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Abstract.-Plant mating systems are influenced by the amount and genetic composition of pollen 
grains deposited on stigmas and by the ability of recipients to discriminate among pollen from 
different sources. We describe an experimental procedure that uses limiting and excess pollina­
tions with mixtures of genetically marked pollen to partition the siring success of donors into 
three components: prefertilization gamete attrition (failure of male gametophytes before fertiliza­
tion), pollen competitive ability (differences in pollen tube growth rate), and postfertilization 
gamete attrition (embryo abortion). Regression models for the relationships of pollen load size 
with each pollen's siring success and total recipient fecundity indicate that, for mixtures of self 
and outcross pollen, differences in gamete attrition, pollen competitive ability, and postfertiliza­
tion success will have distinct and predictable effects on mating patterns and fecundity. Mating 
systems that rely on differences in pollen competitive ability result in outcrossing frequencies 
that increase with pollen load size, with seed production remaining high over a broad range of 
load sizes. In contrast, for mating systems governed by differences in gamete attrition, the 
frequency of outcrossed progeny will not vary greatly with pollen load size, but reduced fecun­
dity will be expected over a wider range of pollen load sizes. These predictions were confirmed 
by analyzing the response of siring success and fecundity in response to pollen load size in the 
tristylous Eichhornia paniculata (Pontederiaceae). Experimental manipulations of the size and 
composition of pollen loads allow prediction of the frequency of outcrossed progeny produced 
under varying pollen environments. 

The proportion of selfed and outcrossed progeny produced by hermaphro­
ditic organisms has consequences for the partitioning of genetic variation within 
and among populations (Brown 1990; Hamrick and Godt 1990) and the levef of 
genetic load maintained in populations (Lande and Schemske 1985; Jame and 
Charlesworth 1993). Consequently, the mating system has a large influence on 
the evolutionary dynamics of hermaphroditic plant popUlations. The frequency 
of selfed and outcrossed seeds produced in plant popUlations can vary extensively 
among different species and within and among populations of a single species 
(reviewed in Schemske and Lande 1985; Barrett and Eckert 1990). Of particular 
interest are populations that produce mixtures of selfed and outcrossed offspring 
(mixed mating), not only because their existence is contrary to the predictions of 
most models of mating system evolution (Holsinger et al. 1984; Lande and Schem-
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ske 1985; Charlesworth et al. 1990) but also because they provide an opportunity 
to study the proximate ecological and physiological factors that contribute to 
mating system variation. 

Mixed mating is strongly influenced by ecological factors including the advity 
and behavior of pollinators (Harding et al. 1974; Barrett et al. 1994; Cruzan et al. 
1994) as well as postpollination physiological processes such as discrimination 
against particular pollen types (Jones 1928; Casper et al. 1988; Snow and Spira 
1991; Cruzan and Barrett 1993) and postfertilization embryo abortion (Burbridge 
and James 1991; Montalvo 1992; Karkkainen and Savolainen 1993; Rigney et al. 
1993). Although these ecological and physiological processes can have substantial 
influence on the frequency of outcrossed seed production in plant popUlations, 
there have been relatively few detailed studies examining these functional aspects 
of mating systems (Lloyd and Schoen 1992). The influence of floral biology on 
mating system variation requires intrapopulation analysis of factors contributing 
to variation in outcrossing rates; however, most studies of mating system \'aria­
tion have made comparisons among populations (e.g., Harding et al. 1974; Barrett 
and Husband 1990). Research that has examined intrapopulation variation in out­
crossing rates has concentrated on the ecological and demographic aspects of 
mating systems (e.g., Ritland and Ganders 1985; Schoen and Brown 1991; Motten 
and Antonovics 1992; Barrett et al. 1993; Cruzan et al. 1994), while the effects 
of postpollination processes have been all but ignored (Lloyd and Schoen 1992). 
A more complete understanding of the factors contributing to mating system 
variation will require an analysis of both the ecological and physiological factors 
that affect the siring success of pollen. 

The complexity of mating in plants is reflected in the number of disparate 
approaches that have been employed for its study; popUlation geneticist!; use 
genetic markers to measure critical parameters such as the outcrossing rate (Clegg 
1980; Ritland and Ganders 1985; Schemske and Lande 1985; Barrett and Eckert 
1990; Brown 1990), physiologists and cell biologists investigate pollen-pistil inter­
actions and the cellular aspects of pollen tube growth and fertilization (Heslop­
Harrison 1987; Dulberger 1992; Knox et al. 1992), while ecologists analyze: pat­
terns of pollen dispersal and deposition (Galen and Stanton 1989; Harder and 
Thomson 1989; Thomson and Thomson 1989). Some effort has been made to 
examine the evolutionary consequences of patterns of self and outcross pollen 
deposition by Holsinger (1991), but postpollination processes were not considered 
in detail in his analysis. Although a knowledge of the intrinsic (physiological) and 
extrinsic (ecological) factors is necessary for understanding the maintenance and 
evolution of mixed mating systems, there has been little effort to establish func­
tional relationships between the processes occurring at the physiological level 
and the patterns of mating that they produce. 

Much of the work on the physiological control of plant mating has concentrated 
on self-incompatibility systems (Nettancourt 1977; Campbell and Lawrence 1981; 
Anderson et al. 1986). In the majority of cases self-incompatibility appears to be 
controlled by a single multiallelic locus, with the incompatibility response due to 
inhibition of pollen-carrying alleles that are identical to stylar alleles (Nettan1:ourt 
1977). Theoretical treatments of the evolution of self-incompatibility systems 
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have examined genetic factors that affect the ability of recipients to discriminate 
among self and outcross male gametes (Charlesworth and Charlesworth 1979; 
Uyenoyama 1988). An important parameter affecting the evolution of self­
incompatibility is the frequency of selfing occurring at intermediate stages during 
the development of these systems (Uyenoyama 1988; Jarne and Charlesworth 
1993). The examination of pollen-pistil interactions in mating systems that pro­
duce mixtures of selfed and outcrossed progeny may therefore provide insights 
into the evolution of self-incompatibility. However, there has been limited empiri­
cal work on incompatibility or other postpollination mechanisms affecting pollen­
siring ability in the context of mating system variation, so the impact of male 
gamete discrimination mechanisms on mating patterns is largely unknown. 

Here we describe a procedure that approaches mating system variation from a 
functional perspective by characterizing patterns of pollen tube growth and ovule 
abortion. Our analysis identifies two distinct mechanisms of pollen discrimination 
with contrasting effects on mating and fecundity in response to variation in the 
pollen environment (i.e., the size and composition of pollen loads found under 
natural pollination conditions). We then use this approach to examine the mecha­
nisms of pollen discrimination in the three style morphs of the tristylous Eiclzlzor­
nia panicuiata (Spreng.) Solms-Laubach (Pontederiaceae). This analysis provides 
insights into the proximate factors affecting variation in outcrossing frequencies 
in natural populations as well as the evolution of heteromorphic incompatibility. 

DECOMPOSITION OF THE MATING SYSTEM 

The postpollination siring success of pollen may be affected by both pre- and 
postfertilization factors. Differences in the fertilization success of pollen can oc­
cur because of prefertilization failure of pollen tubes during growth in the pistil 
(i.e., pollen tube attrition; Cruzan 1989; Plitmann 1993) or because of differences 
among pollen types in their competitive ability (Le., because of differences in the 
time required for germination or pollen tube growth rate; Jones 1928; Bateman 
1956; Pfahler 1967; Ottaviano et al. 1988; Snow and Spira 1991). Incompatibility 
reactions contribute both to variation in levels of pre fertilization attrition of pollen 
(self-incompatibility; Nettancourt 1977; Anderson et al. 1986; Heslop-Harrison 
1987) and differences in growth rates of self and outcross pollen (cryptic self­
incompatibility; Bateman 1956; Casper et al. 1988; Cruzan and Barrett 1993). 
Differences in the intrinsic growth ability of pollen affect both prefertilization 
pollen tube failure (Sayers and Murphy 1966; Cruzan 1989; Plitmann 199~) and 
pollen tube growth rate (Snow and Spira 1991; Mulcahy et al. 1992), but little is 
known about this phenomenon. After fertilization the siring success of pollen 
types may be further modified by differential abortion of embryos sired by differ­
ent donors (Marshall and Folsom 1992; Montalvo 1992; Rigney et al. 1993). Each 
of these mechanisms may have different responses to changes in the pollen envi­
ronment, and several may be functioning to influence the mating system. 

Patterns of Mating 

The response of the mating system to varying pollen environments will depend 
on the mechanisms controlling the siring success of pollen. Mechanisms that 
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result in the failure of particular male gametes, either prezygotically (Le., pollen 
tube attrition) or postzygotically (Le., ovule abortion), may be influenced by 
stigma load compositions but not by stigma load size. This is because these 
gametes are effectively removed from the pool of pollen that may successfully 
sire seeds by processes that do not necessarily respond to the number of unfertil­
ized ovules present. For this reason both pre- and postfertilization failure of 
male gametes are considered together here as one process (gamete attrition). 
Differential pollen tube growth rates, on the other hand, will affect the competi­
tive ability of pollen. If the fertilization ability of pollen is based on growth rate, 
then relative success will depend on both the composition and size of the stigma 
load, with the relative success of the fastest-growing pollen types increasing with 
the total number of grains present. The relative contributions of male gamete 
attrition and differential growth rate to the discrimination process will determine 
the response of the mating system to varying pollen environments. 

The degree to which the mating system is influenced by processes of gamete 
attrition or competitive interactions can be determined by examining the relative 
success of different pollen types under varying pollen load sizes. For each pollen 
type i present on the stigma of a flower, the proportion of seeds sired (F;) will be 
affected by four factors: the proportion of pollen i present on the stigma (P;), the 
ratio of the total number of grains present on the stigma to the number of ovules 
(G/O), the level of differential gamete attrition (&;, the relative rate of failure of 
each pollen type i or zygotes fertilized by each pollen type), and the competitive 
ability of pollen i (a;, the relative growth rate of each pollen type 0. When G/O 
< 1, the proportion of seeds sired depends only on a pollen type's frequency and 
its level of attrition; thus, 

F;=P;+&;. (1) 

Values of &; can be either positive or negative and sum to zero for all pollen types 
present. Once the number of grains on the stigma exceeds the number of ovules 
(G/O > 1), there is potential for competition among pollen types. Under these 
conditions, the number of seeds sired by a pollen type is given by the regression 

F; = (P; + &;) + a;P;[(G/O) - 1], (2) 

where a; is the slope of the relationship. Values of a; lie between 1.0 and --1.0, 
with a positive value indicating an increase in the proportion of ovules fertilized 
as G/O increases (fig. IA). Since values of a arc deviations from the mean of the 
pollen tube growth rates for all pollen types present in the pollen load, their sum 
will be zero. When differences in pollen competitive ability exist, the proportion 
of seeds sired by different pollen types will depend on the number of pollen grains 
present. Even when &; is ncar zero, very large pollen loads can lead to the com­
plete exclusion of all but one pollen type (fig. tAl. 

Patterns of Fecundity 

The mechanism of discrimination among pollen types will also have conse­
quences for the fecundity of plants (fig. lB). With no gamete attrition, seed pro­
duction will be directly proportional to the pollen load size up to the point at 
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FIG. I.-The fertilization success of pollen (A) and the seed production by flowers (B) in 

response to the size of the pollen load. For both relationships the proportion of outcross 
pollen is 25% of the pollen mixture applied to the stigma (Pi = 0.25). The fertilization 
success of outcross pollen (A) is controlled by either its competitive ability (solid line) or its 
differential attrition (dashed line). The expected fecundity (B) depends on the average attri­
tion of the pollen mixture, and the maximum fecundity depends on whether attrition is pre­
(solid and dashed lines) or postfertilization (dot-dash line). 

which the number of grains on the stigma exceeds the number of ovules. For the 
few species that have been examined, however, a direct correspondence between 
the number of pollen grains present on the stigma and the number of seeds set 
has not been found (see, e.g., Shore and Barrett 1984; Snow 1986; Cruzan 1989), 
which indicates that not all pollen grains are effective at producing seed. The 
seed set expected for a pollen load can be predicted from the weighted average 
of attrition values for all pollen types present (a = ~ Pjd/n), where d is the 
average attrition of the pollen mixture, dl is the level of attrition for the pollen 
type i, and n is the number of pollen types present. Values of dl are not equivalent 
to differential gamete attrition, which represents a deviation from the mean attri-
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tion level for the pollen load (8; = dl - d). The number of ovules maturing into 
seeds (S) will be equal to the number of grains present on the stigma that are not 
subject to attrition, 

S = GO - d), (3) 

up to the point at which all ovules have been fertilized (SIO = 1; fig. IB). The 
maximum fecundity that can occur depends on whether attrition occurs pre- or 
postzygotically. When one or more of the pollen types suffer attrition during 
pollen tube growth, the rate at which seed set increases with pollen load sizl~ will 
be reduced, but the maximum seed set will not be affected (fig. IB). Since fertil­
ization of an ovule by a gamete destined to fail effectively destroys it, postzygotic 
attrition reduces both the rate at which seed set increases and the maximum seed 
production that can be attained (fig. IB). 

The above analyses indicate that both pre- and postfertilization processes will 
alter the siring success of different pollen types from the frequency of pollen 
types present on the stigma. By examining the response of total seed production 
and the frequency of fertilization by different pollen types under varying pollen 
loads, the contribution of differential pollen tube growth and gamete attrition to 
the mating system can be determined. Here we use controlled pollinations with 
mixtures of genetically marked pollen to estimate the levels of gamete attrition 
and competitive ability for different pollen types in the three style morphs of 
tristylous Eichhornia palliculata. We chose this species to assess the power (If our 
procedure to distinguish among post pollination mechanisms influencing mating 
system variation because considerable information was already available on both 
outcrossing rate variation (Glover and Barrett 1986; Barrett and Husband 1990; 
Barrett et al. 1993) and postpollination reproductive processes (Morgan and Bar­
rett 1989; Cruzan and Barrett 1993). Preliminary studies suggested that different 
mechanisms of pollen discrimination were present in the floral morphs of this 
species, which enabled us to assess the utility of our procedure at the intraspecific 
level. Such an approach avoids the likely confounding effects of phylogenetic 
history on comparative studies of post pollination mechanisms at the species level. 

METHODS 

Eichhornia palliclilata is an annual emergent aquatic native to northeastern 
Brazil and the Caribbean Islands of Cuba and Jamaica (Barrett 1985). Plants bear 
reproductive organs at three different levels in flowers, with the stigma occupying 
one level (L, M, or S morphs for long-, mid-, and short-styled plants), and two 
sets of anthers occupying the other two levels (I, m, and s for long-, mid-, and 
short-level anthers). Following Darwin (877), pollen transfer between anthers 
and stigmas of the same level is termed legitimate, whereas illegitimate pollination 
occurs when pollen transfer is between anthers and stigmas that are not of equiva­
lent height. Legitimate pollinations can only occur between morphs and are, 
therefore, always outcross matings. Illegitimate pollinations can be self-mll.tings 
when pollen transfer is in the same plant, or they can be outcross matings as 
either intra- or intermorph pollinations. 
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Plants used in this study were derived from a single trimorphic population (B46) 
in Brazil (Barrett and Husband 1990). Field-collected seed from open-pollinated 
flowers (a total of approximately 50 families) were grown, and the resulting plants 
were crossed to produce a second generation. Plants homozygous for one of three 
AAT-3 alleles were selected from this base population. The use of more than one 
individual from the same seed family was avoided to ensure that plants used were 
an unbiased sample of the population. 

Crosses were made by collecting pollen of the same anther level from individu­
als homozygous for the same allele. An effort was made to reduce the effects of 
individual variation among donors by combining pollen from several donors of 
each pollen type. Pollinations were made by placing pollen from the three anther 
levels in glass vials and using a piece of thick nylon fishing line to mix pollen and 
apply it to stigmas. Initial tests with I and s pollen, which can be distinguished 
on the basis of size under the microscope, indicated that this method produced 
nearly equal and homogeneous mixtures of pollen. Stigmas were collected 6 h 
after pollination and fixed in 70% ethanol. Stigma removal after 6 h has no appar­
ent affect on fruit and seed set (M. B. Cruzan, unpublished data). Fruits were 
collected when mature, 10 d after pollination. The number of germinated pollen 
grains on stigmas was counted after staining with 0.1% basic fuchsin (Cruzan and 
Barrett 1993). Seeds from each fruit were counted, and 20 seeds for each cross 
were assayed for their AAT-3 genotype with previously described methods (Cru­
zan and Barrett 1993). 

Pollinations with mixtures of pollen were used to examine the effect of the 
number of grains of each pollen type on their fertilization success in each of the 
three style morphs. Each pollen type is capable of producing full seed set in the 
three floral morphs following single-donor crosses (Barrett 1985; Kohn and Bar­
rett 1992). The number of pollen grains of each type was manipulated in two 
contrasting ways: the composition of the stigma load was altered while holding 
the total number of grains applied constant, and the total number of grains present 
on the stigma was changed while holding the composition of the stigma load 
constant. 

Stigma Load Composition 

Flowers of the L, M, and S morphs were pollinated with either an equal mixture 
of the three pollen types or a mixture that consisted of 50% legitimate pollen. 
Equal pollen mixtures (33% of each pollen type) were made by collecting anthers 
from three flowers from each of three donors for each level. Legitimate-biased 
pollen mixtures (50% legitimate and 25% of each illegitimate pollen type) were 
made by collecting pollen from four flowers from each of three donors for the 
legitimate anther level and two flowers from each of three donors for the two 
illegitimate anther levels. Pollen production by the three anther levels in E. pan­
iell/ala shows no consistent pattern across the populations examined (Barrett 
1985) and, compared with heterostylous species with strong self-incompatibility 
systems, is nearly equal (see Ganders 1979). The same donors were used for both 
the equal and biased pollen mixtures, and a different set of donors was used each 
day. Donor morph and AAT-3 genotype were rotated among anther levels each 
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day so that all possible morph and genotype combinations were used with each 
anther level over a 6-d period. A total of nine homozygous recipients per morph, 
three of each AAT-3 genotype, were pollinated. A group of four or five recipients 
were used each day that included one or two plants of each morpho Eight flowers 
on each recipient were pollinated, with four flowers receiving pollen from the 
equal mixture and four receiving pollen from the biased mixture. Germinated 
pollen grains were counted for each pollination, and seeds were counted and 
assayed as previously described (Cruzan and Barrett 1993). 

Pollen Dosage 

Different amounts of pollen from an equal mixture of the three pollen types 
were applied to stigmas to examine the effect of total pollen number on the 
fertilization success of each pollen type. All three anthers from a level were 
collected from three flowers of three individuals of the same morph and AAT-3 
genotype. Donor morph and AAT-3 genotype were rotated among anther levels 
each day as described above. A total of nine recipients of each morph, three of 
each genotype, were pollinated over a 6-d period (as above). To obtain an even 
distribution of values across the range of pollen load sizes, pollen was placed on 
either one of the three stigma lobes, two lobes, or all three lobes. A total of six 
flowers on each recipient were pollinated, with two flowers receiving each pollen 
load size. The number of germinated pollen grains present on stigmas and seeds 
produced was counted as previously described (Cruzan and Barrett 1993). 

Data Analysis 

Data from the pollen load composition and dosage experiments were analyzed 
as the proportion of seeds fertilized by each pollen type for each pollination. The 
differences between the even and biased treatments for their stigma load sizes, 
number of seeds set, and the frequency of legitimate fertilizations were tested 
with t-tests. The deviation of each pollen type's siring success from a random 
expectation was tested with t-tests for each mean's difference from a value of 
zero. Means for stigma load size, number of seeds set, and siring success were 
compared in the pollen dosage experiment in one-way ANOV As with the g<:neral 
linear models (GLM) procedure of SAS (SAS Institute 1985). All data were appro­
priately transformed to meet normality assumptions. 

Ovule number (0) was estimated for flowers with the maximum seed set ob­
tained on each plant and the predicted relationship between flower position and 
seed number per flower. Seed set on inflorescences decreases for flowers on 
lateral branches that are more distal to the apex of the inflorescence (R 2 = 0.81, 
P < .05; M. B. Cruzan, unpublished data), which suggests that they produce 
fewer ovules. We used this relationship and the maximum number of seeds pro­
duced by a flower on the same inflorescence to estimate ovule number for each 
flower. 

Patterns of Mating 

The equal-mixture treatment of the stigma load composition experiment was 
pooled with the pollen dosage experiment after using ANCOVA to determine 
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that the data were homogeneous (ANCOV A, P > .1 for comparisons of slopes 
of G on F;). This combined data set was then used to estimate the attrition and 
competitive ability of each pollen type in each morpho The siring success of each 
pollen type was calculated as the proportion of assayed seeds fertilized by pollen 
type i. Values of siring success of each pollen type were subtracted from Fi, the 
expected level for each pollination (Fi = F j - Pj; where Pj is 0.33), to give the 
deviation from random fertilization. This transformation then allowed the direct 
estimation of the level of gamete attrition as the deviation from a zero intercept 
and pollen competitive ability as the slope by means of a modification of equation 
(2) (Fi = 8; + cx;G), for each pollen type in each morpho The deviations from 
random fertilization were used as the dependent variables in regression models 
with the total number of grains as the independent variable in calculations using 
the regression (REG) procedure of SAS (SAS Institute 1985). 

Patterns of Fecundity 

The combined data set of the equal mixture treatment from both experiments 
was examined to assess changes in fecundity after pollination with different num­
bers of pollen grains. The relationship between the relative fecundity of flowers 
and the number of pollen grains per ovule was examined for each morph by 
means of nonlinear regression analysis (NUN procedure; SAS Institute 1985). 
Since the dispersion of the data made it impossible to fit a segmented linear 
model, an exponential regression model was used; it gave 

k 
_ _ (GIO max - GIO) 

SIO - 1 GIO ' 
max 

(4) 

where GIOmax is the maximum pollen load size observed (for these data GIOmax 
= 8.11) and k is an exponent describing the shape of the relationship. For values 
of k greater than one, the defined relationship is initially steep and decelerates as 
SIO approaches full fertilization (SID = 1.0). Larger values of k produce steeper 
initial curves and are indicative of a lower value for d. 

RESULTS 

Stigma Load Composition 

The mean numbers of pollen grains present on stigmas of the three floral 
morphs of Eichhornia paniculata and the mean numbers of seeds set did not 
differ· between the equal and biased pollination treatments (table 1). In each 
morph, legitimate pollen had a higher siring success than either of the two illegiti­
mate pollen types after pollination with equal pollen mixtures. The fraction of 
seeds sired by legitimate pollen increased for the biased treatment as expected, 
and this increase was directly proportional to its frequency in stigma loads in all 
three morphs (table 1). This is apparent from the observation of the same pattern 
of deviations from expected fertilization in the equal and biased treatments 
(fig. 2). 
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TABLE I 

MEAN POLLEN LoAD SIZES, SEED PRODUCTION, AND TilE PROPORTION OF LEQITIMATE FERTILIZATIONS 
AFTER EQUAL AND BIASED POLLINATIONS IN EICHHORNIA PANICUUTA 

Equal Biased 
Variable (N = 31) (N = 33) Probability 

Morph L: 
Pollen grains 370.5 (14.0) 375.6 (12.5) .27 .784 
Seed number 109.6 (1.6) 110.9 (1.7) .57 .573 
Legitimate fertilizations .60 (,03) .80 (,02) 37.03 <.001 

Equal Biased 
(N = 32) (N = 33) Proba',i1ity 

Morph M: 
Pollen grains 244.7 (15.1) 267.8 (13.3) 1.15 .253 
Seed number 92.0 (4.5) 97.5 (4.2) .67 .502 
Legitimate fertilizations .49 (.03) .66 (.03) 22.97 <.001 

Equal Biased 
(N = 27) (N = 25) Proba',i1ity 

Morph S: 
Pollen grains 254.8 (11.5) 285.8 (20.7) 1.33 .196 
Seed number 92.6 (5.9) 92.2 (6.2) .05 .963 
Legitimate fertilizations .60 (.04) .69 (.04) 8.11 <.001 

NOTE.-Standard errors are given in parentheses. For each variable in each morph, the equal (33% 
legitimate) and biased (50% legitimate) pollination treatments are compared with I-tests. 

Patterns of Mating 

The response of the seed-siring success of legitimate pollen to pollen load size 
differed among the three floral morphs, which indicates different contributions of 
gamete attrition and pollen competitive ability. The fraction of seeds sired in the 
Land M morphs tended to increase for legitimate pollen and to decrease or 
remain constant for illegitimate pollen types as the number of grains on the stigma 
increased (table 2; fig. 3). Nonzero slopes indicate that pollen's competitive a.bility 
is largely responsible for determining the siring success of different pollen types 
in these morphs. In the S morph, however, there was no change in the fraction 
of seeds sired by the different pollen types over the range of different stigma load 
sizes (table 2). Fertilization success in this morph was mostly determined by the 
level of gamete attrition, as indicated by nonzero intercepts for I and s pollen 
(table 2; fig. 3). Evidence for the role of differential gamete attrition in the S 
morph is also provided by differences in the seed-siring success of different pollen 
types in small pollen loads. If only those pollinations in the S morph that were 
pollen limited are examined (i.e., pollen loads that set <20% fewer seeds than 
other fruits on the same plant), then legitimate pollen maintains a strong siring 
advantage (Fi = -0.20,0.05, and 0.16 for I, m, and s pollen, respectively; N = 
19). There were also high levels of pollen attrition for s pollen in both the Land 
M morphs, which resulted in the positive intercepts for m pollen in the L morph 
and I pollen in the M morph (table 2). 
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FIG. 2.-Fertilization success of the three pollen types in the three style morphs of Eich­
hornia panic/llata after pollination with equal pollen mixtures (PI = 0.33) and biased pollen 
mixtures (PI = 0.5 for legitimate and 0.25 for both illegitimate pollen types). Data are pre­
sented as deviations from the expected level of fertilization. 

Patterns of Fecundity 

In the pooled data set, poUen load size tended to be greatest in the L morph, 
intermediate in the M morph, and least in the S morph (table 3), which probably 
reflects morph-specific differences in stigma area. Seed number increased with 
poUen load sizes in all three morphs (L morph, r = 0.57, P < .01; M morph, r 
= 0.52, P < .01; S morph, r = 0.75, P < .01; fig. 4). The increase in seed number 
with pollen load size was asymptotic in the Land M morphs, as indicated by a 
significant negative quadratic term in polynomial regressions (P < .05 for both 
morphs), but linear in the S morph (P > .6 for the quadratic term). The linear 
components of these relationships indicate that the increase in seed set with 
pollen load size occurred at a greater rate in the Land M morphs (slope = 0.37 
and 0.47 for Land M morphs, respectively, P < .001 for both) than in the S 
morph (slope = 0.22, P < .001; for test of heterogeneity of slopes among morphs, 
F = 7.24, P < .001). 
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TABLE 2 

REGRESSIOS ANALYSES OF POLLEN LOAD SIZE ON FERTILIZATION 
SUCCESS OF EACH POLLEN TYPE IS EICIIIlORN/A PANICULATA 

Pollen Intercept Probability Slope Probability 

Morph L: 
I .07 .14 .0016 <.01 
m .12 <.01 -.0005 .22 
s -.19 <.01 -.0011 <.01 

Morph M: 
I .10 <.02 .0001 .92 
m -.04 .31 .0021 <.01 
s -.05 .07 -.0022 <.01 

Morph S: 
I -.24 <.01 .0003 .57 
m .04 .46 -.0006 .40 
s .21 <.01 .0003 .73 

NOTE.-Probabilities are from I-tests for the difference from a 
zero intercept or the difference from a zero slope. 

By transforming seed production into relative fecundity and using equation (4), 
we can examine the fit of the data to model predictions and determine whether 
levels of pre- and postfertilization gamete attrition differ among the floral morphs. 
As predicted, relative fecundity increased rapidly when pollen grain numbers 
were small and remained fairly constant over a range of larger pollen loads (fig. 
4). Values of exponents for these relationships were similar for the Land M 
morphs (k = 6.94 and 6.98 for Land M morphs, respectively), but k was signifi­
cantly smaller in the S morph (k = 5.47; fig. 4), as indicated by 95% confidence 
intervals that did not overlap the values obtained for the Land M morphs (lower 
= 5.67 and 5.81 for the Land M morphs, respectively, and upper = 6.56 tor the 
S morph). Comparisons indicate that the exponential model explains a signifi­
cantly larger portion of the variation than a linear model with a zero intercept in 
all three morphs (P < .001 for the increase in model sums of squares tested over 
the error mean square for the linear model for all floral morphs). Examining the 
initial slope (b) of the exponential relationships gives an estimate of the value of 
d for each morph (d "" 1 - b). For values of G/O less than one, the slope of the 
line was greater in the Land M morphs (b = 0.60 and d = 0.40 for both morphs) 
than in the S morph (b = 0.51 and d = 0.49; fig. 4), which indicates that average 
male gamete attrition levels were higher in the S morpho Since the maximum 
levels of fecundity were similar in the three morphs (fig. 4), the higher levels of 
gamete attrition in the S morph probably occurred prior to fertilization. 

DISCUSSION 

By decomposing mating into its component processes, we have identified two 
proximate mechanisms responsible for producing differences in the siring success 
of different pollen types. The two mechanisms, gamete attrition and pollen com­
petitive ability, display distinct responses to varying pollen loads and rewlt in 
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FIG. 3.-The response for the proportion of legitimate outcross fertilizations to the size 
of the pollen load in the three style morphs of Eichhornia paniculata. Each point represents 
a single pollination. Note the different scale on the X·axis for the S morpho 

functionally different patterns of mating. We further separate gamete attrition 
into its pre- and postfertilization stages by examining the response of seed produc­
tion to varying pollen load sizes. The models described allow the identification 
of postpollination mechanisms that are not easily detected by traditional methods 
and provide predictions of the mating system and fecundity under varying pollen 
environments. The application of these procedures to the analysis of postpollina­
tion mechanisms in Eichhornia paniculata illustrates how an inferential analysis 
of reproductive processes can lead to new insights into the mating system of a 
species. 

Previous work on E. paniculata suggested that differences in pollen tube 
growth among pollen types were largely responsible for the high outcrossing rates 
observed in this self-compatible species (Cruzan and Barrett 1993). Observations 
of pollen tubes indicated that legitimate pollen tubes reached the ovary at a higher 
frequency than illegitimate pollen tubes in all three morphs. The fertilization 
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TABLE 3 

MEAN POLLEN LOAD SIZE, SEED PRODUCTION, AND TilE SIRING 
SUCCESS OF EACII POLLEN TYPE IN EICIiIiORNIA PANICULATA 

L Morph M Morph S Morph 
Variable (N = 52) (N = 53) (N = 46) 

Pollen load: 
Mean 251.2 213.5 153.6 
Range 75-451 88-531 58-298 
Error 13.5 12.4 10.0 

Seed number: 
Mean 72.3 72.6 42.7 
Range 7-123 4-113 6-102 
Error 4.6 4.2 3.6 

Fertilizations: 
I Pollen: 

Mean .21 .10 -.20 
Error .02 .02 .02 

m Pollen: 
Mean .08 .09 .02 
Error .02 .02 .02 

S Pollen: 
Mean -.28 -.19 .19 
Error .01 .02 .02 

NOTE.-Fertilization success is given as a deviation from the ex-
pected value. 

advantage of legitimate pollen was confirmed with genetic markers. Since pollen 
load sizes were not varied, however, it was not possible to determine whether 
differential attrition or growth rate was responsible for the observed patterns. The 
present study corroborates our earlier results and further elucidates the particular 
mechanisms responsible for the siring advantage of legitimate pollen in the three 
style morphs of E. paniculata. 

The relative importance of the mechanisms responsible for discrimination 
among the three pollen types differed among the style morphs of E. paniculata. 
In the S morph the siring advantage of legitimate pollen appears to be largely the 
result of the attrition of pollen tubes in the style, whereas in the Land M morphs 
discrimination among pollen types is based on the relative competitive abilities 
of the pollen types. Supporting evidence for different mechanisms controlling 
mating in the morphs comes from the relationships between seed production and 
seed-siring success of the pollen types across a range of pollen load sizes. Gamete 
attrition as indicated by the seed by regression slopes of pollen load size occurred 
in atI three style morphs; however, the level of attrition was similar for all pollen 
types in the Land M morphs, which resulted in small differences in differential 
gamete attrition values. In the S morph, on the other hand, gamete attrition was 
significantly greater for illegitimate than legitimate pollen. This resulted in a 
higher level of average gamete attrition in this morph (ll = 0.49, compared with 
0.40 in the Land M morphs) and, as the result of a positive 8; value for legitimate 
pollen, an intercept that was greater than one for the relationship between legiti­
mate fertilization and pollen load size. 
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FIG. 4.-The effect of pollen load size on fecundity in the three floral morphs of Eichhornia 
paniculata. The lines represent the best fit to the data with nonlinear regression with equation 
(4). Fecundity values greater than one occurred because ovule numbers were estimated from 
seed data on each inflorescence (see text). 

Further evidence of higher levels of gamete attrition for illegitimate pollen in 
the S morph was obtained by comparing pollinations with different proportions 
of legitimate pollen. The even and biased treatments (33% vs. 50% legitimate 
pollen) can be compared with pollen load sizes held constant to determine 
whether seed set values would be greater when a larger proportion of pollen 
present on the stigma is legitimate. As predicted, seed numbers were greater for 
the biased treatment in the S morph (means = 92.2 and 68.9 for the biased and 
equal treatments, respectively; F = 3.90, df = 1,68, P = .052) but not in the L 
and M morphs (L morph, means = 110.9 and 90.9, P = .813; M morph, means 
= 97.5 and 83.2, P = .232). In the short-styled morph, illegitimate pollen types 
are apparently not as effective at siring seeds as legitimate pollen. 

The contrasting mechanisms controlling pollen-pistil interactions in the three 
floral morphs of E. panicuiata are consistent with a recent model of the evolution 
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of heterostyly proposed by Lloyd and Webb (1992a). These authors suggest that 
incompatibility phenomena in heterostylous plants are likely to evolve after the 
establishment of the morphological differences that characterize heterostyly and, 
hence, may develop quite separately in each floral morpho Following this model, 
the mechanisms responsible for failure of illegitimate pollen may differ between 
the morphs depending on their particular morphological and developmental fea­
tures. This view is corroborated by the observation that the site of pollen tube 
inhibition and the strength of the incompatibility reaction often differ among 
morphs in other heterostylous species (reviewed in Richards 1986; Barrett and 
Cruzan 1994). The different functional responses observed in the Land M morphs 
compared with the S morph in E. paniclilata may be a reflection of constraints 
associated with the evolution of the tristylous syndrome. 

Gamete attrition in the S morph appears to act prezygotically rather than occur 
after ovule fertilization. As predicted from equation (3) and figure IB, if gamete 
attrition were acting postzygotically in the S morph, then maximum seed set 
should be substantially lower than the maximum seed set found in the other two 
morphs. Comparison of the top 20% of stigma load sizes for the three morphs, 
however, reveals no difference in their mean seed numbers (109.4, 106.9, and 
101.9 for the L, M, and S morphs, respectively; F = 0.28, df = 2,46, P > .760). 
This result is consistent with previous observations of low rates of ovule abortion 
in E. paniculata (5%-10%; Morgan and Barrett 1989) and indicates that illegiti­
mate pollen types in the S morph are subject to higher rates of attrition during 
pollen tube growth. The reduced fertilization ability of pollen growing in styles 
of the S morph and the consequent lower seed production may be detrimental 
when pollinator service is limited. 

While the experimental procedures described can help elucidate the relative 
contribution of post pollination processes to mating patterns, it is important to 
recognize the limitations of this approach. The predictive power of results from 
mixed-donor pollinations will depend on the degree to which the pollen mixtures 
mimic those occurring under natural conditions. Little is known about the: size 
and composition of pollen loads in natural popUlations of most species, including 
E. paniclilata (but see Thomson and Stratton 1985; Thomson and Thomson 1989; 
and examples from heterostylous plants summarized in Ganders 1979; Lloyd and 
Webb 1992b). The sources of pollen included in mixtures can influence the rela­
tive success of each pollen type in a variety of ways. These include differences 
in pollen tube growth rate (e.g., if self pollen were mixed with outcross pollen 
from different distances; Waser et al. 1987), pollen-pollen interactions that affect 
growth rate or attrition (e.g., pollen "mentoring"; Visser 1983; Bertin and Sulli­
van 1988; Cruzan 1990; or pollen allelopathy; Sukhada and Jayachandra 1981; 
Thomson et al. 1981), or patterns of ovule abortion that depend on the genetic 
constitution of developing zygotes (e.g., preferential abortion of selfed ovules 
when outcrossed ovules are present; Rigney et al. 1993; Rigney 1995). The models 
described will accurately detect differences in pollen competitive ability and attri­
tion produced by each of these mechanisms; however, the results may be specific 
for the particular combination of pollen sources used in the mixture. It is possible 
that high rates of ovule abortion could obscure patterns produced by prefertiliza-
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tion processes, but this was not an issue in the current study with E. paniculata. 
Further complications may result if pollen or zygote interactions are frequency 
dependent (see, e.g., EI-Kassaby and Ritland 1992; Carney et al. 1994), in which 
case a nonlinear response to changes in the proportion of pollen types in the 
mixture would be expected. Such a frequency-dependent response apparently did 
not occur in E. paniculata since the patterns of deviations from expected fertiliza­
tion were similar for the equal and biased treatments. 

The ephemeral nature of the aquatic habitats in which E. paniculata is found 
enforces an annual life cycle and makes the reliable production of seed crucial 
for the maintenance of populations and colonization of new sites. The competi­
tion-based mechanism of pollen discrimination found in the Land M morphs 
would be expected to promote the production of mostly outcrossed progeny when 
pollinators are abundant (Le., resulting in large pollen loads on stigmas). Since 
pollen types are equally capable of fertilization, seed production would be likely 
to remain relatively high even if pollinator activity were low (small pollen loads). 
The advantage of this flexibility for animal-pollinated annual species with compe­
tition-based mating systems has been previously noted (Bowman 1987; Becerra 
and Lloyd 1992; Cruzan and Barrett 1993). The lack of prezygotic inhibition of 
self pollen, however, also carries the potential disadvantage of producing a higher 
proportion of selfed progeny when pollinator service is unreliable. Inbreeding 
depression after self-pollination is known to occur in E. paniculata (Barrett and 
Charlesworth 1991). The overriding necessity for reproductive assurance in an­
nual species, combined with the observation that highly selfing plant populations 
can be subject to genetic load (Agren and Schemske 1993; Jarne and Charlesworth 
1993), suggests that there would be a selective advantage to competition-based 
mating systems in many annual species. 

An example of the potential consequences of competition-based pollen discrim­
ination can be seen in E. paniculata, in which the different mechanisms control­
ling mating in the three style morphs may influence the morph structure ofpopula­
tions. Surveys in northeastern Brazil have revealed that the S morph is often at 
low frequencies in trimorphic populations, and it is the morph that is most often 
absent in dimorphic populations (Barrett et al. 1989; Barrett and Husband 1990). 
Individuals of the S morph may be at a disadvantage when pollinator activity is 
low. When pollinators are rare, S-morph plants would be expected to suffer lower 
seed production than the Land M morphs given their attrition-based mating 
system. Reduction in seed production by the S morph may contribute to its loss 
from populations. Under equilibrium conditions (Le., all three morphs at equal 
frequencies) the dominant S allele governing expression of the S morph is at a 
lower frequency than alleles governing expression of the Land M phenotypes 
(Barrett et aI. 1989). It has been proposed that this difference in frequencies of 
alleles combined with fluctuations in population size is largely responsible for the 
more frequent loss of the S morph from populations (Heuch 1980; Barrett et aI. 
1989). The additional disadvantage of reduced fecundity for individuals of the S 
morph would further exacerbate the tendency for the S allele to be lost. These 
considerations lead to the prediction that the S morph is likely to have reduced 
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female fertility in comparison with the Land M morphs, particularly where polli­
nation service is low owing to local environmental or demographic conditions. 

The above example serves to illustrate the utility of quantitative analyses of 
postpollination processes and represents one of the first attempts to develop 
inferential techniques that distinguish among mechanisms of differential siring 
success. The application of these models will allow the study of reproductive 
processes under conditions that more closely mimic natural pollination and facili­
tate the identification of mechanisms that control the frequency of selfing and 
outcrossing in plants. Reproductive biologists have identified a number of ml!cha­
nisms that affect the siring success of different pollen types (e.g., self­
incompatibility, cryptic self-incompatibility, selective fertilization, selective 
ovule abortion, etc.). Each of these mechanisms will produce proximate effects 
that could be interpreted either as differences in the competitive ability of pollen 
or as pre- or postfertilization gamete attrition. To gain an appreciation of how 
these mechanisms might contribute to mating system variation, it is useful to 
examine them in the context of the models introduced above. 

Inhibition of self pollen can result either in reduced rates of germination on the 
stigma or in higher rates of pollen tube failure during growth in the style (N(:ttan­
court 1977). The degree to which self-incompatibility increases the rate of prezy­
gotic attrition of self gametes depends on the strength of the incompatibility reac­
tion. Very strong incompatibility reactions are probably common (Emml!rson 
1938; Campbell and Lawrence 1981; Levin 1993) and would result in high rates 
of outcrossing (see, e.g., Abbott and Forbes 1993). Weaker expression of self­
incompatibility, resulting in lower rates of pollen tube attrition, are also found 
(Cooper and Brink 1940; Sayers and Murphy 1966; Cruzan 1989; Manasse and 
Pinney 1991; Montalvo 1992; Plitmann 1993), but such cases of weak differences 
in attrition may not always be discernable from single-donor experiments. For 
example, higher levels of pollen tube attrition for self pollen may not be det'ected 
with large pollen loads (Le., as long as a sufficient number of pollen tubes reach 
the ovary to produce full seed set; Montalvo 1992), but even a small difference 
in the rate of pollen tube attrition will produce an increase in the frequency of 
outcrossed progeny after pollination with mixed loads (fig. lA). 

Competition-based mating systems have previously been described in appar­
ently self-compatible species as cryptic self-incompatibility (Bateman 1956). The 
selective advantage of competition-based mating in self-compatible species has 
led to speculation about its widespread occurrence, but in fact this phenomenon 
has only been convincingly demonstrated by using genetic markers in a handful 
of cases (Weller and Ornduff 1977; Casper et al. 1988; Cruzan and Barrett 1993; 
Jones 1994). To determine the stage at which discrimination against self pollen 
occurs, genetic marker studies generally need to be combined with observ'Ltions 
of pollen tube growth and ovule abortion patterns. The advantage of the proce­
dure presented here is that cryptic incompatibility can be detected with genetic 
markers alone. Although pollen tube growth can be observed microscopk:ally, 
this approach is often inadequate for the purpose of mating system studies be­
cause patterns of pollen tube growth may not reflect the siring ability of pollen 
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(see, e.g., Bertin and Sullivan 1988; Montalvo 1992) and single measurements of 
pollen tubes cannot separate the effects of polIen tube attrition and pollen tube 
growth rate (see, e.g., Cruzan and Barrett 1993). 

The application of genetic markers and controlled pollinations facilitates the 
identification of differences in the siring abilities of pollen types, and further 
manipulations of pollen load size allow distinctions to be made between mecha­
nisms of differential attrition and competitive ability. Pollen load size is not nor­
mally considered in studies of pollen-siring ability after mixed pollinations. Sev­
eral studies have employed genetic markers and mixed pollen loads in the analysis 
of differential siring ability for different polIen types (Young and Stanton 1990; 
Robert et at. 1991; Snow and Spira 1991; Jones 1994), and several of these have 
suggested that differential pollen tube growth rates are responsible for the greater 
siring ability of one pollen type over another (e.g., Robert et at. 1991; Jones 
1994). However, without additional evidence such as changes in competitive abil­
ity under different load sizes (see above) or changes in the fertilization frequency 
at different distances from the ovary (Jones 1928; Pfahler 1967; Ottaviano et at. 
1988; Quesada et at. 1991; Sari Gorla et at. 1992; Lau and Stephenson 1993), the 
hypothesis that differential attrition is responsible for differences in siring ability 
cannot be eliminated. Where the order of ovule fertilization is known, the rate 
of change in fertilization frequency can provide information about relative growth 
rate differences (Sari Gorla et at. 1992). For the majority of species, however, 
where the order of fertilization is not known, manipulation of polIen load size 
provides a technique for the determination of the relative contributions of gamete 
attrition and pollen tube growth rate to the siring abilities of pollen from different 
sources. 

Analysis of seed production after mixed- and single-donor crosses in combina­
tion with genetic marker analysis can provide information about the relative fre­
quency of abortion of ovules fertilized by different pollen types. Such analyses 
are important because they allow gamete attrition to be partitioned into its pre­
and postfertilization components. High rates of postfertilization attrition of self 
pollen can reduce seed production (Krebs and Hancock 1990; Burbridge and 
James 1991; Waser and Price 1991; Kfrrkkfrinen and Savolainen 1993; Seavey and 
Carter 1994), whereas full seed set is still possible if the failure of self gametes is 
due to prefertilization attrition. Establishing the stage of failure of self gametes 
allows an assessment of the impact of self-pollination on fecundity and establishes 
the potential for stylar self-incompatibility and inbreeding depression. Further 
studies of the genetic and ecological factors that affect fecundity and the siring 
success of different pollen types are likely to lead to greater insights into the 
proximate factors influencing mating system evolution in flowering plants. 
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