
 1 

Lelliott, M., Bridge, D., Kessler, H., Price, S., Seymour, K  

This is the author copy of a peer-reviewed paper published in the Quarterly Journal 
of Engineering Geology and Hydrogeology, 39, 293-302. Minor differences may exist 
between this and the published version. Please respect the copyright of the journal 
and that of the authors. 

 

The application of 3D geological modelling to aquifer recharge 
assessments in an urban environment 

 

Lelliott, M R,* Bridge, D McC, Kessler, H, Price, S J. (British Geological Survey, 

Keyworth, NG12 5GG, UK)  

*corresponding author 

Seymour, K J. (Environment Agency North West Region, Richard Fairclough 

House, Warrington, WA4 1HG) 

 

Abstract  

The development of an attributed 3D model of the Quaternary deposits across 75 km2 of 

central Manchester and Salford is providing a basis for new types of applied (thematic) 

outputs. Proprietary software designed specifically for use in Quaternary sequences has 

been used to construct a model of the glacial and post-glacial sequences in an area now 

undergoing rapid regeneration. The potential of the model to deliver information relevant 

to a range of practical applications is illustrated by an urban groundwater case study 

centred on the industrial area of Trafford Park. The sensitivity of the Permo-Triassic 

sandstone bedrock aquifer to pollution and the extent to which recharge may occur have 

been analysed through detailed characterisation of the underlying superficial deposits. 

Potential hydrogeological pathways from ground surface to the sandstone are identified, 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NERC Open Research Archive

https://core.ac.uk/display/377473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Lelliott, M., Bridge, D., Kessler, H., Price, S., Seymour, K  

and thematic outputs show the importance of the Manchester Ship Canal and related 

waterways as potential sources of recharge and pollution of the bedrock aquifer. The 

move towards 3D modelling of the shallow subsurface provides flexibility in meeting 

user needs that is not available from conventional 2D geological sources. It is suggested 

that modelling of this type should be used by site developers and remediators to design 

more targeted and cost-effective site investigations and risk assessments.  

 

Introduction 

In recent years, the management of urban surface water and groundwater has attracted 

increasing attention as successive European Union (EU) directives and national 

legislation have emphasised the need to develop urban water resources in a sustainable 

manner. During the last century, urban groundwater was heavily exploited for industrial 

and public supply, but is now an under-used resource, partly because of quality issues and 

the perceived risk of pollution. As the demands of industry have fallen, many cities are 

now experiencing rising groundwater levels with consequent concerns about localised 

flooding of basements, reduction of soil bearing capacities under foundations, and the 

mobilisation of contaminants (Brassington & Rushton 1987; Brassington 1990; Cheney 

& MacDonald 1999; Heathcote & Crompton 1997; Knipe et al. 1993; Wilkinson & 

Brassington 1991; Greswell et al. 1994).   

Given the potential costs of dealing with these issues, it is important that urban 

groundwater management is considered as an integral part of the urban planning process. 

Although the understanding of urban groundwater has improved in recent years, the rates 

of recharge and the vulnerability (Vrba & Zoporozec 1994) of groundwater to pollution 
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are often poorly constrained in conurbations underlain by complex sequences of 

Quaternary and artificial deposits. Understanding the architecture and hydrogeological 

regime of these deposits is critical to the development of an integrated surface water and 

groundwater catchment management strategy.  

Culshaw (2005) gave a brief description of the applied use of 3D geological models in 

the shallow subsurface. A detailed application of this approach is given by work 

undertaken by the British Geological Survey (BGS) in central Manchester and Salford in 

collaboration with the North West Region of the Environment Agency. Using the wealth 

of information available from site investigation studies, an attributed geological model 

has been built that shows the spatial distribution, interconnectivity and inferred 

permeability of deposits in the shallow subsurface. The value of this approach to 

groundwater resource modelling is discussed, and some of the limitations that still need 

to be addressed are highlighted. 

 

Hydrogeological setting 

The main surface water features in the study area (Figure 1) are the rivers Irwell, 

Medlock, Irk, Mersey, and the Manchester Ship Canal (MSC). The MSC represents the 

canalised rivers Irwell and Irk through Manchester. Most of the rivers rise on high 

moorland to the north and east of the area and generally have gained significant flows by 

the time they reach the Manchester conurbation. The MSC is a significant feature of the 

local hydrology, receiving flows from the rivers Irwell, Medlock, and Irk. There are also 

a number of smaller canals such as the Bridgewater Canal.  
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The Permo-Triassic sandstones beneath central Manchester and Salford form part of the 

Manchester and East Cheshire aquifer which provides baseflow to the rivers and is also a 

significant groundwater resource for both industrial and public water supply. 

Groundwater abstraction from the Permo-Triassic sandstone aquifer is concentrated 

around the industrial areas of Trafford Park and the Irwell Valley. An embargo on new 

groundwater abstraction licences in the Trafford Park area was first introduced by the 

former Mersey and Weaver River Authority in 1973 (Mersey and Weaver River 

Authority 1973) because of the highly reduced groundwater levels around Trafford Park 

and the related deteriorating quality of the groundwater (saline up-coning) in the area 

following decades of heavy industrial abstraction. Groundwater abstraction in the 

Trafford Park area between 1940 and 1960 averaged 20 m3 d-1 but by the 1990s this had 

reduced to about 8 m3 d-1 (ESI 2004). As a result, since the 1960s, groundwater levels in 

much of the study area, including Trafford Park, have recovered significantly, although 

the continued abstraction of groundwater for industrial purposes has resulted in a marked 

pumping-induced cone of depression under Trafford Park. Elsewhere, groundwater levels 

have generally stabilized and are broadly similar to surface water elevations, implying 

that groundwater is now discharging to surface either directly or via sewers and drains.  

Coal Measures sandstones crop out in the north and east of the area and are also 

significant water-bearing units, although the water is usually of adverse quality (Carney 

et al. 2001) especially when associated with former mine workings (Banwart & 

Malmström 2001). Since coal mining ceased in this part of the Lancashire Coalfield in 

1990, groundwater levels in the Carboniferous strata have risen rapidly. Minewater is 

currently discharging to the Bridgewater Canal, and is also predicted to outbreak in the 



 5 

Lelliott, M., Bridge, D., Kessler, H., Price, S., Seymour, K  

north from the Agecroft mine unit (IMC 2000). The degree of hydraulic connection 

between the Coal Measures and the Permo-Triassic aquifer is not well constrained but 

there is the potential for poor quality water associated with the flooded mines to affect the 

quality of groundwater in the overlying Permo-Triassic aquifer, particularly where the 

units are juxtaposed by faulting. However, most recharge reaches the sandstone aquifer(s) 

via the complex thick superficial deposits that cover much of the region.  

Despite the many studies that have been undertaken in the area (e.g. Pitman 1981; Tellam 

& Lloyd 1986; Tellam et al. 1986; Stansbury 1994; Tellam 1995), there remains a level 

of uncertainty as to the sustainable level of abstraction in the aquifer.   

Against this background, the Environment Agency has commissioned a groundwater 

resources investigation of the Manchester and East Cheshire aquifer unit (ESI 2004). One 

of the key objectives of the study was to provide a firm conceptual framework to allow 

quantitative water resource modelling, crucial to this was the development of a sound 

understanding of the potential hydrogeological pathways through the Quaternary deposits 

of central Manchester and, in particular, Trafford Park.  

 

Development of the 3D geological model 

The geological model of the Quaternary deposits of the district was constructed using 

proprietary software (GSI3D - Geological Survey and Investigation in 3-D) developed by 

Dr H.G. Sobisch of the University of Cologne (Hinz et al. 1999; Kessler et al. 2004) as 

described by Culshaw (2005).  

The Manchester model (Figure 2) was built from a subset of 2000 boreholes, chosen to 

provide optimum areal and stratigraphical coverage of the principal Quaternary deposits. 
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Surfaces were defined by 100 cross sections spaced at approximately 250 m intervals. 

The model was further constrained by modern 1:10 000 geological mapping and by a 

digital terrain model (DTM) with a vertical resolution of 5 m. The main elements of the 

model are shown in a schematic cross-section (Figure 3) and described below. 

Glacigenic Deposits 

Sand and gravel (outwash deposits) of variable thickness occur at the base of the 

glacigenic sequence. The deposits, which fill depressions in the bedrock surface, are 

present beneath the Irwell valley to the west of Salford and in the buried valley system 

that skirts Trafford Park. The deposits are mostly overlain by till but along parts of the 

River Irwell where the till sheet has been eroded, they are overlain directly by younger 

outwash gravels.  

The depositional products of the glaciation are dominated by till which covers all but the 

most prominent bedrock features. Typically, much of the till is a poorly-sorted, 

unstratified mixture of rock fragments in a matrix of stiff sandy clay. A distinction can be 

drawn between stiff, over-consolidated clays and softer, less consolidated clays. A series 

of intra-till sands have been identified within the body of the till. The till sheet thickens to 

over 30 m in the east, and is the predominant deposit in thick buried channel sequences 

that occur in the Trafford Park area. The impounding of meltwater during deglaciation 

formed transient glacial lakes in which deposits of silts and laminated clays accumulated. 

The most extensive laminated clays occur towards the top of the glacigenic sequence to 

the south and west of Trafford Park. The unit can be traced over an area of several square 

kilometres, and is of fairly constant thickness, around 5 m. Thinner and less persistent 

clays occur within the till. Localised fine and very fine sands occur on high ground in the 
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north of the area and are interpreted as glaciofluvial/lacustrine in origin, possibly laid 

down in standing water trapped between ice in the Manchester embayment and rising 

ground to the north.  

Towards the end of the glacial period, meltwaters carrying sand and gravel deposited a 

spread of ‘flood gravels’ (outwash sheet deposits) across much of the Manchester 

embayment. Thicknesses of 4 to 5 m are typical, increasing to 7 m locally. The deposits 

comprise an upper unit of brown, fine to coarse-grained silty sand, with basal beds of 

well graded sand and gravel with occasional cobbles.  

 

Post glacial deposits 

Post-glacial (Holocene) deposits are largely confined to the modern river valleys and 

include river terrace deposits and tracts of alluvium. Terrace deposits are present 

intermittently along the river valleys of the Irwell and Medlock. The terrace deposits in 

the Irwell valley are about 3 m thick, consist of silty sand overlying sand and gravel, and 

are cut into till or laminated clay substrate. The River Irwell is flanked by alluvium, 

typically 6 to 8 m thick and in places forming extensive tracts, up to 700 m wide 

particularly in the meander belts around Salford Quays and at the western margin of the 

area. In the intervening tracts the river is incised in bedrock and the alluvium is poorly 

developed. The alluvium typically comprises an upper layer of soft grey silty clay 

(overbank deposits), underlain by several metres of coarse sand or gravelly sand and 

gravel (river channel deposits). An area of lowland peat, known as Trafford Moss, lies 

beneath Trafford Park Industrial Estate. Although formerly extensive, the construction of 

the Trafford Park industrial complex has led to much of it being removed. 
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Anthropogenic deposits 

The legacy of Manchester and Salford’s industrial past is a widespread cover of artificial 

deposits, which are extremely variable in terms of their composition, thickness and 

geometry. The classification of these deposits is problematical but one approach to 

dealing with this variability is to identify geographical areas where similar land use 

processes have operated. For example, the practice of tipping colliery waste and ash into 

river valleys was commonplace, and occurred widely in the Medlock valley in the 

Phillips Park area of Bradford. Other river valleys including the Irk, the Irwell and Bent 

Lanes Brook suffered similar fates, with artificial deposits raising the valley floors above 

the natural alluvium. By combining this information with surface mapping and downhole 

data, it has proved possible to identify nine areas with significant and identifiable types of 

artificial ground. Anthropogenic zoning provides a first step in assessing the likely 

sources of diffuse groundwater pollution from former contaminative industries. Not all 

areas lend themselves to this approach, and it is recognised that in some parts of the 

conurbation, typically where numerous phases of demolition and redevelopment have 

taken place, precise classification is impractical.  

 

Hydrogeology of the superficial deposits 

In common with many urban areas in the UK, Manchester has no systematic shallow 

groundwater monitoring programme. It was, therefore, not possible to define, with any 

reliance, groundwater flow regimes within the superficial deposits. The performance of 

the system has had to be judged on a purely qualitative basis using the geological model 
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and published hydrogeological property data to assess the lithological combinations most 

likely to permit recharge. 

Estimates of permeability of each of the modelled units were derived by comparing 

lithological descriptions and particle size data, with published permeability values 

(Brassington 1998; Todd 1980; Allen et al. 1997). The deposits were accordingly 

classified as either permeable or weakly permeable (Table 1). Made ground is ubiquitous 

in its distribution and highly heterogeneous but for modelling purposes is here regarded 

as permeable in the absence of acknowledged data to the contrary. 

 

Hydrogeological domain mapping  

The hydrogeological performance of the sequence can be inferred from knowledge of the 

thickness, extent and inferred permeability of the constituent lithologies. Sediment 

assemblages dominated by permeable units are mainly granular and are likely to support 

vertical and horizontal flow, whereas those that are clay and silt-rich (weakly permeable) 

are more likely to inhibit flow. By defining sediment associations and mapping their 

occurrences throughout the model the likely hydrogeological performance of different 

arrangements of sediment can be estimated. The approach follows that of domain 

mapping, pioneered by McMillan et al. (2000), and now well established, particularly at 

catchment scale or larger, for analysing Quaternary sequences. In the Manchester 

conurbation, seven domains have been defined (Table 2, Figure 4), which are 

distinguished using a rules base that takes account of the following factors: 

• The nature of the underlying bedrock (major, minor or non aquifer) 
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• The stacking arrangement in vertical profile of units of differing inferred 

permeability, as defined in Table 1. 

• The position in the sequence and thickness of any weakly permeable units 

[Deposits over 5 m thick are considered a barrier to vertical water flow. Those less 

than 5 m thick are classified as permeable due to the potential effects of weathering 

and fracturing.]  

• The potential for perched groundwater to occur above weakly permeable deposits.  

 

The resulting hydrogeological domain map (Figure 5) gives a visual assessment of the 

areas where superficial deposits with similar intrinsic properties exist. By ranking the 

domains in terms of their inferred permeability (high, medium, low), as shown in Table 3, 

an indication is given of the recharge potential of the bedrock aquifer (Figure 6).  

Sites favourable for recharge occur in the north-west on rockhead highs, and along the 

river valleys of the Irwell and Medlock where there is either a thin covering of superficial 

deposits, or the superficial deposits comprise coarse, permeable materials. The MSC is in 

direct hydraulic contact with the Permo-Triassic sandstone between Salford and Eccles; 

further west, thickening till intervenes between the base of the canal and the underlying 

aquifer. It is likely that the aquifer is recharged by, or discharges to, the MSC except 

where the canal base is excessively silted, or where it may have been engineered to 

reduce leakage.  

 

Effects of surface sealing  
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A common factor associated with the development of urban areas is the 

impermeabilisation of a significant proportion of the land surface (Foster et al. 1993). 

This impermeabilisation, here termed surface sealing, can significantly reduce the amount 

of water available for direct recharge to the bedrock aquifer depending on the type and 

degree of sealing. Rainfall on impervious surfaces, such as roofs, roads, and other 

structures evaporates directly, contributes to surface run-off, or drains into storm sewers 

or soakaways. Recharge in this situation will be minimal, except where point/line 

recharge can occur through soakaways or as a result of leakage from storm sewers or 

mains. In urban areas, it has been estimated that rates of leakage of 20 - 50 % from water 

mains are common (Lerner 2002) and that a combination of leakage from services may 

balance losses due to surface sealing (Lerner 2002). However, a combination of service 

leakage and surface sealing will impact on the distribution of recharge in an urban 

environment.   

The degree of surface sealing can be measured using remote sensing techniques, 

topographic maps or land use data combined with field observations. In central 

Manchester and Salford, a combination of these methods was employed to produce a 

surface sealing classification at a resolution of about 1:10 000 scale. The ground ranges 

from relatively permeable across recreational areas and on the floodplain (0-49 % sealed) 

to virtually impervious in the main industrial areas, along major roads (80-100 % sealed). 

This data layer can be incorporated in the recharge model according to the matrix detailed 

in Table 4 to give an indication of the impact of surface sealing on direct groundwater 

recharge to the sandstone aquifer (Figure 7). It is apparent that moderate to highly 

impervious materials cover a large proportion of the study area and that this is likely to 
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significantly reduce recharge potential. This may be offset by additional recharge through 

mains leakage, excess irrigation, septic tanks, and sewer system leakage. Direct natural 

recharge in Trafford Park and central Manchester is likely to be very low as the areas are 

largely sealed. Any recharge that may occur is likely to be indirect and controlled by the 

underlying network of pipes, drains, and localised pervious areas. The areas where most 

direct recharge can be expected are along the main river valleys and in more open 

residential areas of Salford to the north of the MSC, where the aquifer is at outcrop or in 

hydraulic continuity with surface water. 

 

Limitations of methodology and validity of assumptions 

The methodologies employed in the development of this conceptual model are subject to 

a number of limitations: 

 

Data coverage 

The integrity of the geological model depends on having an array of accurately logged 

boreholes at sufficient density to allow geological units to be mapped out with 

confidence. In practice older built up areas of the city are generally poorly represented in 

the borehole database. Also in areas of thicker superficial deposits, fewer boreholes 

penetrate the full sequence. 

 

Geological complexity 

The regional scale of the model makes it difficult to accommodate the detailed variation 

commonly found in closely spaced boreholes. This is particularly true of the glacigenic 
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deposits where beds are often laterally persistent and lithological variation can only be 

represented in general terms. The heterogeneity of the deposits is a related problem, 

particularly with regard to till, and it is conceivable that unidentified preferential flow 

paths could exist in otherwise weakly permeable deposits. 

 

Hydrogeological properties 

The hydraulic conductivity values assigned to each of the modelled units are based on 

published information and need to be validated by in-field measurement, laboratory 

testing, or use of geotechnical and site investigation reports. Similarly, the assumption 

that below 5 m thickness the aquicludes are likely to be permeable would be better based 

on site specific testing.  

 

Groundwater and head gradients 

Quantification of recharge needs to take account of vertical head gradients between the 

bedrock aquifer and saturated permeable deposits in the Quaternary sequence and surface 

watercourses, since these, as well as permeability, control the amount of actual recharge 

and discharge. It is for this reason that the model output layer is referred to as ‘potential 

recharge’. This ‘head dependency’ needs to taken into account in assessing resource 

availability, however, attempts to use first-strike data from boreholes in the Manchester 

area were insufficient to create piezometric contours or identify perched groundwater 

(Robins et al. 2003). It is likely to be prohibitively expensive to establish and maintain a 

widespread temporal and spatial groundwater level monitoring in the superficial deposits. 

It may be possible to utilise groundwater elevation information from site investigation 
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reports, although this is generally for small site areas only and unlikely to yield temporal 

data. As mentioned previously, leaking water mains and sewers are recognised as being 

important controls on groundwater levels in the shallow (Quaternary) deposits. It is 

conceivable that incorporating sewers and water mains, including invert levels and 

leakage rates as recorded by the water utilities, as additional layers in the 3D superficial 

deposits model would enhance the value to catchment-scale groundwater resource 

assessment. 

 

Application of model for groundwater resource management 

Understanding the complexity and spatial variability of the Quaternary deposits of the 

study area, is critical to local water resources management. On a regional scale the detail 

provided by the Manchester model has application in the development of catchment 

abstraction management strategies (CAMS) (Environment Agency 2002) as currently 

being developed by the Environment Agency. Central to these strategies is the need to 

establish a sustainable balance between recharge and groundwater abstraction. Key stages 

in this process are:  

• The formulation of credible, quantified conceptual model of the sandstone aquifer and 

its hydrogeological relationship with surface watercourses. 

• Calculating preliminary water balances between inputs and outputs from the 

groundwater system. These include rainfall recharge, lateral inflows from adjacent 

aquifer units, and leakage from or to surface watercourses.  
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• Investigative numerical modelling of the aquifer system (ranging from vertical slice 

through to spatially distributed transient modelling) to test the conceptual model and 

assess different abstraction scenarios. 

 

The Environment Agency has utilised the bespoke outputs from the 3D geological model 

to provide a better understanding of recharge areas and a more informed basis for water 

balance calculations (ESI 2006). The geological relationships identified in the 3D model 

were tested at site scale by incorporating groundwater flow directions and piezometric 

heads in the superficial deposits, obtained from contaminated land investigations at a 

number of sites in Trafford Park (ESI 2006). This has improved the conceptual 

understanding of groundwater flow in the superficial deposits and the interaction with 

surface watercourses. 

GIS layer outputs of the hydrogeological domains, combined with water main and sewer 

elevations and leakage estimates provided by the water utility company, allowed scoping 

calculation to be made of recharge from, and discharge to, these services under different 

groundwater abstraction and head scenarios. 

It is envisaged that the geological model could be used to provide a context to evaluate 

contaminated land or potentially polluting activities at a site-scale. 

 

Summary and conclusions 

A 3D geological model of the superficial deposits beneath Manchester and Salford has 

been constructed based primarily on borehole information. The model provides detailed 

information on the 3-dimensional architecture and physical attributes of the complex 
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glacigenic and post-glacial sediments that underlie the central part of the conurbation. 

The model has been designed to support a range of thematic products relevant to 

sustainable development, but its principal use to date has been in the area of groundwater 

management.  

A conceptual recharge model has been developed in collaboration with the Environment 

Agency for the area centred on Trafford Park. This has subsequently been used to form 

the basis of a site scale numerical groundwater model developed by ESI Ltd (2006). The 

findings of the study will underpin development of a sustainable groundwater abstraction 

strategy in an area where over-abstraction for industrial purposes was once a serious 

problem.  

The 3D geological model and related thematic outputs set the context for assessing 

pollution threats to the sandstone aquifer from the numerous historic contaminative land 

uses in and around Trafford Park. The aquifer vulnerability can be correlated directly to 

the groundwater recharge mechanisms as most contaminants are transported in the 

aqueous phase as part of the recharge process (Foster 1998).  

The scale of the model (about 1:10 000) means that it could be used by site developers 

and remediators to design more informed, targeted and cost-effective site investigations 

and risk assessments.  

Access to, and use of, 3D geological models of the shallow sub-surface is currently 

limited but there is increasing recognition among users of the added value offered by 

acquiring information in 3D rather than 2D. The challenge is to make the models 

available at an early stage in the urban regeneration process so that they may better 

inform strategic planning options, ground investigation and reclamation strategies. This is 
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reliant on the models being appropriate in terms of content and scale, and that inherent 

uncertainties associated with the model are appropriately quantified. 
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Table 1: Inferred permeability of superficial deposits  

Superficial Deposit Lithology Inferred permeability 
Made ground Anthropogenic material and re-

worked natural deposits 
Permeable  

Alluvial overbank deposits Silt, clay, peat Weakly permeable 
Alluvial river channel 
deposits 

Sand, gravel, peat Permeable 

River terrace deposits Sand, gravel, possible clayey in 
upper part 

Permeable 

Outwash sheet deposits Silty sand on clayey sand & gravel Permeable 
Glaciolacustrine deposits Laminated silt and clay Weakly permeable 
Glaciolacustrine sands and 
silts 

Fine sand overlying laminated silt Permeable 

Till deposits Till, interbedded sand, impersistent 
laminated clay 

Weakly permeable with possible 
intermittent permeable horizons 

Basal sand and gravel 
deposits 

Clayey sand & gravel Permeable 
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Table 2: Hydrogeological domain classification 

Group Domain Figure 5 Lithologies/geo-morphological units 
Major aquifer 1 At outcrop  A Permo-Triassic sandstone. 

2 Permeable superficial 
deposit on a major 
aquifer 

B Single or multiple layers of: river 
channel, river terrace, outwash sheet, 
basal gravel, and glaciolacustrine sand 
and silt deposits. 

Minor aquifer 3 At outcrop A Coal Measures sandstones. 
4 Permeable superficial 

deposit on a minor 
aquifer 

B Single or multiple layers of: river 
terrace, outwash sheet, basal gravel, and 
glaciolacustrine sand and silt deposits. 

Potential 
perched aquifer 

5 Perched superficial 
deposit 

C River channel, river terrace, outwash 
sheet, glaciolacustrine sand and silt 
deposits overlying >5m till, 
glaciolacustrine clay, river overbank 
deposits or Manchester Marls (non-
aquifer). 

Aquitard 6 Weakly permeable 
superficial deposit 

D >5 m till, glaciolacustrine clay, or river 
overbank deposits. 

Non-aquifer 7 Non-aquifer bedrock A Manchester Marls Formation. 
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Table 3: Potential recharge rating based on hydrogeological domains 

  Potential Recharge 
rating 

H
yd

ro
ge

ol
og

ic
al

 d
om

ai
n 

Domain 1 High 

Domain 2 High 

Domain 3 High 

Domain 4 High 

Domain 5 Medium 

Domain 6 Low 

Domain 7 Low 
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Table 4: Impact of Surface Sealing on direct groundwater recharge 

  Percentage of surface sealing 
  0-49 50-79 80-100 

A
qu

ife
r 

R
ec

ha
rg

e 
Po

te
nt

ia
l 

H
ig

h 

High High Medium 

M
ed

iu
m

 

Medium Medium Low 

Lo
w

 

Low Low Low 
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Figure 1: Project area location map 

 

 

 

 

 
 

Figure 2:  3D geological block model of Trafford Park and Eccles. 
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Figure 3: Schematic diagram (with vertical exaggeration) showing relationships between modelled units for 

central Manchester and Salford. (Adapted from Culshaw, 2005). 
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Figure 4: Schematic hydrogeological domain classification (for use in conjunction with Table 2)  
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Figure 5: Hydrogeological domains derived for the Manchester project area 

 

Figure 6: Aquifer recharge potential derived from hydrogeological domains.  
 

 
Figure 7: Impact of surface sealing on aquifer recharge potential 
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