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Dynamic Load Distribution in MIST

Abstract: This paper presents an algorithm for sched-
uling parallel applications in large-scale, multiuser,
heterogeneous distributed systems.  The approach is
primarily targeted at systems that harvest idle cycles in
general-purpose workstation networks, but is also
applicable to clustered computer systems and mas-
sively parallel processors.  The algorithm handles
unequal processor capacities, multiple architecture
types and dynamic variations in the number of pro-
cesses and available processors.  Scheduling decisions
are driven by the desire to minimize turnaround time
while maintaining fairness among competing applica-
tions.  For efficiency, the virtual processors (VPs) of
each application are gang scheduled on some subset of
the available physical processors.

Keywords: Scheduling, distributed systems, heteroge-
neity, process migration.

1. Introduction
Recent years have witnessed rapid advances in the per-
formance of commodity micro-processor and network
hardware.  From a parallel computing perspective, one
significant impact of these advances is that general pur-
pose computer networks are already becoming viable
platforms for running high performance parallel appli-
cations [1].  The Parallel Virtual Machine (PVM) [2],
P4, Linda and others [3] are examples of software sys-
tems that support such functionality.

While the problem of scheduling parallel applica-
tions on distributed computing systems is already well-
explored [4], most existing approaches focus on dedi-
cated, homogeneous environments, such as massively
parallel processors (MPPs).  From a scheduling per-
spective, general purpose computer networks differ
from MPPs in two key respects: (a) they are usually
composed of heterogeneous processors, and (b) indi-
vidual processors are usually owned by a specific user
or group of users.  Both of these characteristics add
significant complexity to the scheduling problem.

Heterogeneity complicates the scheduling problem
in several ways.  First, different processors can have
unequal processing capacities and hence an even distri-
bution of work among the available processors will not

usually result in correct load-balancing.  Second, varia-
tions in architecture and instruction set among the
available processors impose hard constraints on the
choice of targets for creating new virtual processors
(VPs) or migrating existing ones.

The concept of ownership further complicates the
scheduling problem because allocation decisions made
by the scheduler may be dynamically invalidated by
processor owners.  In workstation networks, for exam-
ple, a processor’s availability for running parallel jobs
typically depends on it being otherwise idle [1].  When
the owner of an idle processor returns to use it again it
may be necessary to invoke the scheduler to evict any
currently resident VPs and reassign them to other pro-
cessors.  Responsive eviction is an important require-
ment for unobtrusive idle cycle stealing [5].
Consequently, scheduling decisions must be made
quickly and it must be possible to migrate VPs dynam-
ically.1 Scheduling algorithms for environments in
which ownership is an issue must be capable of han-
dling dynamic and independent variations in the num-
ber of available processors and VPs.

This paper presents a scheduling algorithm which
satisfies the above heterogeneity and ownership con-
straints and allocates processing resources to parallel
jobs such that the job’s turnaround time is minimized
and fairness among competing jobs is maintained.  For
practical reasons, we do not assume that a job’s execu-
tion time requirements are known in advance.

The main motivation for this work is the develop-
ment of a real-world global scheduler for use in our
parallel programming environment, MIST [9].  MIST
combines Migratable PVM (MPVM) [10] with global
scheduling and load monitoring.  MIST is designed to
use idle cycles scavenged from shared networks of
workstations to run existing PVM programs efficiently
and effectively.  MPVM allows VPs to be asynchro-
nously migrated between homogeneous processors.
Migration is transparent to the application.  MPVM

1. We assume the existence of a migration mechanism that is capable
of migrating VPs among equivalent processor architectures at any
stage during their execution [6,7,8]. We also assume that such a
mechanism is heavy-weight and should not be invoked frequently.
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also allows entire parallel jobs to be suspended and
resumed while maintaining the ability to migrate VPs.
VP migration and job suspension/resumption are all
required for dynamic gang scheduling.

The remainder of the paper is organized as follows.
Section 2 compares our work with existing research in
distributed scheduling.  Section 3 outlines the model on
which our scheduling algorithm is based.  The schedul-
ing algorithm is presented in Section 4.  Finally, Sec-
tion 5 concludes the paper.

2. Related Work
Existing scheduling algorithms can be categorized as
either shared memory multiprocessor approaches
[11,12] or distributed systems approaches [4,13,14].
This paper is concerned with distributed systems
approaches.  Distributed systems approaches can be
subdivided into approaches for homogeneous or heter-
ogeneous environments.  Most existing research falls
into the homogeneous category in which all processors
are assumed to be equivalent in terms of processing
capacity and architectural characteristics.  This paper
addresses heterogeneous environments.  Finally, sched-
ulers can be further categorized according to whether
they make allocation decisions statically or dynami-
cally.  Static approaches map VPs onto processors
based on a set of characteristics defined at job submis-
sion time.  These characteristics include, for example,
the number of VPs in the job and the number and con-
figuration of the available processors.  Dynamic
approaches do not require prior knowledge of the sys-
tem or application characteristics.  Instead, the sched-
uler adapts to changes by dynamically re-mapping VPs
to processors.

The algorithm presented in this paper addresses the
problem of how to reassign VPs to processors dynami-
cally in a heterogeneous distributed environment.  That
is, we are concerned primarily with the question of
how to choose a good mapping following a change in
the number of VPs or processors.  Though this algo-
rithm was developed primarily for use in a distributed
scheduler for MIST, this paper does not directly
address the problem of distributing the scheduling
algorithm itself.  However, many of the ideas, dis-
cussed below, for distributing the scheduling decision
are applicable to our scheduling algorithm.

Most existing dynamic homogeneous scheduling
approaches target load-balancing as the main motiva-
tion for dynamic reassignment and differ according to
their accuracy and the amount of processor load infor-
mation they exchange [15].  Zhou’s algorithm [16] bal-
ances load by periodically requiring each processor to
inform other processors of load changes.  The sched-

uler is invoked whenever a new VP is submitted.  If the
local load is below a threshold value Th1 the VP is exe-
cuted locally.  Otherwise the least loaded node in the
system is examined.  If its load is less than the local
load by at least a threshold Th2, then the VP is sched-
uled on that processor.  Otherwise, it is executed
locally.

A number of techniques have been developed to
reduce the overhead of Zhou’s algorithm.  Xu presents
four heuristics [17] that reduce overhead at the expense
of accuracy, by allowing either neighboring processors
or all processors in the system to contribute to the set-
ting and adjustment of the threshold values for a given
node.  Kremien et al., Ahmad, and Suen [18,19,20]
propose various techniques to reduce overhead by sub-
dividing the system and using combinations of local
and global information to schedule tasks locally or
remotely.  Willebeek-LeMair and Reeve [21] presented
four scheduling policies that dynamically balance load
without using global information, instead considering
load only on neighboring processors.  Other research-
ers [22] capitalize on multi access local area networks
in order to implement the search for the minimum/
maximum loaded node in constant time, regardless of
the number of processors on the network.

More centralized, static approaches to scheduling in
heterogeneous environments are supported in the Load
Sharing Facility (LSF), Utopia [23], Distributed Queu-
ing System (DQS) [24], Portable Batch System (PBS)
[25] and Prospero Resource Manager (PRM) [26].
These systems are widely used in practice, and support
the mapping of VPs to processors at job submission
time.  However, they do not support the concept of
dynamic migration.  Consequently, they are more
appropriate for dedicated, or otherwise idle, environ-
ments than for continual use in general purpose mul-
tiuser networks.

The Adaptive Load Distribution SYstem (ALDY) is
a library for dynamic load balancing of distributed
objects [27].  ALDY manages the load balancing of
application defined VPs and migrates VPs using an
application defined mechanism.  ALDY uses a replug-
gable strategy to make redistribution decisions.  Param-
eters for the strategy are input from a start-up file.

Condor [5] is the only system we are aware of that
supports dynamic, heterogeneous scheduling.  Condor
originated as a system for running sequential jobs
using cycles scavenged from distributed systems.  It
has evolved to handle parallel jobs as well.  Condor can
checkpoint a single process in either of two ways: (a)
to a file that is then saved to stable storage, which is
useful for fault tolerance, or (b) to a socket and on into
a waiting process, which is useful for process migra-



tion.  A Condor job’s environment is preserved across
migrations through a facility called remote system
calls.

Condor interacts with parallel jobs via three addi-
tional facilities:  CARMI and WoDi [28], and CoCheck
[29].  CARMI is an interface between Condor and par-
allel jobs that use message passing environments such
as PVM.  CARMI allows a parallel job to request
resources from Condor, then create VPs on those
resources.  Jobs using CARMI have access to all
resource information possessed by Condor, so resource
requests can be as general or specific as necessary.
WoDi, which stands for work distributor, is a frame-
work for writing  dynamic parallel programs using the
master-workers model.  WoDi uses CARMI to access
Condor.  CoCheck provides consistent checkpoints of
PVM jobs.  Condor uses CoCheck to checkpoint entire
parallel jobs or migrate individual VPs.

To our knowledge, Condor does not schedule paral-
lel programs in any special way.  If gang scheduling of
parallel jobs is desired, Condor could potentially use
the algorithm described in this paper.  CARMI allows
the parallel jobs to take advantage of dynamic
resources, and Condor can use CoCheck to dynami-
cally migrate the VPs between processors.

Static gang scheduling of parallel programs has been
shown to be viable on both dedicated [30] and non-
dedicated [31], high-performance workstation clus-
ters. In this paper, we present an algorithm for dynami-
cally scheduling parallel applications in non-dedicated,
heterogeneous systems. The scheduler is invoked
dynamically to reassign VPs to processors when pro-
cessors become available, are reclaimed by their own-
ers, and when VPs are created and destroyed.  In the
current version of the algorithm, scheduling decisions
are made on a single processor.  Further work to dis-
tribute the scheduler is underway, but is outside the
scope of this paper.

3. Model
To illustrate the basic principles underlying our sched-
uling algorithm, we start out by presenting a simplified
model in which all processors are of the same architec-
ture and equal processing power.  The complete algo-
rithm presented in Section 4 extends this model to
heterogeneous environments.

The scheduler is invoked in response to four kinds of
events: processor_exit, new_processor, new_VP and
VP_exit.  A processor_exit event occurs, for example,
when a processor is reclaimed by its owner and all its
VPs must be migrated to other processors.  The effect
of a processor_exit is to remove the processor from the
pool of processors managed by the scheduler.  A

new_processor event signals the addition of a new pro-
cessor to the pool of processors managed by the sched-
uler.  A new_VP event occurs when an application
creates a new VP.  A VP_exit occurs when an applica-
tion terminates a VP.  In the remainder of the paper we
refer to the collection of VPs belonging to the same
application as a job.

At any point in time, the state of the system can be
illustrated using a two-dimensional allocation map in
which one dimension represents the available proces-
sors and the other represents time.  Each entry in the
allocation map is either occupied by one or more VPs
of a job, in which case the corresponding processor is
assigned to that job during that time slice, or it is free,
in which case the corresponding processor is unused
during that time slice.  For example, Figure 1 repre-
sents the state of a system with six processors and eight
jobs.  The VPs of job J1 are allocated time slice T1 on
all processors, whereas jobs J2 and J3 are assigned to
disjoint subsets of the available processors during time
slice T2.  Figure 1 also shows that processors P5 and
P6 are free during time slices T3 and T4.

Using this model, a processor_exit event corre-
sponds to the removal of a row from the allocation
map, and a new_processor event corresponds to the
addition of a row to the allocation map.  A new_VP
event corresponds to the assignment of a new VP to an
entry in the allocation map and may cause the addition
of a new column if it is the first VP of a new job.  Simi-
larly, a VP_exit event corresponds to the removal of a
VP from an entry in the allocation map and may cause
the removal of a column if none of its entries are
assigned. The role of the scheduling algorithm is to
decide how to manipulate the allocation map in
response to these events.

A number of assumptions influenced the design of
our scheduling algorithm. We assume that the VPs of a
single job communicate frequently and hence will ben-
efit from gang scheduling [32].  Gang scheduling
requires all the VPs of a single job to execute at the
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same time.  Hence, we use time slices that extend
across processors and ensure that all the VPs of a sin-
gle job are allocated in the same time slice.  In terms of
the allocation map, this approach implies that if one
VP from a job resides in a column, all other VPs of that
job must also reside in the same column.  Note that if a
single job occupies multiple columns, all its VPs must
be replicated in each of those columns.

When a new_VP event occurs a processor must be
selected as the target for executing the newly created
VP.  Similarly, when a processor_exit event occurs the
scheduler must select new processors as targets for
migration of any displaced VPs.  If no free processors
are present in the required time slices, the scheduler
may choose to assign the new or displaced VPs to one
or more of the other processors assigned to the same
job.  In the following discussion we refer to this proce-
dure as doubling up.

If VPs are doubled up on a processor it may be pos-
sible to double up on several other processors, hence
freeing processors, without further impacting the turn-
around time of the job.  For example, consider a
processor_exit event on processor P1 in Figure 1.  If
we place two VPs of job J1 on processor P2 in time
slice T1 the net effect will be to double the turnaround
time for job J12.  Taking job J1’s VPs from processors
P5 and P6 and placing them on P3 and P4 will not fur-
ther increase the turnaround time, but it will free up
processors P5 and P6 in time slice T1.  These proces-
sors could then be used by other jobs.  We refer to this
concept as compressing the job’s processor set.

On a new_processor event the scheduler must deter-
mine whether to migrate existing VPs to the new pro-
cessor.  Similarly, on a VP_exit event the scheduler
must decide whether to use the resulting free capacity
for other jobs.  From the discussion in the previous
paragraph it can be seen that both processor_exit and
new_VP events can also cause processors to be freed
through compression.  Therefore, all four scheduling
events can potentially cause the scheduler to consider
migrating existing VPs to new processors.  We refer to
the migration of existing VPs to new processors as
expanding a job’s processor set.

Since the value of expanding a job’s processor set
depends on the relationship between the cost of migra-
tion and the remaining execution time of the job, and
since we assume no prior knowledge of a job’s execu-
tion time, it is impossible to know whether expansion
will be worthwhile.  For example, if the remaining exe-
cution time for a job was very small and the migration
cost was very high, the speed up resulting from expan-
sion would not amortize the migration cost.  Therefore,

2. This example assumes an initial assignment of one VP per proces-
sor for job J1.

we take the following greedy approach:  If a job can be
speeded up through expansion, we assume that it will
run for long enough to offset the migration cost.  If a
job can not be speeded up, we do not change its current
allocation.

Compression and expansion are relatively straight-
forward in homogeneous environments, but become
complex in heterogeneous environments where proces-
sors have unequal processing capacity and incompati-
ble architectures.  The discussion so far has assumed a
homogeneous environment.  The algorithms presented
in the next section extend this basic approach to hetero-
geneous environments with the following characteris-
tics.  First, the architecture types and relative
processing capacities of all processors are known.  In
practice, we would obtain an estimate of the processing
capacity by periodically running a simple benchmark
on each processor and passing the results to the sched-
uler.  Second, the choice of target processors for VP
migration and the creation of new VPs is constrained
by architecture type.

4. The Scheduling Algorithm
The overall scheduling algorithm comprises three basic
algorithms: the Minimum Turn-Around Time (MTAT)
algorithm, the Compression algorithm, and the Expan-
sion algorithm.  These basic algorithms are employed
in handling all four scheduling events.  The MTAT
algorithm determines the minimum turnaround time
for the job, Tmin, assuming that it is maximally distrib-
uted across a given set of processors, Φ.  The Compres-
sion algorithm attempts to achieve Tmin using a smaller
set of processors Φmin.  The result of the Compression
algorithm is an allocation of VPs to processors that
yields the minimum turnaround time using the smallest
number of processors.  The Expansion algorithm is
used to explore the use of existing free space in the
allocation map.  The result of the Expansion algorithm
is the most suitable processor set and time slice(s)
available from free space.

The relationship between these algorithms is illus-
trated in Figure 2.  The advantage of the approach
shown in Figure 2 is that it is both efficient and fair.  It
prefers solutions that minimize the turnaround time of
the submitted job without impacting existing jobs, and
falls back on solutions that continue to minimize the
turnaround time for the submitted job while impacting
all jobs equally.

4.1 The MTAT Algorithm
The Minimum Turn-Around Time (MTAT) algorithm
has two stages.  The first stage determines the ideal
load distribution across the set of available processors.



The second stage modifies this load distribution to take
into account constraints imposed by VP granularity.

To distribute load fairly requires some knowledge of
the relative processing capacity of each of the available
processors.  Let Φtotal be the set of all the processors in
the system3.  The relative processing capacity ai of a
processor Pi is defined with respect to the slowest pro-
cessor in Φtotal as follows:

Let Φ be the set of currently available processors
such that Φ ⊆ Φ total.  The fraction

represents the portion of the system’s currently avail-
able processing capacity contributed by processor i.  If
X is the number of VPs in a job, then the real number xi

of the job’s VPs that should be assigned to processor i
is:

where α is the job’s minimum possible turnaround
time.  Note that this turnaround time assumes that load
can be balanced exactly equally among the available

3. Note that some of these processors may not be available to the
scheduler at any particular time

processors in Φ.  This assumption is generally not valid
when the number of VPs is independent of the number
of processors and their processing capacity.  Therefore,
the second stage of the MTAT algorithm must calculate
a real-world distribution that takes into account VP
granularity.  To achieve this goal, xi must be forced to
an integer value.

The result of making xi an integer will be an increase
in the turnaround time for the job since one or more of
the processors will become a bottleneck.  Let Ti be the
completion time for the portion of the job assigned to
processor Pi.  The real-world minimum turnaround
time for the job is

The second stage of the MTAT algorithm determines
the allocation of VPs to processors that minimizes
Tmin.  This algorithm has the following five steps:

1. For each processor, determine an upper bound, ,
on the number of complete VPs that can be allo-
cated to it in an optimal solution:

, ∀ i ∈ Φ .

2. Calculate the number of VPs, Diff, left unallocated
following step 1:

3. For each processor, determine the effect on overall
turnaround time of the job, called Drag, that would
result from allocating an additional VP to that pro-
cessor:

, ∀ i ∈ Φ .

4. Order the processors in Φ based on Drag and select
the Diff lowest processors.  Allocate one of the
remaining VPs to each of those processors.  Let xif

be the final allocation of VPs to processor i and Tif

be the completion time for those VPs on processor
i. Then

  and

Example 1: Consider a job with X = 20. Let the rela-
tive processing capacity of the available processors
{ai} = {10, 1, 4, 3}.  Then:

{xi} = {ai α} = {11.11, 1.111, 4.444, 3.333}

{ x̃i } = {11, 1, 4, 3}  and

Step 4 of the MTAT algorithm yields {Dragi} =

Figure 2: Relationships among the basic
scheduling algorithms.
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{0.089, 0.889, 0.139, 0.222}.  Thus the extra VP is
allocated to processor 1 and {xif} = {12, 1, 4, 3}.  Con-
sequently, the completion times on each processor
{Tif} are {1.2, 1, 1, 1} and the overall turnaround time
Tmin for the job is 1.2. ❑

The above description of the MTAT algorithm
assumes that all processors are architecturally equiva-
lent.  That is, it assumes that any of the VPs of a job
can be executed on any processor.  In reality, system
heterogeneity will impose restrictions on where VPs
can execute.  These restrictions arise for two reasons:
(a) when a new VP is spawned an executable image
may not exist for all processor architectures, and (b)
dynamic VP migration can usually only take place
between processors with equivalent architectures
because of the difficulty in translating state information
relating to the VP’s current context from one processor
architecture to another.  Consequently, the MTAT algo-
rithm must be extended to deal with disjoint pools of
processors with equivalent architecture.

The basis for extending the MTAT algorithm is sim-
ple: call it once of each architecture pool and return the
largest turnaround time as Tmin.  The complete algo-
rithm is as follows:  Let Z be the set of distinct archi-
tecture types represented in the set of available
processors Φ, let Φz be the set of available processors
of architecture type z, let Xz be the number of VPs of a
job that are restricted to architecture type z, and let Tz

be the minimum turnaround time of a job on Φz.  Then
Tmin = max (Tz, ∀ z ∈ Z) where Tz = MTAT (Xz, Φz).

The complexity of the MTAT algorithm is O(Z nz

log nz), where nz is the number of processors of a given
architecture available to the scheduler.

4.2 The Compression Algorithm
Although the MTAT algorithm yields the minimum
possible turnaround time, further work is required to
determine the minimum set of processors Φmin ⊆ Φ
that are necessary in order to achieve Tmin.

Example 2: Consider an environment with 3 proces-
sors where X = 4 and a1 = a2 = a3 = 1 (i.e., the proces-
sors are homogenous).  In this case, α = 4/3; {xi} =

{aiα} = {1.33, 1.33, 1.33}, x̃ = {1, 1, 1} and Diff = 4 -
3 = 1.  Since Drag = {0.67, 0.67, 0.67}, the remaining
VP can be scheduled on any of the three processors,
yielding Tmin = 2.  Note, however, that the same value
for Tmin can be obtained using only two processors,
each with two VPs (see Figure 3).  Although the MTAT
algorithm yields the minimum possible turnaround
time, it does not necessarily yield the minimum possi-
ble Φ. ❑

The Compression algorithm compresses the set Φ,
while maintaining Tmin, in the following way:
1. Calculate an upper bound on the VP assignment

 at each processor in a solution that continues

to maintain Tmin:

If the VP assignment at any processor exceeds

, the completion time at that processor will

exceed Tmin, and the solution will not be valid.
2. Identify the processors that can not have an integer

number of VPs assigned in a solution that meets
Tmin and do not consider them further.  In other
words, find the set of processors Φmin ⊆ Φ such

that .

3. If the total processing capacity (available at com-
plete VP granularity) on all the processors in Φmin

exceeds the number of VPs in the job then attempt
to reallocate VPs to free up as many processors as
possible.  To achieve this goal, first construct the set
of processors ΦT that have enough excess capacity
to accommodate one or more additional VPs.  Then
visit all processors in order of increasing VP alloca-
tion and attempt to redistribute their VPs to the pro-
cessors in ΦT until the free capacity is insufficient
to free up a processor.  The details of this step are
as follows:

xi
1.0
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Figure 3: Optimizing the solution of Example 2
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  ⋅ if then

  ⋅
  ⋅ for all processors Pi in Φmin

  ⋅ if then add Pi to ΦT

  ⋅ Construct Φsorted by sorting Φmin in
increasing order on the number of VPs
assigned to Pi .

  ⋅ for all processors Pi in Φsorted

  ⋅ if xif ≤ free then

  ⋅ Remove Pi from Φmin .

  ⋅ free = free - xif

  ⋅ Re-allocate VPs from Pi to members
of ΦT, removing processors from ΦT

as their free capacity is exhausted.

Example 3: Consider a job with X = 9 and a = {4, 2,
1}.  The minimum ideal turnaround time α is (9/
7) = 1.29.  The MTAT algorithm yields Φ = {all}, and
Tmin = 3/2.  Table 1 illustrates the effects of the MTAT
algorithm.  Table 2 illustrates the effects of the Com-
pression algorithm. ❑

The description of the Compression algorithm
assumes that all processors are architecturally equiva-
lent.  The algorithm can be extended to deal with dis-
joint pools of processors with equivalent architecture
by calling it once for each architecture pool and return-
ing the union of the minimum processor sets.  The
algorithm is as follows:  Let Z be the set of distinct
architecture types represented in the set of available
processors Φ, let Φz be the set of available processors
of architecture type z, let Xz be the number of VPs of a
job that are restricted to architecture type z, and let

Φmin be the smallest set of processors on which the job
can achieve Tmin in the heterogeneous environment.
Then Φmin = ∪  (Φzmin, ∀ z ∈ Z), where Φzmin = Com-
press (Xz, Φz, Tz) and Tz = MTAT (Xz, Φz).

The complexity of the Compression algorithm is
O(Z nz log nz) where nz is the number of processors of
a given architecture available to the scheduler.

4.3 The Expansion Algorithm
The goal of the Expansion algorithm is to incorporate
the job into an existing schedule containing other jobs.
Using the model described earlier, it can achieve this
goal either by allocating empty entries in the allocation
map or by extending the allocation map with an addi-
tional time slice.  The criterion for deciding when to
allocate a new time slice is as follows.  The MTAT
algorithm indicates the minimum turnaround time Tmin

for the job using all available processors.  If the job
were scheduled in a new time slice its turnaround time
would be Tminτ where τ is the number of time slices.  A
new time slice will only be allocated if this turnaround
time can not be equalled or beaten using existing free
space in the allocation map.

The purpose of the Expansion algorithm is to search
for patterns of usable free space in the allocation map
that satisfy the gang scheduling constraints discussed
earlier.  There are many different algorithms that could
be used to discover such space, each of which makes a
different trade-off of complexity for accuracy.  An
accurate algorithm would guarantee to find all possible
combinations of usable space in the allocation map at
the expense of high complexity.  Other algorithms
reduce complexity and hence run faster at the cost of
missing some potentially good solutions.  The overall
design of our scheduling algorithm is such that the
Expansion algorithm can be easily replaced to match
the needs of a particular environment4.  The Expansion
algorithm outlined below is a compromise between
complexity and accuracy and searches for regular pat-
terns of free space.

Definition: A pattern is a collection of empty slots in
the allocation map.  A pattern is a regular pattern if the
following condition is met: let the set Φp denote the
processors where the pattern of empty slots reside.
Also, let this pattern span the set of time slices τp.
Then, the pattern of vacant slots is a regular pattern if
all the slots resulting from the cross product Φp × τp

are in the pattern.

4. For example, a small system may favor accuracy over complexity
by using an algorithm that finds all possible combinations of free
space.

Table 1: The MTAT algorithm applied to Example 3.
Diff = 1    Tmin = 3/2

ai xi = α ai Dragi xif Tif

4 5.14 5 0.214 5 5/4

2 2.57 2 0.214 2+1=3 3/2

1 1.29 1 0.714 1 1

Table 2: The Compression algorithm applied to
Example 3.

ai xif New xif

4 5 6 6 5 + 1 = 6

2 2 3 3 3

1 1 1.5 1 0
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Any pattern can be decomposed into regular pat-
terns.  For example, in Figure 4, any collection of
vacant slots forming a row or a column is a regular pat-
tern.  Some of the regular patterns that can be derived
from the pattern shown in Figure 4 are {S0, S1, S2, S3,
S4, S5, S14, S15, S16}, {S0, S2, S3, S5, S6, S8, S14,
S16}, and {S1, S2, S4, S5, S9, S10, S15, S16}.

The Expansion algorithm only considers regular pat-
terns of free space.  Specifically, it searches the alloca-
tion map for the largest regular pattern, uses the MTAT
algorithm to compute the turnaround time for the job
using the processors in that regular pattern, and then
compares the result with the original result from the
MTAT algorithm that specifies the turnaround time for
the job using a new time slice.  If the regular pattern
results in a faster turnaround time then the processors
that it contains are passed as input to the Compression
algorithm and the resulting minimal processor set is
assigned to the job during the time slices contained in
the pattern.  Otherwise, a new time slice is added and
the Compression algorithm is used on the full proces-
sor set to determine the final assignment.

The details of the Expansion algorithm are as fol-
lows.
  ⋅ Let E be the set of all columns (time slices) in the

allocation map that contain empty entries and let
Ei be the set of empty entries in column i.

  ⋅ for (all columns Coli ∈ E)
  ⋅ widthi = 1

  ⋅ for (all columns Colj ∈ E where j ≠ i )
⋅ if (Ei ⊆ Ej) then

  ⋅ widthi = widthi + 1

  ⋅ Size (Patterni) =

  ⋅ Return max (size (Patternl), ∀  Coll ∈ E).

The complexity of the Expansion algorithm is

O(Φτ2) where τ represents the number of time slices
and Φ is the number of processors.  Note that the algo-

rithm presented above does not necessarily find all reg-
ular patterns.  We chose to avoid a more exhaustive
approach due to its complexity.  Instead, our algorithm
searches for column-oriented solutions, i.e., those that
contain the maximum available parallelism in at least
one of the time slices.  The penalty for taking this
approach is that we run the risk of missing some usable
patterns that contain only subsets of the empty entries
from all columns.

Since we do not yet have experience with running
the Expansion algorithm in real-world systems, and
since insufficient trace data on VP and processor
behavior exists, we designed the scheduling algorithm
with the Expansion algorithm as a repluggable compo-
nent.  This approach should facilitate future real-world
and simulation-based comparisons of different algo-
rithms such as the packing schemes discussed by Fei-
telson [33].

4.4 Handling Scheduling Events
The three algorithms outlined above constitute the
heart of the scheduling algorithm.  This section illus-
trates their use in handling initial job submissions and
each of the dynamic scheduling events (new_processor,
new_VP, processor_exit and VP_exit).

4.4.1 Job submission
The submission of a new job invokes the MTAT,
Expansion, and Compression algorithms as illustrated
in Figure 2.  First, the MTAT algorithm is used to esti-
mate the job’s turnaround time Tmin that would result
from the use of a new time slice.  The Expansion algo-
rithm is then used to find the largest regular pattern of
free entries in the allocation map, and the MTAT algo-
rithm is used again to estimate the job’s turnaround
time Tfree using that pattern.  Note that Tmin must
reflect that the job will be given a single, new time
slice, and Tfree must reflect use of however many time
slices are part of the free space returned from the
Expansion algorithm.  If Tfree is smaller than or equal
to Tmin it is not necessary to allocate a new time slice
since the job will run at least as fast using existing free
capacity.  In either case, the job’s minimum turnaround
time may be attainable using a subset of the processors
originally considered.  Therefore, it is necessary to run
the Compression algorithm to determine the final allo-
cation. Finally, the allocation map is updated to include
the new job.

4.4.2 Handling new_processor and VP_exit
events

The algorithms for handling new_processor and
VP_exit events are very closely related because both
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events have a similar effect on the allocation map: they
both lead to an increase in the number of free entries.
The scheduler’s response to both types of event is to
attempt to use the free entries to speed up existing jobs.
It runs the Expansion algorithm to determine the larg-
est regular pattern of free entries.  Then it selects a job
and uses the MTAT algorithm to determine whether the
job can utilize the new entries.  If so, the Compression
algorithm is used to attempt to compress the job’s pro-
cessor allocation, the job is reallocated and the alloca-
tion map is updated to reflect the newly allocated and
freed entries.  The scheduler repeats the procedure for
other jobs until either no free entries remain or all jobs
have been visited. In order to maintain fairness among
jobs, the scheduler manages its jobs in a queue and
starts with a new job for each event.  Figure 5 summa-
rizes the scheduling algorithm.

From the scheduler’s point of view, the only distinc-
tion between the VP_exit and new_processor events is
that VP_exit may cause a complete column of the allo-
cation map to become empty, in which case the sched-
uler will remove it.

4.4.3 Handling new_VP and processor_exit
events

The relationship between the new_VP and
processor_exit events is similar to that between the
new_processor and VP_exit events discussed in the
previous section.  Both events have the effect of con-
suming space in the allocation map. The scheduler’s
response to both events is to (a) call the MTAT algo-

rithm to recompute the minimum turnaround time for
the affected jobs on the available processors and (b)
call the Compression algorithm to recalculate the mini-
mum processor allocation.  If after running the Com-
pression algorithm the number of free entries in the
allocation map increases, the scheduler attempts to
expand other jobs using the approach described in the
previous section.

The main distinction between the processor_exit and
new_VP events, from the scheduler’s point of view, is
that the processor_exit event causes a complete row to
be removed from the allocation map.

5. Conclusion
We have presented an algorithm for dynamically
scheduling parallel jobs in heterogeneous distributed
systems.  The algorithm, which is based on gang
scheduling, supports environments in which processors
can have unequal processing capacities and incompati-
ble architecture types, and is dynamic in the sense that
it handles the creation and deletion of both processors
and VPs during the execution of a job.  These charac-
teristics make the algorithm applicable to systems
ranging from massively parallel processors to multi-
user networks of heterogeneous workstations.

The algorithm’s modular design can accommodate a
variety of expansion policies.  This approach allows the
behavior of the scheduler to be tailored for different
environments.  For example, a scheduler for a small
system could reorganize its assignment of VPs to pro-
cessors on every scheduling event.  This approach
maintains the optimal assignment at all times, but
becomes infeasible in larger systems because (a)
migration overhead increases with the frequency and
scope of reorganization, which increase with system
size, and (b) the complexity of calculating the optimal
assignment increases rapidly with system growth.  The
algorithm proposed here provides the flexibility to sup-
port a wide range of different systems by implementing
its expansion policy as a replaceable module.

A number of issues remain to be solved.  The first,
and most important, task for future research is to dis-
tribute the allocation map such that scheduling deci-
sions can be made asynchronously at different sites.
This extension will greatly improve the scalability of
the algorithm.  Second, we would like to explore the
behavior of different allocation policies, particularly
those that utilize information about past behavior for
processors and VPs.  We believe that such information
would be relatively easy to gather in real-world envi-
ronments and would significantly improve the sched-
uler’s allocation decisions. Finally, we are
implementing a real-world scheduler based on this
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algorithm.  We plan to release this scheduler as part the
MIST system which is currently under development at
OGI [9].
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