
TARGET are both set to "HP800". So specifiying the target name is sufficient for building
the various target.

build/makeTarget forms the high level input to make utmty. The file is organized such
that a make of a specified target is achieved by recursively calling make with the target
specific makeTarget. This process continues until the actual procedure to perform the target
operations are reached. Then the specified actions are performed.

The following targets can be made from the build/makeTarget:

1. INITCONFIG : to initialize the builder tree. The files mkopt.gen and mkrules.gen
are preprocessed to generate mkopt and mkrules that are specific to the target envi
ronment.

4

2. MKBOOT : to produce the boot archive.

3. CHORUSJNIT: to initialize the kernel source tree.

4. NMJNIT : to initialize the Network manager source tree.

5. SSU_INIT : to initialize the Unix subsystem source tree.

6. CHORUS: to compile the kernel sources and librairies.

7. NM : to compile the Network manager sources.

8. SSU : to compile the Unix subsystem sources.

9. SYSTEM_INIT: to perform SSU_INIT, NMJNIT and CHORUSJNIT targets.

10. SYSTEM: to perform SSU, NM and CHORUS targets.

11. GEN : to perform SYSTEM_INIT, SYSTEM and MKBOOT targets.

Initialization in the builder's context refers to the creating the target specific files for con
figuration and compilation rules.

UTILS: This directory mainly contains the sources for the make depend utility.

2.2 chorus_3.3 directory

The sources for the chorus nucleus, boot image\ and network device manager(ndm) are present in
the chorus...3.3 directory. The sources have the organization shown in fig 2. The boot directory
contains the boot program and utilities for generating the boot archive. include contains the
include files exported by the kernel for use by sub-systems and users. kern contain the nucleus
sources. lib contains the sources needed for building the various libraries for kernel clients and for
the kernel itself. ktests contains the sources for the kernel validation suite. The tests are discussed
in section 5. ndm contains the sources for the network device manager. The ndm directory will
not be discussed any more in this document.

chorus_3.3

t
~ ~ ~ ~ ~

include boot kern lib kteats

.--L--, ,L-. • t
t t ,--L, ,L-.

HP800 PARlSC HP800 PARISe HP800 P ARlSe vm HP800 PARIse HP800 PARISe

t
pvm

Figure 2: directory hierarchy of chorus-3.3

Each of the directories, i.e., include, boot, kern, and lib contain target independent files and
two target specific directories: a machine dependent directory HP800 and a processor dependent
directory PARISe. These target dependent directories contain the target specific header files and

1 boot ima.ge contains the entry point of boot a.rchive[IHKW92].

5

t
ndm

sources needed to implement the Chorus machine dependent layer. The sources above the target
specific directories in the directory hierarchy include the target dependent header files and use the
symbolic constants exported by the lower layers in the target dependent directories.

The chorus_3.3 directory, in addition to the afore mentioned directories, consists of files used
for building the various targets for this directory hierarchy. They are:

mkrules.gen : contains compilation specific to the Chorus nucleus. Compilation rules to make
various types of objects have been specified under the flag 'HP800'.

mkopt.gen : contains various configuration options specific to Chorus nucleus. Values for various
configuration macros have been specified under the flag 'HP800'.

mkMkopt.c : offers a 'c' interface for automating the generation of starting addresses of various
boot supervisor actors including the kernel.

makeTarget : The following targets can be made through this file:

1. INITCONFIG: performs similar operations as in builder/makeTarget for the cho
rus_3.3 directory. mkopt.gen and mkrules.gen are preprocessed and target specific
mkopt and mkrules are created.

2. INITMK: concatenates the output of mkMkopt to mkopt.

3. CHORUS: A recursive make is performed in the directories include, lib, kern, boot
in that order.

4. SYSTEM: In addition to the CHORUS target, the a recursive make is performed in the
ktests directory.

The names of the actual source files are not detailed in this document. Inspect the source tree
for this information.

3 Development Environment

The hardware environment consisted of two HP 9000/834 machines:

• lou.vre: This was our development machine where all the software development was carried
out.

• orsay: This was our test mule2 •

We did not have a boot monitor that was capable of accepting down loads of the OS, either
from a LAN or an RS232 interface. So we used the following approach:

1. Build the Chorus kernel

2. Build the kernel tests

3. Generate the boot archive consisting of the boot image, the kernel image, and one or more
kernel test executable images.

4. Peform an rep of the boot archive from lou.vre to Of say.

2During the course of the port, there were suggestions (that weren't taken) that we should rename orsayas yo-yo

6

5. Reboot orsay with the boot archive.

The software environment consisted of:

Operating System: HP-UX 7.0 operating system.

C++ compiler: We installed the GNU CC version 2.0 on louvre and we used the standard cc
available on HP-UX .

RCS : We found the version of the RCS available with HP-UX 7.0 did not have adequate func
tionality for our purpose. Therfore, We ported version 5.5 of RCS to the operating system.

During the development, we had a scenario where multiple users were editing the same work
tree simultaneously. There was an overlap in the use of some files. Each developer needed his own
set of debug compilation flags to debug his module[s]. To preserve consistency, we adopted the the
following approach:

• A shadow tree was created for each developer that was an exact replica of the work tree except
that every source fi1e had a symbolic link to the corresponding file in the work tree. The
various files dealing with configuration, compilation options, and making targets are separate
for each developer thus giving him total control over the compilation and configuration options
he wishes to use. This property allow parallel make s. Note that the make should be
performed in the shadow tree only.

• A single work tree is maintained with an RCS directory for each sub-directory in the directory
hierarchy. Each developer checks out with a lock so that no other user can check out the
file until he is finished with it, checks in the potentially modified file and removes the lock.
For the purposes of having a consistent source file during parallel make, each developer is
required to copy the file to be modified into his shadow tree, perform the modifications, test
the new file and then integrate it into the work tree. This allowed us to work with the older
version of a file rather than work with a potentially inconsistent and un debugged module.

• The access permissions to all RCS files were set such that only the members ofthe PA-Chorus
group could access the files.

The rest of the tools (for example, linker, assembler, C compiler, etc,) used were those that
came with the operating system.

4 Debugging

None of the members of the PA-Chorus project had any prior experience in kernel debugging.
Therefore, we could not totally figure out ahead of the port exactly what kind of debugging tools
and information to be instrumented into the kernel. Most of our debugging instrumentation and
tools evolved as their need arose during the port.

The main difference from debugging user-level programs and the kernel is that the kernel must
be able to handle the errors it generates and, at the least, fail gracefully indicating the execution
state at the time of the error. The user program on the other hand, can leave the responsibilityy
to the operating system and use the debugging tools provided by the OS with confidence in them.
The OS and the tools are the two entities on which he/she can rely on (usually, although OS and
tools have been shown to have a few bugs and occasionally crash).

7

In kernel development, there is no under-lying layer that provides a debugging platform for the
development other than the kernel itself. The kernel should either have the whole of the debugging
layer within the kernel itself or have instrumentation for remote debugging. For example, an
application programmer, when debugging is his/her application with printf()s, assumes that what
is bieng printed is the actual state of his process and the printf() itself is not corrupting the
memory. In kernel development, the debugging tools (for example, print) should themselves be
thorougly debugged before they can be used with confidence. Since the kernel operates in the
privileged mode, it is possible for the kernel to write to arbitrary locations without generating
a fault at that time, but make a user program fault at some later time. It can create improper
mapping of virtual addresses to physical addresses wbich would cause a strange and peculiar errors.
In the case of user program, an access outside its protection domain is detected immediately in the
form of a memory protection violation. No data is corrupted. In short, a lot of care is required
when writing systems software rather than rely on debugging.

The port was performed in two major phases:

• A kernel with interrupts disabled,

• A kernel with interrupts enabled.

We adopted this approach from Chorus, since we were able to isolate the problems in the logic
of code dealing with context switches, trap handling, system call interfaces, memory management
layers without worrying about the complications of interrupt handling. Interrupt handling by itself
tests another section of code, and we found it easier to use this incremental test methodology.
By the time, we started debugging the kernel with interrupts enabled, we had a fair degree of
confidence in our code with the exception of the code that gets executed during interrupt handling.
This proved a crucial factor in narrowing down the location of the bugs.

There were four types of debugging that were used:

Hardware assisted debugging: Early in the boot sequence of the kernel or because of an
unrecoverable error in the kernel, the kernel may not be able to save the execution state
for analysis of the error. PARISC provides hardware support to store this execution state
in non-volatile memory which can analyzed later. The target system HP 9000/834's boot
monitor provided a hex-dump facility that also was quite useful. Pieces of Tut code were
reused to provide the crash analysis facility.

Traces: Traces were the most important debugging tool. Chorus provides portable tracing
modules for various kernel data structures like the scheduler, actor, thread, port, etc and
various levels of tracing functions within the kernel. For more details see [Ch090]. The
first problem was getting something to be written to and reading from the terminal. The
second problem was writing reliable putCharO and getCharO function. The putCharO
and getCharO function should work in both virtual and physical memory modes. Since all
the portable code of the kernel performed its printfs and scanfs in terms of these two calls,
we could use the traces when these functions were implemented. The trace level can be set
dynamically and also through the debugger and proved a valuable tool in isolating module
testing.

Kernel Debugger : A kernel debugger was implemented as part of the Supervisor interface. The
implementation of the PA-Chorus kernel debugger is presented in [KHIW92]. It is a low-level
debugger and does not provide symbolic debugging. However, it proved very useful during

8

the port. The postmortem tools mentioned below have been integrated through the debugger
user interface.

PostMortem tools : Almost all of these tools are integrated through the kernel debugger. All
of the tools maintain a, rolling history of a certain event and the relevant information about it.
Information was stored about traps, interrupts, context switches, cause of context switches
(premption or voluntary), and the execution states of the threads involved at the time of the
context.

We used traces extensively during the first stage of the port. However, with the interrupts
turned on, By the time we made a length trace to the terminal, the round robin interval
of lOms was long past. We never could do any useful work. Relying on post mortem tools
became a necessity in this case.

A brief description of the implementation of PutCharO and GetCharO is now presented.
The trace functions used in the kernel used printfO that was specifically written for the kernel.

This code was written in a portable manner such that the only machine dependent functions that
needed to be implemented to have a working kernel printfO were PutCharO and GetCharO.
These two functions have been implemented in the following manner. The functions PutCharO
and GetCharO call SupPutCharO and SupGetCharO respectively. SupGetCharO is im
plemented in terms of SupPoIlCharO. SupPoIlCharO returns a character from the terminal
(console) if one is available. Otherwise, it returns O. It is a non-blocking function. SupPutCharO
and SupPolICharO are both implemented by calling a function SupIodcCaIlO with appropriate
operation type. All the Sup*O routines are implemented in kern/PARISC/svBoard.c. Su
pIodcCallO in turns calls 'write' and 'read' functions exported by the Input Output Dependent
Code (IODC) of the console device[IHKW92]. The IODC is called with virtual memory and the
interrupts disabled. The execution state is restored before returning from the SupPolICharO and
SupGetCharO routines. For more details on what an IODC is and how the concept works, see
[JB086, Hew90].

It is pertinent to mention here that the printf() routine provided in the kernel is not as generic
as a printf() available to the user program. In fact, the maximum number of parameters to the
kernel printf() is 8. We found this limit the hard way when a trace had more than 8 parameters.
Chorus should specify that a limit exists on the number of parameters in their implementation
specfication guide.

5 Testing and Validation

We adopted the same approach as Chorus for validating the PA-Chorus kernel, I.e., pass the kernel
test suite. This section presents the kernel test build environment, a brief description of the various
kernel tests, and the modifications we had to do to port the kernel tests.

5.1 The Kernel test build Environment

Chorus provides a set of kernel tests that test the kernel functionality and interface. The tests run
as actors on the Chorus kernel. The test suite sources are organized under the chorus_3.3/ktests
directory. Siimlar to the kernel source tree organization, the kernel test sonrces are divided into
'target-independent' and 'target-dependent' parts. The target dependent files are placed in HP800
and P ARISC directories.

9

Each of the directories, i.e., ktests, ktests/HP800, ktests/PARISe, contain a file make
Target used for building the kernel tests. A make in the ktests directory compiles all the objects
in the directory and recursively makes in the machine dependent sub-directorys to create executable
images. These makeTargets include the configuration options and compilation rules (mkopt and
mkrules from the chorus_3.3 directory. A make in the ktests directory has the following syntax:

make -f makeTarget targetName

The main names that can be used as targetName can be any of the following:

• SYST: build kernel test executable images such that they run as supervisor actors. Basically
the the object modules are linked with the supervisor actor library and the different starting
virtual address that does not overlap with the address ranges of other supervisor actors or
the kernel. In addition they are created with the -N option that allocates the code and data
spaces contiguously (The data, space begins at the next page aligned address a,fter the last
code address).

• USER: build kernel test executable images sllch that they run as user actors. These actors are
linked with Chorus user Actor library. The starting address of the text segment and the data
segment are the default values provided by the linker, OxSOO and Ox40000000 respectively.

If no targetName is supplied, then both types of actors are made. There are other targetNames that
can be supplied to make that build sub-targets in the ktests tree. However, the purpose of this
document is only to give an overview of the overall organization thus giving an initial start up rather
than to form a substitute for reading the source tree by dwelling deeply into the values for various
configuration options and the different sub targets that can be made from each of makeTarget in
the whole directory hierarchy.

The ktests directory also contains provisions for defining tests' specific mkopt and mkrules.
However, we did not need to use them.

5.2 The Kernel tests

The kernel tests sources in the ktests are organized in the following manner:

• All the definitions and declarations for a test are placed on a test specfic .h file. Defintions
and configurations that are global to all tests are placed in a file (ktests/kLconf.hxx) that
is included by all the test sources.

• All the procedures needed by a test are place in a test specfic library. Those that are generic
are divided again into virtual memory related functions and others. These functions are
placed in seperate files.

• Most other files in the ktests directory correspond to specific tests, usually one per test. For
example, kLact01.cxx contains the source for the test kt_act01.

• The target dependent functions and values of symbolic constants are defined in the target
dependent sub-directories HP800 and PARISe. All the functions that are necessary for the
kernel test suite have been implemented for PA-Chorus in the sub-directories of ktests.

We now present a short functional specification of the various tests in the kernel test suite. For
a more detailed specification, see [Ger90].

10

kLactOl : This is considered the simplest test in the kernel test suite. It serves the dual purpose
of validating the kernel test environment and all the necessary configuration features are
more or less in place. The test performs a few actor specific system calls, No threads are
created. The test should pass in the both kernel and user spaces, i.e., when linked/loaded as
a supervisor actor or as a user actor.

kLact02 : Test actor related functions at kernel configuration limits. The test should pass in both
kernel and user spaces.

kt_excepOl : Test the kernel exception processing functionalities. The test should pass in user
space. It is not intended for the kernel space.

kLgrpOl : Test group broadcast related functions. The test must pass in both user and kernel
spaces.

kLipcOl : Test the functions related to inter process communication. The test requires two actors:
a client and a server. The test should pass in both kernel and user spaces.

kLvmOl : Test the page pool operations. The test should pass in both kernel and lIser spaces.

kL vm02 : Test the kernel virtual memory functionality up to the kernel configuration limits and
test the IPC using virtual memory functions. This test involves 3 actors: a client, a server
and a mapper. This test should pass in both kernel and user spaces subject to constraints on
the placement of server and mapper actors with respect to the client actor.

kLsyncOl : Test the sempahore and mutex related functions. The test should pass in both kernel
and user spaces.

kLthrOl : Test basic thread related functions along with the semaphore and mutex interface. The
test should pass in both kernel and user spaces.

kt_thr02 : A more difficult test performing thread related functions up to the kernel configuration
limits. This includes creating the maximum number of threads and ports as specifed by the
configuration parameters. The test should pass in both kernel and user spaces.

kLuiOl : Test the unique identifier (UI) related functions up to the configuration limits. The test
should pass in both kernel and user spaces.

kLsvCallsOl : Test a part of the supervisor actor interface related to time-out, exception and
trap handling. This test should pass in the kernel space. It is not intended to run in the user
space. This test was written for PA-Chorus.

5.3 Modifications to the portable layers of kernel tests

There were few modifications to the 'portable layers' of the kernel test suite. These involved
changing the assumptions about user address space range, stack direction, and thread's system
stack size. There was one instance of each of the above assumptions. A couple of procedures were
not generic enough to handle the total range of their formal parameters. The modified files are
kLmain.cxx, kLlibVM.cxx, kt_lib.cxx, and kt_vm1.cxx in the ktests directory.

11

6 Remarks

The chorus source organization was a big plus in the process of porting. It was very easy to identify
the location of various functions.

As there was not enough documentation on the kernel tests, it took us a long time to figure
out how the tests are supposed to run, and the interface that needs to be implemented by the
target-specific functions. However, compared to writing our own kernel validation suite, the work
that was involved in porting the kernel tests was negligible.

The shadow tree approach to development proved very beneficial. However we would have liked
to have a tool that could take snap shots of all the tree and retreive it symbolically.

7 Acknowledgements

We thank Jean-Jacques and Olivia Giffard of Chorus Systemes for expediting the process of ob
taining the sources of kernel tests.

References

[Ch090] CHORUS Kernel v3.2 Implementation Guide. Technical Report CS/TR-90-5, Chorus
Systemes, 1990.

[Ger90] Jean-Jacques Germond. Specifications of the CHORUS/MiX Kernel v3.2 Test Suites.
Technical Report CS/TR-90-27, Chorus Systemes, 1990.

[Hew90] Hewlett-Packard. Precision I/O A rchitecture Reference Specification, 0.93 edition, Jan
uary 1990.

[IHKW92] Jon Inouye, Marion Hakanson, Ravindranath Konuru, and Jonathan Walpole. Port
ing Chorus to the PA-RISC: Booting. Technical Report CSE-91-4, Oregon Graduate
Institute, 1992.

[JB086] David V. James, Stephen G. Burger, and Robert D. Odineal. Hewlett-Packard Preci
sion Architecture: The Input/Output System. Hewlett-Packard Journal, 37(8):23-30,
August 1986.

[KHIW92] Ravindranath Konuru, Marion Hakanson, .Jon Inouye, and .lonathan Walpole. Porting
the Chorus Supervisor and Related Low-Level Functions to the PA-RISC. Technical
Report CSE-91-6, Oregon Graduate Institute, January 1992.

12

	Portland State University
	PDXScholar
	1-1992

	Porting Chorus to the PA-RISC: Building, Debugging, Testing and Validation
	Ravi Konuru
	Marion Hakanson
	Jon Inouye
	Jonathan Walpole
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1391011863.pdf.Z5sS8

