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Novel variants in GNAI3 associated with
auriculocondylar syndrome strengthen a common
dominant negative effect

Vanessa L Romanelli Tavares1,11, Christopher T Gordon2,11, Roseli M Zechi-Ceide3, Nancy Mizue Kokitsu-Nakata3,
Norine Voisin2, Tiong Y Tan4, Andrew A Heggie5, Siulan Vendramini-Pittoli3, Evan J Propst6, Blake C Papsin6,
Tatiana T Torres7, Henk Buermans8, Luciane Portas Capelo1,9, Johan T den Dunnen8, Maria L Guion-Almeida3,
Stanislas Lyonnet2,10, Jeanne Amiel2,10 and Maria Rita Passos-Bueno*,1

Auriculocondylar syndrome is a rare craniofacial disorder comprising core features of micrognathia, condyle dysplasia and

question mark ear. Causative variants have been identified in PLCB4, GNAI3 and EDN1, which are predicted to function within

the EDN1–EDNRA pathway during early pharyngeal arch patterning. To date, two GNAI3 variants in three families have been

reported. Here we report three novel GNAI3 variants, one segregating with affected members in a family previously linked to

1p21.1-q23.3 and two de novo variants in simplex cases. Two variants occur in known functional motifs, the G1 and G4 boxes,

and the third variant is one amino acid outside of the G1 box. Structural modeling shows that all five altered GNAI3 residues

identified to date cluster in a region involved in GDP/GTP binding. We hypothesize that all GNAI3 variants lead to dominant

negative effects.
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INTRODUCTION

Auriculocondylar syndrome (ACS, OMIM 602483 and 614669) is a
rare disorder of the first and second pharyngeal arches, mainly
characterized by micrognathia, agenesis or hypoplasia of the man-
dibular condyle and a typical auricular malformation known as a
question mark ear (QME). Other frequently associated malformations
include abnormal palate, microstomia, full cheeks, glossoptosis,
respiratory distress and hearing loss. A wide range of inter- and
intrafamilial clinical variability is observed in ACS.1

We previously mapped the first ACS locus to 1p21.1-q23.3 (ACS1)2

in a large Brazilian family that was initially described by Guion-
Almeida et al.3 Genetic heterogeneity was also suggested as affected
members of two other families were not associated with this locus.2,4

Rieder et al5 subsequently showed that variants in phospholipase C
beta 4 (PLCB4), at 20p12.2, and in guanine nucleotide binding
protein (G protein) alpha-inhibiting activity polypeptide 3 (GNAI3),
located within the 1p21.1-q23.3 candidate interval, are responsible for
most ACS cases. GNAI3 and PLCB4 are predicted to be signaling
molecules of the endothelin 1 (EDN1)–endothelin receptor type A
(EDNRA) pathway, which is important for patterning of the
pharyngeal arches in animal models.1,5 The involvement of this
pathway in ACS was recently confirmed by the finding of EDN1
variants in ACS and in isolated QMEs (OMIM 612798).6

Thus far only two GNAI3 variants, c.118G4C and c.141C4A
(predicted consequence p.(Gly40Arg) and p.(Ser47Arg), respectively) in
three unrelated familial cases have been reported.5,7 No de novo variants
have been described. Both variants are located within the G1 box, one of
the five conserved motifs (G1–G5) involved in binding guanosine
diphosphate (GDP)/guanosine triphosphate (GTP) in the catalytic
domain of G-alpha proteins and RAS family members.8 It is unclear
whether these variants have a gain-of-function5 or dominant negative
effect.7A larger number of cases is necessary to elucidate these questions.

Here we report the molecular analysis of GNAI3 in the original
ACS1 Brazilian family linked to 1p21.1-q23.32 and in two sporadic
ACS cases without previous genetic investigations.9 We describe a
novel heterozygous variant in GNAI3 in each case. These variants are
predicted to interfere with GDP/GTP binding, supporting a dominant
negative mode of action for GNAI3 variants in ACS.

MATERIALS AND METHODS

Patients and DNA samples
Approval for this study was obtained from the Biosciences Institute Research

Ethics Committee of the University of São Paulo (USP) and from the Comité

de Protection des Personnes Ile-de-France II. Clinical descriptions have been

previously reported for family ACS1, referred to as F2 in Masotti et al,2,3 and

the sporadic case in Propst et al,9 hereafter referred to as Sp1. Sporadic case 2
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(Sp2; Supplementary Figure S1), initially referred for hemifacial microsomia,

presented with micrognathia, microstomia, bifid uvula, right lateral tongue

polyp, full cheeks, a right QME and normal left ear, conductive hearing loss,

severe obstructive sleep apnea and systolic murmur. His development is within

normal limits. He had normal full spine X-ray, renal ultrasound scan and SNP

microarray (HumanCoreExome-12 v1.0) (Illumina, San Diego, CA, USA).

A clinical summary of all cases is in Supplementary Table S1. Methods for

extraction of genomic DNA, Sanger sequencing and microsatellite analysis, and

programs used for analysis of variants are provided in Supplementary

Information. Variants were submitted to the GNAI3 gene variant database

(http://www.LOVD.nl/GNAI3).

RESULTS

Family ACS1
A novel heterozygous, predicted missense variant was identified in exon
7 of GNAI3: c.805A4T; p.(Asn269Tyr) (RefSeq: NM_006496.3)
(Figure 1a). Except for one non-penetrant individual (II-7), the variant
segregates with the ACS phenotype. Reconstruction of previously
published haplotypes of the chromosome 1 linkage region2 along
with the GNAI3 genotypes showed that individual II-7 shares only a
proximal region of the at-risk haplotype (Supplementary Figure S2).

Sp1
Sequencing of GNAI3 revealed a heterozygous variant in exon 2:
c.134G4T predicted to give the missense change p.(Gly45Val)
(Figure 1b). The variant was de novo in the patient as it was not
present in parental DNA.

Sp2
A de novo, heterozygous, predicted missense variant was identified in
exon 2 of GNAI3: c.143C4A; p.(Thr48Asn) (Figure 1c).

Variants affecting Asn269, Gly45 or Thr48 of GNAI3 are absent
from dbSNP137 and the Exome Variant Server. Variants affecting
Asn269 are also not present in 275 ethnically matched control
Brazilian samples. To confirm that the Sp1 and Sp2 variants were
de novo, polymorphic microsatellites were tested in each family; all
microsatellites (11/11 in Sp1 and 8/8 in Sp2) were consistent with
paternity.

All three GNAI3 variants are predicted to disrupt a nucleotide and
amino acid highly conserved in vertebrates (Figure 2), suggesting
important roles for these residues in protein function. Each amino-
acid change was predicted as probably damaging by PolyPhen-2 and
damaging by SIFT.

GDP/GTP binding in the catalytic domain of GNAI3 involves five
small motifs, the G1–G5 boxes. The p.(Gly45Val) and p.(Thr48Asn)
variants fall within and one amino acid outside of the G1 box
(residues 40-47), respectively. The p.(Asn269Tyr) variant falls within
the G4 box (Figure 2a–c). Mapping of the amino acids that show
variants in ACS to a published GNAI3 crystal structure10 indicates
that the side chain of Asn269 forms hydrogen bonds that contact
GDP and the G1 box, whereas the backbone of Gly45 and the
backbone and side chain of Thr48 also form hydrogen bonds with
GDP (Figure 3). Variant of these residues may therefore directly
compromise binding of GNAI3 to GDP/GTP.

DISCUSSION

In this study, we demonstrate that the GNAI3 variant, p.(Asn269Tyr),
is the likely cause of ACS in the original ACS1 family, thus confirming
our previous linkage analysis.2 The non-penetrant individual (II-7) in
this family is consistent with the incomplete penetrance observed in
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Figure 1 Identification of novel heterozygous, predicted missense GNAI3 variants. (a) GNAI3 c.805A4T variant in the ACS1 family. (b) GNAI3 c.134G4T

variant in Sp1. (c) GNAI3 c.143C4A variant in Sp2. Wild-type allele is indicated by a plus (þ ) sign; the allelic variant is represented by a minus (�) sign

in the pedigree and indicated with an asterisk in the chromatogram; the arrows indicate proband.
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another family with a GNAI3 variant.5 We also report the first de novo
variants in GNAI3 in two simplex ACS cases, Sp1 and Sp2. Our study
brings the total of ACS cases harboring a GNAI3 variant to six,
comprised of five different variants.

G-alpha proteins and RAS family members share a structural
domain involved in GDP/GTP binding that is composed of the
G1–G5 boxes.8 The two previously reported GNAI3 variants fall
within the G1 box (at Gly40 and Ser47), as does the p.(Gly45Val)
variant identified here in Sp1, whereas the p.(Thr48Asn) variant of
Sp2 falls one amino acid outside of the G1 box. p.(Asn269Tyr) is the

first variant located within the G4 box. All three of the variant
residues identified here (Gly45, Thr48 and Asn269), along with
Ser47, are predicted to form hydrogen bonds with GDP in the
GNAI3 crystal structure. Supporting the significance of the
p.(Asn269Tyr) variant, contact between hydrogen bonds of
the G4 box residues of GTPase superfamily members and the
guanine ring of GDP/GTP are known to confer specificity to GTP
over ATP and provide stabilizing interactions with G1 box
residues.11 Although it was speculated that p.(Gly40Arg)
modified the conformation of a portion of the protein that
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Figure 2 Conservation and location of GNAI3 residues altered in ACS. (a, b) UCSC screenshot displaying conservation of the GNAI3 G1 and G4 boxes

(underlined) throughout vertebrates. The position of the variants identified here and previously reported variants are indicated by full and dashed boxes,

respectively. (c) Schematic of GNAI3 showing conserved domains as described in the CDD; G1–G5 boxes are depicted in gray; previously described variants
are indicated with arrows below the schema; the present variants are indicated with full arrows above the schema.
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interacts with downstream effectors, resulting in a gain-of-function
protein,5 we suggest rather that all GNAI3 variants may disrupt
GDP/GTP binding (directly or indirectly) without disrupting the
overall structure of the protein, thereby resulting in dominant
negative effects, perhaps via sequestration of GNAI3’s cognate
beta-gamma G protein subunits or G protein-coupled receptor, as
has been shown for other G-alpha proteins.12 Supporting this idea,
the equivalent variant to GNAI3 p.(Asn269Tyr) in the G4 box of
HRAS (p.Asn116Tyr) shows a dominant negative effect, inhibiting
GTP binding activity and proliferation, and causing induction of
apoptosis in human cancer cell lines.13,14 Similarly, the previously
published p.(Ser47Arg) GNAI3 variant is predicted to be a dominant
negative, based on the dominant negative action of other G proteins
and RAS family members with a variant of the equivalent residue.7

Although GNAI3 belongs to the inhibitory class of G-alpha proteins,
originally described for their ability to inhibit adenylyl cyclase, it has
been reported that activation of G protein heterotrimers containing
GNAI3 leads to inhibitory or stimulatory responses, depending
on the downstream effector: adenylyl cyclase or phospholipase C,
respectively.15 Supporting the idea that GNAI3 and PLCB4
variants have a similar negative effect on the EDN1–EDNRA–DLX
pathway, expression of DLX5 and DLX6 was reduced in
mandibular osteoblasts of ACS patients mutated for GNAI3 or
PLCB4.5 Finally, several deletions that remove GNAI3 have been
reported in the DECIPHER database; of the eight cases with
phenotypes listed, auricular malformations are not mentioned,
supporting the idea that the ACS GNAI3 variants are not
haploinsufficient alleles.

Sp1 and Sp2 have conductive hearing loss, which in Sp1 was
associated with fusion of the malleus and incus,9 and one GNAI3-
variant individual in the ACS1 family presented with sensorineural
hearing loss.3 Hearing loss was reported in both members (conductive
in one case and unspecified in the other) of a family harboring a
GNAI3 variant.5,16 Interestingly, zebrafish with variants in
components of the endothelin pathway display fusion of some jaw
cartilage elements.1 In addition, targeted deletion of Gnai3 in mice
results in rib and vertebral fusions17 and in defects in cochlear hair
cells.18 Collectively these findings suggest independent roles for
GNAI3 in the development of multiple skeletal elements and in the
inner ear, suggesting the possibility of conductive and/or
sensorineural hearing loss in GNAI3-associated ACS.

In conclusion, here we have described three new ACS-associated
variants in GNAI3. We suggest that these and previously described
GNAI3 variants interfere directly or indirectly with GDP/GTP
binding, leading to dominant negative effects. Our analysis indicates
that interaction with GDP/GTP will be a strong predictor of
pathogenicity for future ACS-associated GNAI3 variants.
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on this manuscript and to Regina Bueno for figure editing.

1 Clouthier DE, Passos-Bueno MR, Tavares ALP, Lyonnet S, Amiel J, Gordon CT:
Understanding the basis of auriculocondylar syndrome: insights from human, mouse
and zebrafish genetic studies. Am J Med Genet C Semin Med Genet 2013; 163:
306–317.

2 Masotti C, Oliveira KG, Poerner F et al: Auriculo-condylar syndrome: mapping of a first
locus and evidence for genetic heterogeneity. Eur J Hum Genet 2008; 16: 145–152.

3 Guion-Almeida ML, Zeichi-Ceide RM, Vendramini S, Kokitsu-Nakata NM:
Auriculo-condylar syndrome: additional patients. Am J Med Genet 2002; 112: 209–214.

4 Kokitsu-Nakata NM, Zeichi-Ceide RM, Vendramini-Pittoli S, Tavares VLR, Passos-
Bueno MR, Guion-Almeida ML: Auriculo-condylar syndrome. Confronting a diagnostic
challenge. Am J Med Genet A 2012; 158A: 59–65.

5 Rieder MJ, Green GE, Park SS et al: A human homeotic transformation resulting from
mutations in PLCB4 and GNAI3 causes auriculocondylar syndrome. Am J Hum Genet
2012; 90: 907–914.

6 Gordon CT, Petit F, Kroisel PM et al: Mutations in endothelin 1 cause recessive
auriculocondylar syndrome and dominant isolated question-mark ears. Am J Hum
Genet 2013; 93: 1118–1125.

7 Gordon CT, Vuillot A, Marlin S et al: Heterogeneity of mutation mechanisms and modes
of inheritance in auriculocondylar syndrome. J Med Genet 2013; 50: 174–186.

8 Wennerberg K, Rossman KL, Der CJ: The Ras superfamily at a glance. J Cell Sci 2005;
118: 843–846.

9 Propst EJ, Ngan BY, Mount RJ et al: Ossicular fusion and cholesteatoma in auriculo-
condylar syndrome: in vivo evidence of arrest of embryogenesis. Laryngoscope 2013;
123: 528–532.

10 Soundararajan M, Willard FS, Kimple AJ et al: Structural diversity in the RGS domain
and its interaction with heterotrimeric G protein alpha-subunits. Proc Natl Acad Sci
USA 2008; 105: 6457–6462.

Figure 3 Structure of the GNAI3 protein (PDB ID: 2ODE) and the positions of residues affected in ACS. To the left is a view of the entire protein in ribbon

mode. To the right is a magnified view of selected regions surrounding the GDP molecule, in stick mode. The five amino acids that show variants in ACS are

in pink (Gly40, Gly45, Ser47, Thr48 and Asn269). For clarity, side chains are only shown for these five. Hydrogen bonds are shown as green dotted lines.

AlF4 (aluminum tetrafluoride) is a substitute for the third phosphate of GTP. Mg, magnesium.

Novel GNAI3 variants associated with ACS
VL Romanelli Tavares et al

484

European Journal of Human Genetics



11 Colicelli J: Human RAS superfamily proteins and related GTPases. Sci STKE 2004;
2004: RE13.

12 Barren B, Artemyev NO: Review mechanisms of dominant negative G-protein a
subunits. J Neurosci Res 2007; 3514: 3505–3514.

13 Shichinohe T, Senmaru N, Furuuchi K et al: Suppression of pancreatic cancer by the
dominant negative ras mutant, N116Y. J Surg Res 1996; 66: 125–130.

14 Clanton DJ, Hattori S, Shih TY: Mutations of the ras gene product p21 that
abolish guanine nucleotide binding. Proc Natl Acad Sci USA 1986; 83:
5076–5080.

15 Hunt TW, Carroll RC, Peraltas G, Heterotrimeric G: Proteins containing Gai3 regulate
multiple effector enzymes in the same cell. J Biol Chem 1994; 269: 29565–29570.

16 Erlich MS, Cunningham ML, Hudgins L: Transmission of the dysgnathia complex from
mother to daughter. Am J Med Genet 2000; 95: 269–274.

17 Plummer NW, Spicher K, Malphurs J et al: Development of the mammalian axial
skeleton requires signaling through the Gai subfamily of heterotrimeric G proteins.
Proc Natl Acad Sci USA 2012; 109: 21366–21371.

18 Ezan J, Lasvaux L, Gezer A et al: Primary cilium migration depends on G-protein
signaling control of subapical cytoskeleton. Nat Cell Biol 2013; 15: 1107–1115.

Supplementary Information accompanies this paper on European Journal of Human Genetics website (http://www.nature.com/ejhg)

Novel GNAI3 variants associated with ACS
VL Romanelli Tavares et al

485

European Journal of Human Genetics

http://www.nature.com/ejhg

	Novel variants in GNAI3 associated with auriculocondylar syndrome strengthen a common dominant negative effect
	Introduction
	Materials and methods
	Patients and DNA samples

	Results
	Family ACS1
	Sp1
	Sp2

	Discussion
	Figure™1Identification of novel heterozygous, predicted missense GNAI3 variants. (a) GNAI3 c.805AgtT variant in the ACS1 family. (b) GNAI3 c.134GgtT variant in Sp1. (c) GNAI3 c.143CgtA variant in Sp2. Wild-type allele is indicated by a plus (+) sign; the 
	Figure™2Conservation and location of GNAI3 residues altered in ACS. (a, b) UCSC screenshot displaying conservation of the GNAI3 G1 and G4 boxes (underlined) throughout vertebrates. The position of the variants identified here and previously reported varia
	A5
	ACKNOWLEDGEMENTS
	Figure™3Structure of the GNAI3 protein (PDB ID: 2ODE) and the positions of residues affected in ACS. To the left is a view of the entire protein in ribbon mode. To the right is a magnified view of selected regions surrounding the GDP molecule, in stick mo




