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GENETIC MARKERS IN PLANT EVOLUTIONARY ECOLOGY

MITCHELL B. CRUZAN

Department of Ecology and Evolutionary Biology, Department of Botany, University of Tennessee,
Knoxville, Tennessee 37996 USA

Abstract. Genetic markers have provided plant ecologists with a method of assessing
levels of genetic relatedness among individuals and populations. In recent years a number
of techniques based on DNA sequence variation have been developed to complement allo-
zyme methods that are already widely used. Some of these new markers are more variable
than protein-based markers, allowing more precise estimates of genetic differences among
individuals and populations. Other DNA-based markers are based on organelle genomes
that are inherited uniparentally. These cytoplasmic markers can provide a method for as-
sessing the separate effects of seed and pollen dispersal on gene flow within and among
populations and species. Studies of hybrid populations have been facilitated by the devel-
opment of inferential techniques for assessing levels of selection and patterns of intro-
gression between species. Genetic markers have also been used to describe mating patterns
within populations and to examine the ecological and genetic mechanisms that contribute
to variation in selfing and reproductive success. Integration of ecological methods with
genetic marker techniques continues to provide novel approaches to the study of evolu-
tionary processes in plant populations.

Key words: cytonuclear disequilibria; cytoplasmic DNA markers; ecological genetics; genetic
markers; hybridization; molecular markers; paternity analysis; plant mating system.

INTRODUCTION

Genetic markers have contributed to the study of
plant evolutionary ecology by providing methods for
detecting genetic differences among individuals. Sev-
eral early investigations in plant population biology
utilized genetic polymorphisms that were controlled by
a single locus. Although these morphological genetic
markers proved useful in several cases (e.g., Epling
and Dobzhansky 1942, Fabergé 1943), this approach
has obvious limitations because (1) morphological var-
iants are not available for most species, (2) studies
utilizing morphological characters are generally lim-
ited to only one locus, and (3) many characters (e.g.,
flower color) have to be scored relatively late in the
life cycle. While early studies of genetic variation with
morphological characters were relatively few, the es-
tablishment of new marker techniques has facilitated a
burgeoning of research in plant ecological genetics.

The study of genetic variation in plant populations
was greatly facilitated by the development of protein-
based markers (i.e., allozymes) over three decades ago
(reviewed in Loveless and Hamrick 1984, Hamrick and
Godt 1990). The primary contribution of allozymes to
plant population biology has come from their utiliza-
tion as neutral (or nearly neutral) genetic markers. Al-
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lozymes have been employed to characterize patterns
of genetic variation within and among populations, and
to examine the processes of dispersal and the patterns
of mating that influence levels of genetic differentiation
(Brown 1979, Loveless and Hamrick 1984, Hamrick
and Godt 1990, Barrett and Kohn 1991). These studies
have contributed an evolutionary dimension to our un-
derstanding of contemporary ecological processes.
Allozyme markers remain the most useful tool for ad-
dressing many questions in plant population biology,
yet the development of numerous DNA markers in re-
cent years (reviewed in Avise 1994) may provide op-
portunities to address questions that were not previ-
ously feasible, as described further below.

Plants offer both unique challenges and opportunities
for the study of ecological genetics. With the exception
of a few aquatic species, plants are sedentary over most
of their life history, so the genetic composition of ma-
ture individuals may reflect selection on early stages
by local microenvironments. From a population-ge-
netic standpoint, this lack of mobility combined with
limited pollen and seed dispersal is expected to con-
tribute to a high degree of genetic structure, resulting
in a population that consists of groups of closely related
individuals. This process can be intensified by varying
levels of self-compatibility in hermaphroditic species,
contributing to local inbreeding and the generation of
highly homozygous offspring. Local mating in plant
populations may provide an opportunity for selection
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to affect the genetic composition of populations; how-
ever, this process will be counterbalanced by gene dis-
persal, which may erase any genetic changes that result
from local selection or drift. Hence, understanding both
genetic and ecological processes is critical for assess-
ing levels of genetic differentiation and the potential
influence of natural selection on morphological and
physiological characters.

Here I attempt to highlight some of the more recent
advances for the application of genetic markers to ques-
tions in plant population biology. These include new
techniques that utilize allozyme markers as well as ap-
plications for DNA-based markers. Specifically I en-
deavor to put population genetic studies into an eco-
logical context. In doing so I hope to point out con-
ceptual intersections where the further application of
genetic markers will enhance our understanding of eco-
logical processes.

MATING IN PLANT POPULATIONS: PATTERNS AND

MECHANISMS

Mating events in plants are governed by the behavior
of pollen vectors and by processes affecting post-pol-
lination siring success. Animal pollinators typically de-
posit pollen loads consisting of mixtures of self pollen
and outcross pollen from several donors (Thomson and
Plowright 1980, Waser and Price 1982, Thomson and
Stratton 1985, Thomson et al. 1986, Thomson and
Thomson 1989). With similar siring abilities of all pol-
len types, the delivery of mixed pollen loads will result
in the production of both selfed and outcrossed seeds
(i.e., mixed mating: Schemske and Lande 1985, Barrett
and Eckert 1990). Outcrossed seeds within a fruit may
be sired primarily by one or a few donors (correlated
mating: Ritland 1989), or may be more representative
of all available pollen donors. Furthermore, the success
of individual outcross donors may not reflect the fre-
quency of their pollen in the stigma load (Cruzan
1990b, Snow and Spira 1991, Marshall and Folsom
1992, Cruzan and Barrett 1993). The genetic compo-
sition of the seeds produced will ultimately depend on
the composition of pollen loads and the action of a
number of postpollination processes. Genetic markers
have provided us with insights into both the patterns
of mating occurring in plant populations and the pre-
and postpollination mechanisms that contribute to
those patterns.

Paternity analysis.—One approach to the description
of mating patterns in plant populations attempts to
identify the paternal parent of seeds collected from
known maternal plants (reviewed in Snow and Lewis
1993). Two procedures have been used: (1) identifi-
cation of the only possible or most probable father by
matching multilocus genotypes (Meagher 1986, Broyles
and Wyatt 1990), and (2) using the cumulative prob-
abilities of paternity for all seeds scored from maxi-
mum likelihood procedures to determine the reproduc-

tive success of each pollen donor (i.e., fractional pa-
ternity; Devlin et al. 1988). Attempts to unambiguously
determine paternity with allozyme markers have had
limited success because assignments can generally be
made to only a minority of the seeds produced (Snow
and Lewis 1993). With fractional paternity a larger pro-
portion of data generated can be used for statistical
analyses (Devlin and Ellstrand 1990, Devlin et al.
1992). Multi-allelic markers (e.g., microsatellites)
could increase the power of these procedures, but such
experiments require a significant amount of effort and
are probably best applied to relatively small popula-
tions (Snow and Lewis 1993).

Most studies using paternity determination proce-
dures have been able to identify substantial variation
in male reproductive success and correlations between
success and other variables examined (reviewed in
Snow and Lewis 1993). For example, male fertility rose
with plant size in some studies (Schoen and Stewart
1987, Broyles and Wyatt 1990, Devlin et al. 1992), and
significant variation in functional gender has also been
noted (i.e., relative level of male and female repro-
ductive success within individuals; Devlin and Ells-
trand 1990). A variety of morphological and population
density variables affected male reproductive success in
a study of Raphanus sativus (Devlin and Ellstrand
1990), however, significant components of unexplained
variation in male success were found in this and other
cases (e.g., Meagher 1986). Further studies exploring
the effects of variation in morphological, physiological,
and phenological traits on male fertility hold promise
for shedding light on a variety of questions in plant
reproductive ecology.

Mating system estimation.—An alternative approach
to the study of plant mating uses classifications of mat-
ing events to characterize levels of inbreeding and pat-
terns of gene dispersal in populations. These mating
system studies usually endeavor to estimate frequen-
cies of selfing and outcrossing (reviewed in Schemske
and Lande 1985, Barrett and Eckert 1990, Brown,
1990), but can also include other categories (e.g., in-
termorph mating in heterostylous species—Barrett et
al. 1987, Kohn and Barrett 1992a; or levels of bipa-
rental inbreeding—Ritland 1984, Brown 1990). Esti-
mates of selfing frequency can be derived from the
genotypes of progeny at a number of developmental
stages (seeds, seedlings, or adult offspring). Since
selfed progeny may not always survive early stages of
development (e.g., Wiens et al. 1987), assaying later
stages may underestimate the selfing frequency and its
impact on the fitness of individuals (Husband and
Schemske 1996).

A variety of genetic markers have been used to es-
timate selfing frequencies, including morphological
characters (Vasek 1964; Harding et al. 1974, Hum-
phreys and Gale 1974, Rick et al. 1978, Motten and
Antonovics 1992), allozymes (Ritland and Ganders
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1985, Schemske and Lande 1985, Barrett and Eckert
1990, Brown 1990), and RAPDs (randomly amplified
polymorphic DNA: Fritsch and Rieseberg 1992, Cru-
zan and Arnold 1994). The latter technique has the
disadvantage of dominant expression of banding phe-
notypes (i.e., heterozygous individuals cannot be dis-
criminated), but the reduced amount of information
provided by each locus can be compensated by utilizing
larger numbers of loci. While allozymes remain the
most widely used technique for mating system esti-
mation, microsatellite markers may be an attractive al-
ternative due to their high levels of allelic variation
and codominant expression.

Analyses of mating system variation have been
greatly facilitated by development of a number of pro-
cedures for the estimation of selfing frequency in pop-
ulations (Fyfe and Bailey 1951, Ritland and Jain 1981,
Brown 1990, Ritland 1990). These mixed-mating mod-
els assume random siring of outcrossed progeny, but
models based on a number of other mating schemes
have also been developed (e.g., one pollen parent—
Schoen 1988; or varying levels of sibship among prog-
eny—Ritland 1989). Analysis of selfing and outcross-
ing in plant populations has been the focus of these
procedures for several reasons: (1) selfing increases
homozygosity to a much greater extent than other
modes of inbreeding (Charlesworth and Charlesworth
1987), and hence will have a large impact on levels of
gene flow and the evolution of genetic load (Lande et
al. 1994); and (2) empirical evidence on patterns of
mating-system variation has been crucial to our un-
derstanding of the evolution of selfing (Lloyd 1979,
1992, Holsinger 1991, Uyenoyama et al. 1993). The
application of procedures for the estimation of selfing
and outcrossing frequencies has produced a large da-
tabase on mating-system variation in plants (reviewed
in Schemske and Lande 1985, Barrett and Eckert 1990,
Brown 1990).

Comparisons of mating patterns across species and
populations have revealed associations between out-
crossing frequency and life history parameters, levels
of inbreeding depression, and pollination syndromes
(reviewed in Barrett and Eckert 1990). Intraspecific
surveys of mating system variation among populations
have demonstrated associations between levels of out-
crossing and a variety of demographic and genetic fac-
tors including flower color (Horovitz and Harding
1972), degree of dichogamy (i.e., temporal separation
of sexual function within flowers [Vasek and Harding
1976, Schoen 1982]), plant density (Farris and Mitton
1984, Wolff et al. 1988), population structure (Ritland
and Ganders 1985), and variation in pollinator abun-
dance (Horovitz and Harding 1972).

Mating system variation within populations.—Less
information is available on variation in mating patterns
among individuals in a population. Variation in fre-
quencies of outcrossing among plants can be parti-

tioned into its ecological (i.e., due to differences in
pollinator activity and behavior, population density,
and environmental factors) and genetic (i.e., morpho-
logical and physiological) components. Recently Lloyd
and Schoen (Lloyd 1992, Lloyd and Schoen 1992,
Schoen and Lloyd 1992) emphasized that studies of
these mechanisms are needed to increase our under-
standing of selection for reproductive assurance and
for different selfing modes. Examination of these fun-
damental aspects of plant mating has become increas-
ingly important as recent theoretical treatments of the
evolution of selfing (Holsinger 1991, Lloyd 1992,
Uyenoyama et al. 1993) and empirical analyses (Piper
et al. 1986, Barrett and Eckert 1990, Motten and An-
tonovics 1992, Cruzan et al. 1994) have made it clear
that ecological factors are often important for the main-
tenance of mixed mating.

Studies of the influence of ecological and genetic
mechanisms on patterns of selfing and outcrossing
within plant populations have been hampered by a lack
of precise techniques for the estimation of flower-level
outcrossing frequencies. Errors associated with single-
fruit estimates using the multilocus outcrossing (MLT)
procedure of Ritland and Jain (1981) can be relatively
large (Ritland and Ganders 1985), and this method of-
ten fails to yield reasonable estimates for all fruits (i.e.,
because of small sample sizes or departures from ran-
dom outcrossing: Morgan and Barrett 1990, Cruzan et
al. 1994). These problems can be alleviated by dividing
fruits into treatment groups (MLT2 procedure of Rit-
land 1990, Leclerc-Potvin and Ritland 1994), or by
using simplifying assumptions to obtain less accurate
estimates (e.g., Humphreys and Gale 1974, Morgan and
Barrett 1990, Motten and Antonovics 1992). One re-
cently developed procedure uses information on ma-
ternal genotypes to produce relatively accurate out-
crossing estimates for each fruit (Cruzan et al. 1994).

Substantial amounts of variation in outcrossing fre-
quency can be found among plants and among flowers
on the same plant (Leclerc-Potvin and Ritland 1994;
Table 1). Studies have demonstrated that mating sys-
tems are influenced by variables such as levels of pop-
ulation structure and density (Ennos and Clegg 1982,
Ellstrand and Foster 1983, Karron et al. 1995; Table
1), and variation in floral morphology (Kohn and Bar-
rett 1992a; Table 1). Studies of factors affecting out-
crossing frequency in natural populations (Cruzan et
al. 1994), and experiments that combine manipulations
of flowers with mating system estimation (Kohn and
Barrett 1992b, Leclerc-Potvin and Ritland 1994) will
further our understanding of mating system variation
and the role of reproductive assurance in the mainte-
nance of mixed mating.

Characterization of postpollination processes.—
Processes occurring after pollination can also affect
mating patterns. Variation in pollen-tube growth and
nonrandom abortion of developing zygotes have tra-
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TABLE 1. Variation in family-level outcrossing estimates and effects of environmental factors (population density) and
variation in floral morphology (1 5 significant effect found; 2 5 no effect detected; nt 5 not tested) on outcrossing
frequency reported in published studies. Information on marker type (A 5 allozymes, M 5 morphological) is given as
well as method of estimation (tml 5 maximum likelihood method of Ritland and Jain [1981]; t 5 other estimation methods).

Species

Range in
outcrossing
frequency Marker Method

Factors

Env. Floral Source

Bidens menziesii
Carduus mutans†
Clarkia exilis ‡
Datura stramonium
Eichhornia paniculata

Ipomoea purpurea
Iris fulva
Iris hexagona

0.00–1.00
0.00–0.80
0.04–0.70
0.02–0.19
0.39–1.35
0.17–0.98
0.44–0.87
0.00–1.00
0.00–1.00

A
A
M
M
A
A
A
A
A

tml

t
t
t
tml

t
t
t
t

nt
2
nt
1
nt
nt
nt
1
1

nt
nt
nt
1
nt
nt
1
nt
nt

Ritland and Ganders 1985
Smyth and Hamrick 1984
Vasek 1964
Motten and Antonovics 1992
Morgan and Barrett 1990
Morgan and Barrett 1990
Brown and Clegg 1984
Cruzan et al. 1994
Curzan et al. 1994

Lycopersicon pimpinelli-
folium

Lupinus nanus
Malva moschata
Mimulus ringens
Papaver dubium

0.00–0.84
0.08–0.84
0.06–0.74
0.10–0.35
0.07–0.68

M
M
A
A
M

t
t
t
t
t

nt
nt
1
1
1

1
nt
nt
nt
nt

Rick et al. 1978
Harding et al. 1974
Crawford 1984
Karron et al. 1995
Humphreys and Gale 1974

† Estimates for only six isolated plants.
‡ One-meter square plots rather than individual plants.

ditionally been analyzed by direct observation; how-
ever, this approach tends to be unsatisfactory for pop-
ulation studies because (1) the performance of only one
pollen donor within a flower can generally be observed
(but see Aizen et al. 1990, Cruzan 1990a), and (2)
progress of growth or abortion is halted, providing only
a single snapshot of an ongoing process. Genetic mark-
ers allow the use of mixtures of pollen so that the siring
ability of individual pollen types can be assessed under
conditions that more closely mimic natural pollination.

Controlled pollinations with mixtures of genetically
marked pollen have been used in several studies to infer
differences in pollen growth. In most reports, outcross
pollen has had a consistent seed-siring advantage over
self pollen (Pfahler 1967, Weller and Ornduff 1977,
Bowman 1987, Cruzan and Barrett 1993, Jones 1994),
but cases where self pollen had a greater seed-siring
ability have also been found (Snow and Spira 1991,
Johnston 1993, Snow and Spira 1993). These siring
advantages are generally attributed to differences in
pollen-tube growth rate; however, without manipula-
tions of the number of pollen grains used in pollinations
(Cruzan and Barrett 1996), analyses of fertilizations at
different distances from the stigma (e.g., in maize—
Pfahler 1967), or observations of siring ability after
different time delays between the application of pollen
types (see Fig. 1), it is difficult to separate the effects
of growth rate from differential failure of pollen or
abortion of ovules. Application of inferential tech-
niques that use genetic markers in combination with
controlled crosses will provide insights into the post-
pollination mechanisms contributing to mating-system
variation.

Studies of postfertilization processes using genetic
markers are less common. Combining information on

patterns of ovule abortion in single- and multiple-donor
crosses with the siring ability of individual donors can
provide clues about the contribution of postfertilization
abortion to differential siring success (Casper 1988,
Montalvo 1992, Baker and Shore 1995). In an alter-
native approach to the detection of differential ovule
abortion, a time interval is allowed to pass between
application of two different pollen types (i.e., pollen
precedence experiments: Epperson and Clegg 1987,
Rigney et al. 1993). Analysis of siring success over a
series of increasing time delays with the disadvantaged
pollen applied first could potentially separate the ef-
fects of differential pollen-tube growth rate, pollen-
tube attrition, and zygote abortion (Fig. 1). Given the
power and simplicity of these genetic marker studies,
they are likely to continue to make substantial contri-
butions to our understanding of postpollination mech-
anisms.

More direct observation of postfertilization abortion
patterns with genetic markers is also possible. For ex-
ample, in an elegant experiment on ovule abortion pat-
terns in Erythronium grandiflorum, Rigney (1995) re-
moved sections of the ovary wall and observed the
growth of individual ovules after pollination with
mixtures of marked pollen. This technique allowed her
to excise ovules as they showed signs of aborting, and
to use allozyme assays to demonstrate that the majority
of the aborted ovules had been fertilized by self pollen.
One drawback to using allozyme markers comes as a
result of a lack of expression of paternal enzymes in
the earliest stages of embryo development (Rigney
1995). A solution to this difficulty would be to use
DNA-based markers that use PCR (i.e., the polymerase
chain reaction: RAPDs [random amplified polymorphic
DNA] or microsatellites). These techniques, which can
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FIG. 1. Expected patterns of siring success
for self pollen applied to stigmas before out-
cross pollen with an increasing time delay be-
tween pollinations. (A) Both pollen types equal;
(B) siring disadvantage due to higher rates of
prefertilization attrition of pollen tubes; (C) dis-
advantage due to differences in pollen-tube
growth rates; (D) disadvantage due to a higher
frequency of ovule abortion; and (E) most self
ovules abort unless their frequency is above
some threshold.

amplify markers from relatively small amounts DNA
(e.g., from single pollen grains [D. Taylor, personal
communication] or ovules early in development [M. B.
Cruzan, unpublished data]), appear to be particularly
suitable for detailed studies of pollen-tube growth and
postfertilization ovule abortion.

Genetic relatedness within and among populations

The widespread use of allozyme techniques that be-
gan in the late 1960s has produced a large volume of
data on genetic variation in plant species. Patterns
across a broad range of taxa are mostly consistent with
our understanding of the effects of breeding systems
(selfing species tend to possess lower levels of genetic
variation within populations), life history (longer lived
perennials tend to be more variable), and geographic
range (endemic taxa tend to be less variable) on the
distribution of genetic diversity within and among pop-
ulations (reviewed in Hamrick et al. 1979, Loveless
and Hamrick 1984, Nevo et al. 1984, Hamrick and Godt
1990).

While allozyme markers are likely to continue to be
the primary tool for population structure analyses, stud-
ies using DNA markers have begun to contribute to
this database. For example, estimates of levels of ge-
netic diversity and degrees of structuring among plant
populations have been made using minisatellite fin-
gerprinting (Wolff et al. 1994), RAPDs (Dawson et al.
1993, Russell et al. 1993), restriction site and length
variation in ribosomal DNA (rDNA: Learn and Schaal
1987, Schaal and Learn 1988, King and Schaal 1989,
Capossela et al. 1992), and restriction site variation in
chloroplast DNA (cpDNA: Milligan 1991, Hong et al.
1993). Estimates of genetic differentiation among pop-
ulations (e.g., Fst, Wright 1978) can be obtained from
levels of band sharing among individuals (e.g., for
rDNA and minisatellite techniques: Davis et al. 1990,
Lynch and Milligan 1994). Such estimates appear to

closely reflect patterns found with Fst values derived
from allozyme markers (Davis et al. 1990, Wolff et al.
1994). Calculation of levels of genetic differentiation
among populations is more direct for cpDNA markers
(Nei 1975, Weir 1990, Milligan 1991), but can be prob-
lematic for dominant RAPD markers (Lynch and Mil-
ligan 1994). More precise estimates of Fst from RAPD
markers can be obtained if only loci having low fre-
quencies of the band phenotype are chosen (Lynch and
Milligan 1994), or if only loci expressing codominant
allelic variation are used (up to 10% of the markers
found in some studies: Hunt and Page 1992, Cruzan
and Arnold 1994).

While several of the abovementioned techniques can
provide information about levels of genetic relatedness,
these approaches are not ideal for characterizing levels
of genetic structure within and between populations.
Markers that represent Mendelian loci and have co-
dominant expression are required for the generation of
standard estimates of genetic diversity and gene flow
(i.e., F statistics: Wright 1978). Several of the available
DNA techniques (e.g., rDNA, minisatellites) lack clear
allelism (i.e., bands cannot be assigned to a particular
locus), and with most RAPD markers, loci can clearly
be identified but heterozygous genotypes cannot be dis-
criminated. Because allozymes are relatively easy to
assay they remain the marker of choice for population
genetic studies, however when insufficient variation is
detected with this technique, microsatellites are a vi-
able alternative (i.e., bands are allelic and heterozy-
gotes can be identified).

Genetic diversity in clonal species.—Asexual repro-
duction is relatively common in plant species (Fryxell
1957) and can occur through a number of modes (e.g.,
vegetative spread, production of vegetative propagules,
or apomixis) to produce varying distributions of iden-
tical genotypes within and among populations (re-
viewed in Ellstrand and Roose 1987). One difficulty
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with the study of genotypic diversity in clonal species
has been the inadequacy of allozyme markers to reli-
ably identify all genotypes present. Hence, all individ-
uals may not be separated (e.g., Mashburn et al. 1978),
and the number of genotypes identified tends to in-
crease when more polymorphic markers are used (Ells-
trand and Roose 1987). These problems have been al-
leviated in recent studies by employing hypervariable
DNA-based markers, including VNTR (variable num-
ber of tandem repeats: Nybom et al. 1990, Nybom and
Schaal 1990, Rogstad et al. 1991a, b; also known as
minisatellite markers), and RAPD (Wilde et al. 1992,
Russell et al. 1993, Hsian and Rieseberg 1994) tech-
nologies. The studies conducted thus far have been
somewhat limited in scope, but this approach holds
considerable promise for the assessment of genetic di-
versity in clonal taxa.

Genetic markers have been used in clonal species to
discriminate among sexually derived clones within a
population. The utility of a DNA marker for this pur-
pose will depend on the rate of sexual reproduction
relative to rates of somatic mutation (Brookfield 1992).
Although higher frequencies of sexual reproduction can
apparently lead to increased genetic diversity among
clones (Ellstrand and Roose 1987, Nybom and Schaal
1990), in practice it is difficult to distinguish somatic
mutation events at marker loci from sexual reproduc-
tion events (e.g., Hsian and Rieseberg 1994). One ap-
proach to estimating somatic mutation rates would be
to assay separate cell lines within plants (Poethig 1987)
by taking multiple samples from the same individual
(Schaal 1987). Sampling within and among individuals
and assaying for variation in hypervariable markers
may allow more precise estimates of genetic diversity
and rates of sexual and asexual reproduction in plant
populations.

Estimation of heritability in the field.—Knowledge
of the narrow-sense heritability of quantitative char-
acters (h2; Falconer 1981) is necessary for predicting
short-term responses to selection. Obtaining values for
the heritability of characters is generally an involved
process, requiring comparisons across generations or
among family groups of known lineage that have been
grown in a uniform environment (Falconer 1981).
These requirements have made it difficult, if not im-
possible, to estimate the heritability of characters in
many plant taxa that are either long lived or difficult
to cultivate. Recently, however, Ritland (Ritland 1996,
Ritland and Ritland 1996) has developed estimation
procedures that use genetic marker and quantitative
trait data to infer the heritability of characters by sam-
pling plants under field conditions. These methods use
genetic marker data and the spatial structure of pop-
ulations to separate the effects of relatedness and en-
vironmental influences on character similarities among
individuals (Ritland 1996). The further development
and application of these estimation procedures will pro-

vide ecologists with an invaluable tool for understand-
ing the evolutionary implications of variation in mor-
phological and physiological characters.

Gene dispersal via pollen and seeds.—Gene flow in
hermaphroditic plant species occurs through a com-
bination of pollen and seed dispersal. Seeds move ge-
netic material solely as a result of their physical dis-
placement from the maternal plant, while the contri-
bution of pollen to gene dispersal will be affected by
pollen movement, seed dispersal, and the frequency of
selfing (Ennos 1994). While paternity analyses can be
used to estimate effective gene dispersal via pollen
alone (e.g., Meagher 1986, Adams et al. 1992, Stacey
et al. 1996), characterization of processes contributing
to the distribution of genetic variation requires analysis
of the separate effects of seeds and pollen on gene
movement. Genetic markers that are based on the ge-
nomes of maternally inherited organelles can be de-
veloped, providing a convenient means of tracking seed
dispersal within and among populations. By contrasting
the distribution of these uniparentally inherited cyto-
plasmic markers with biparentally inherited nuclear
markers, estimates of the relative contribution of pollen
dispersal, seed dispersal, and the breeding system to
patterns of genetic variation can be obtained (Ennos
1994, McCauley 1994).

Cytoplasmic DNA markers can be developed by con-
ducting restriction enzyme digests of whole-organelle
genomes (Banks and Birky 1985, Dong and Wagner
1993, 1994), or by amplifying specific regions of or-
ganelle DNA with the polymerase chain reaction (PCR)
and then using restriction enzymes to detect sequence
variation (Arnold et al. 1992, McCauley 1994). Al-
though chloroplast DNA has been reported to be ma-
ternally inherited in most flowering plants (Sears 1980,
Birky 1988, Corriveau and Coleman 1988) and mito-
chondrial DNA has been shown to be maternally in-
herited in some genera of conifers (Wagner et al. 1987,
Neale and Sederoff 1989, Sutton et al. 1991, Dong and
Wagner 1993, 1994), these modes of transmission
should be verified experimentally (Milligan 1992).
Such tests often confirm maternal inheritance (e.g., Sut-
ton et al. 1991), but low frequencies of biparental trans-
mission have also been noted (Sears 1980, Wagner et
al. 1991, Cruzan et al. 1993).

Low levels of intraspecific sequence variation in
chloroplast genomes of flowering plants has limited the
use of cpDNA markers for the study of population pro-
cesses. Differences in cpDNA among populations has
been found over relatively broad geographic ranges
(Banks and Birky 1985, Fenster and Ritland 1992, Kim
et al. 1992), but this type of variation may be of limited
utility for population studies. Variation in maternally
inherited markers in conifers and angiosperms has been
used to examine levels of intraspecific genetic differ-
entiation in a few cases (Milligan 1991, Ennos 1994,
McCauley 1994). Development of markers based on
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more variable regions of the chloroplast genome (e.g.,
Taberlet et al. 1991, McCauley 1994) may make these
techniques more accessible for analyses of dispersal
and breeding system effects on the distribution of in-
traspecific genetic variation in plants. Interspecific
variation in organelle genomes is more commonly
found (Whittemore and Schaal 1991, Fenster and Rit-
land 1992, Kim et al. 1992, Dong and Wagner 1993),
allowing separation of pollen and seed dispersal effects
on the exchange of genetic material between species
(Arnold et al. 1991, 1992, Rieseberg et al. 1991, Sutton
et al. 1991).

STUDIES OF HYBRID POPULATIONS

Natural hybridization is an important force affecting
the evolution and ecology of plant populations. Cases
of hybridization appear to be relatively frequent in
plants (Knobloch 1972), and it has been estimated that
the majority of extant taxa have been influenced by
hybridization at some point in their history (Grant
1981, Whitham et al. 1991). Some authors have pro-
posed that hybridization is a transient phenomenon,
ultimately resulting in either fusion of two species or
reinforcement of reproductive barriers and speciation
(Wilson 1965, Remington 1968). More recently, some
hybrid zones have been recognized as relatively stable
features (i.e., over hundreds or thousands of genera-
tions: reviewed in Harrison 1990), and this observation
has led to the proposal of a number of models to explain
their persistence (reviewed in Arnold 1992, Rieseberg
and Wendel 1993).

Hybrid zones can be maintained by frequent dis-
persal of parental genotypes into areas of hybridization
where interspecific mating produces genotypes with re-
duced viability (tension zones: Key 1968, Barton and
Hewitt 1985). Other models of hybrid zone mainte-
nance include a greater role of ecological factors, with
hybrids occurring in intermediate habitats along an en-
vironmental gradient (Endler 1977), or where a patchy
distribution of habitats brings interfertile species into
close contact (mosaic hybrid zones: Rand and Harrison
1989). Hybrid genotypes may have superior fitness in
specific habitats (bounded hybrid superiority: Moore
1977, Moore and Buchanan 1985), or may be able to
survive only in areas that have experienced natural or
anthropogenic disturbances (Anderson 1948). Assess-
ment of the contribution of these ecological and dis-
persal processes to the maintenance and structure of
hybrid zones has become more feasible through the use
of allozyme and DNA-based genetic markers.

Genetic markers have contributed to the study of
interspecific hybridization by: (1) allowing unequivo-
cal identification of hybrid individuals, (2) producing
an assessment of the proportional contribution of pa-
rental genomes, and (3) providing a means of inferring
patterns of selection and mating across regions of hy-
bridization and within hybrid populations. Markers that

are diagnostic for parental species can be assayed
across a region of interspecific contact and putative
hybridization to provide information about the extent
and direction of introgression (i.e., exchange of genetic
material: Heywood 1986, dePamphilis and Wyatt 1989,
1990, Nason et al. 1992, Hodges and Arnold 1994).
With this approach, the strength of selection on dif-
ferent characters can be inferred by comparing rates of
change in marker frequencies across the contact zone
(Endler 1977, Hodges and Arnold 1994). While sam-
pling across hybrid zones has contributed to our knowl-
edge of patterns of introgression, understanding why
hybrid zones persist requires population-level studies
of mating and selection.

Genotypic distributions.—Different classes of hy-
brid genotypes can be identified by assaying individ-
uals for genetic markers that are diagnostic for the pa-
rental species. By comparing the distribution of ob-
served genotypes with expected distributions, the con-
tributions of selection, dispersal, or assortative mating
can be inferred (Barton and Hewitt 1985, Howard et
al. 1993, Cruzan and Arnold 1994, Fig. 2). Some of
these analyses have revealed associations between dif-
ferent genotypes and specific habitats (Alston and Tur-
ner 1963, Heiser et al. 1969, Heywood 1986, Cruzan
and Arnold 1993, Hodges and Arnold 1994), differ-
ences in the relative viability of hybrid and parental
genotypes (Keim et al. 1989, Cruzan and Arnold 1994),
and patterns of assortative mating (Cruzan and Arnold
1994). Studies that combine genotypic classification
with assessments of growth and survival at different
life stages (Howard et al. 1993, Cruzan and Arnold
1994) hold considerable promise for elucidating pro-
cesses that contribute to the evolution and maintenance
of hybrid zones (Harrison 1990).

Cytonuclear disequilibria.—Analysis of disequili-
bria between molecular markers that are specific for
cytoplasmic genomes and nuclear markers has provid-
ed a means of inferring processes of selection and as-
sortative mating in hybrid populations (Asmussen et
al. 1987, Forbes and Allendorf 1991, Paige et al. 1991,
Cruzan and Arnold 1993, 1994; Fig. 3). Specific types
of cytonuclear associations can be indicative of asym-
metrical mating patterns (Asmussen et al. 1987, Paige
et al. 1991, Cruzan and Arnold 1994), different levels
of dispersal (Asmussen et al. 1989), or selection based
on specific combinations of cytoplasmic haplotypes
and nuclear genotypes (Asmussen et al. 1987, Paige et
al. 1991, Cruzan and Arnold 1994; M. B. Cruzan and
M. L. Arnold, unpublished data).

Although these statistical methods can be very pow-
erful for describing patterns of genetic association
within populations, they are most informative when
combined with information on ecological aspects of the
organism being studied (Asmussen et al. 1987). For
example, while the patterns of cytonuclear association
shown in Fig. 3 could be the result of a number of
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FIG. 2. Expected and observed genotypic distributions
from an Iris hybrid population (data from Cruzan and Arnold
1993). The genotypic score is based on cpDNA and RAPD
markers that are diagnostic for each species in allopatric pop-
ulations. The expected distribution represents conditions of
random mating, no selection, and no dispersal.

FIG. 3. Cytonuclear disequilibria estimates from seeds
produced in an Iris hybrid population for a codominant mark-
er locus and cpDNA markers (data from Cruzan and Arnold
1994). Disequilibria estimates (range from 0.00 to 0.25: As-
mussen et al. 1987) indicate levels of association between
cpDNA markers diagnostic for each species and homozygous
(D1 and D3) and heterozygous (D2) nuclear genotypes. Note
that plants carrying I. brevicaulis cpDNA were maternal par-
ents for nearly all of the heterozygous progeny produced.

processes (selection, dispersal, or mating), Cruzan and
Arnold (1993, 1994) were able to characterize patterns
of environmental (genotypic-specific habitat associa-
tions) and intrinsic (embryo abortion) selection that
contributed to homozygous disequilibria (D1 and D3:
Fig. 3), and asymmetrical mating that contributed to
the heterozygous disequilibrium (D2). These and other
studies on Louisiana irises that have integrated field
and laboratory techniques (e.g., Arnold et al. 1991,
1992, Carney et al. 1994) have provided a more thor-
ough understanding of the factors responsible for the
maintenance and structuring of hybrid populations.

FUTURE DIRECTIONS

Within the last decade there has been an explosion
in the number of different types of genetic markers
available (Arnheim et al. 1990, Hadrys et al. 1992,
Avise 1994, Bachmann 1994) and in the number of
statistical techniques developed for analyses of marker
data (e.g., Asmussen et al. 1987, Epperson 1990, Weir
1990; Adams et al. 1992, Ritland 1996). There is often
the perception that progress in the ecological appli-
cation of genetic markers is driven by technological
advances; however, a close examination of the field also
reveals significant contributions through the adaptation
of existing markers to novel situations (e.g., using allo-
zyme variation to estimate heritability in the field: Rit-
land 1996, Ritland and Ritland 1996). In most cases
the new DNA-based markers provide the same type of
information as allozymes, but allow clearer resolution
of genetic differences. The exceptions to this are the
cytoplasmic markers (based on chloroplast or mito-
chondrial genomes), which can allow researchers to
take advantage of their maternal mode of inheritance

to examine the contribution of seed dispersal to gene
flow (e.g., Arnold et al. 1992, McCauley 1994).

Many recent investigations in plant population bi-
ology have made an effort to combine genetic marker
data with ecological information. This seems to reflect
a general trend towards more studies of the mechanisms
responsible for the development of patterns in popu-
lations. For example, floral manipulations (e.g., Carney
et al. 1994, Leclerc-Potvin and Ritland 1994, Rieseberg
et al. 1995, Cruzan and Barrett 1996), and correlative
studies (e.g., Cruzan et al. 1994, Karron et al. 1995)
have been used to identify specific mechanisms that
control mating patterns. In other cases detailed spatial
analyses of genetic structure have provided insights
into the effects of dispersal and selection processes on
genetic structure (e.g., Epperson 1990, Cruzan and Ar-
nold 1993, Loiselle et al. 1995, Stacey et al. 1996).
Integration of ecological and genetic data has provided
a clearer understanding of the impact of ecological pro-
cesses on the evolution of plant populations.

While one of the primary goals of ecological genetics
has been the study of natural selection, up to now ge-
netic markers have not been particularly useful in this
endeavor. Allozyme markers have been used to study
patterns of selection (Allard et al. 1972, Hamrick and
Allard 1972, Clegg and Allard 1973; Clegg et al. 1978,
Hamrick and Holden 1979), but this type of application
has mostly been limited to highly inbred populations
(Ennos 1990). Ultimately it would be desirable to ex-
amine genetic changes occurring at loci controlling par-
ticular morphological or physiological traits. Recent
advances in mapping techniques with genetic markers
developed for the improvement of breeding programs
(Knapp et al. 1990, Lande and Thompson 1990) may
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provide a means of analyzing selection on quantitative
traits (Mitchell-Olds 1995). Genetic mapping of eco-
logically important traits has been conducted (e.g.,
Bradshaw et al. 1995, Mitchell-Olds 1996), and may
provide an opportunity to examine the effects of se-
lection under field conditions. Such novel combinations
of field and laboratory studies inspired the development
of the discipline of ecological genetics (Ford 1971).
Continued integration of genetic marker techniques
with field experiments will provide a wealth of infor-
mation on evolutionary processes in plants.
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