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Abstract

Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting

apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles.

Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible

therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a

force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-b1 (TGF-b1), and tumor

necrosis factor-a (TNF-a) was determined by quantitative real time polymerase chain reaction. Myostatin expression was

significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO=0.60±0.11, control=1.07±0.11). On the other

hand, rhEPO had no significant effect on the expression of TGF-b1 (rhEPO=0.95±0.14, control=1.05±0.16) and TNF-a
(rhEPO=0.73±0.20, control=1.01±0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle.
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Introduction

Erythropoietin (EPO) has been well characterized as a

renal glycoprotein hormone regulating red blood cell

production by inhibiting apoptosis of erythrocyte progenitors

in hematopoietic tissues (1). EPO receptors have been

described in many different cells and tissues, including

muscle, neurons, astrocytes, microglia, developing heart,

cancer cell lines, Leydig cells, and gastric mucosal cells,

suggesting other actions of this hormone (2). Indeed, many

of these tissues are responsive to stimulation with recombi-

nant human EPO (rhEPO) (2). The relationship between

EPO receptors and skeletal muscle has been poorly

investigated. It has recently been reported that EPO exerts

regulatory effects on both cardiac and skeletal muscle (3).

Because mouse myoblasts express EPO receptors,

administration of EPO can stimulate proliferation of myo-

blasts to expand the progenitor population during differentia-

tion, resulting in a potential role in muscle development or

repair (4). Mice lacking EPO or its receptors suffer from

heart hypoplasia and have a reduced number of proliferating

cardiac myocytes (5).

The effects of EPO on muscle cells have also attracted

the attention of athletes. Because EPO increases red blood

cell mass and exercise capacity in anemic patients, it might

have the same effect in an athlete’s body, thereby

enhancing performance (6). In addition to the hematopoie-

tic effects, EPO is capable of promoting angiogenesis in

muscle cells (7), providing an additional route to increase

the supply of oxygen to the working muscles. Furthermore,

the possible involvement of EPO in muscle repair pro-

cesses (4) can imply that athletes who abuse rhEPO have

healthier muscles. With this reasoning, athletes began

using rhEPO, and thus rhEPO has been on the International

Olympic Committee’s list of banned substances since

1990 (6).

Duchenne muscular dystrophy (DMD) is a lethal

degenerative disorder of skeletal and cardiac muscles that

affects 1 in 3500 male births (8). DMD patients character-

istically display progressive muscle weakness, which begins

in early childhood (9). Although DMD is present at birth,

clinical symptoms are not evident until 3-5 years of age (10).

Initial symptoms include leg weakness and increasing

convex curvature of the spine muscles and results in

progressive weakness, usually leaving DMDpatients wheel-

chair bound by age 11 or 12 years (11).
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Affected individuals usually die due to respiratory or

cardiac insufficiency by the second or third decade of life

(12). So far, the only pharmacological treatment proven to

be effective for DMD is steroids (13).

Dystrophin is considered a key structural element in

muscle fiber, and the primary function of the dystrophin-

associated protein complex is to stabilize the plasma

membrane. The absence of dystrophin is followed by a

sequence of events such as calcium influx, reactive oxygen

species activity, and inflammation, leading to muscle injury

(14).

This study tested the possible beneficial effect of

recombinant EPO therapy in the degenerative process of

dystrophic muscles inmdxmice. The absence of dystrophin

in thesemice produces a phenotype quite different from that

of dystrophin deficiency in humans. Under normal condi-

tions, mdx mice show little overt symptoms of weakness,

but, if forced to engage, they show more pathological

changes than when resting (15).

Material and Methods

Male mdx mice were maintained in the experimental

laboratory of ABC Faculty of Medicine (FMABC) at constant

temperature (206C), with a 12:12-h light-dark cycle, and

received diet and water ad libitum. The mice weighed 25-

30 g. All procedures were conducted in accordancewith the

Declaration of Helsinki and the Guide for the Care and Use

of Laboratory Animals, and were approved by the Ethics

Committee of Faculdade de Medicina do ABC in 2006

(Protocol: #04/2006).

The experimental groups were as follows: 7 mdx mice

were injected with rhEPO (1000 IU/kg ip) 3 times per week

and 6 mdx mice received saline. All animals were

submitted to exercise on an electric treadmill (5 days/

week, 20 cm/s, 10 min).

Measurement of whole body strength
Whole body strength was measured weekly using a

force transducer coupled to a computer (15). The tail of

each mouse was connected through a nonflexible nylon

tube to the transducer so that they were electrically

stimulated to run, and the force required to pull the cable

was continuously recorded. The force values were normal-

ized to the weight of each animal.

Muscle preparation
After 12 weeks of treatment, a muscle biopsy was

carried out on all mdx mice. Samples were collected from

the left quadriceps, dissected, frozen in liquid nitrogen,

and stored at ––806C. Total tissue RNA was extracted with

Trizol reagent (Invitrogen Co., USA), according to the

manufacturer’s instructions, quantified by absorbance at

260 nm, and stored in diethylpyrocarbonate-treated water

at ––806C. The integrity of RNA was routinely verified by

agarose gel electrophoresis. Total RNA (2 mg) was used

for first-strand cDNA synthesis (reverse transcriptase)

using Moloney murine leukemia virus, and RNaseOUT

was also added to protect the RNA during this process).

Quantitative real time polymerase chain reaction
Gene expression of myostatin, transforming growth

factor-b1 (TGF-b1) and tumor necrosis factor-a (TNF-a)
was determined by quantitative real time polymerase

chain reaction (qRT-PCR) using SybrGreen Master Mix

(Invitrogen). b-actin was used as an internal control. The

reaction was carried out with 1 mL diluted cDNA (20 ng),

10 mL SybrGreen Master Mix (Invitrogen), 0.5 mL forward

primer (10 mM), 0.5 mL reverse primer (10 mM), and 8 mL
RNAse-free water in a final volume of 20 mL/well. The

thermocycle included an initial incubation at 956C for

2 min, followed by 40 cycles of 956C for 15 s, 606C for

60 s, and 726C for 15 s. The qRT-PCR was performed

in triplicate. The primer sequences and their respective

product length are reported in Table 1.

Relative gene expression fold change was calculated

using the delta delta Ct method. The results were

subjected to analysis of variance using the GBStat

program (England), and P,0.05 was considered to be

significant.

Results

Measurement of whole body strength
The muscle strength values were appropriate for the

weight of the animal. There was no change in strength

between the control animals and those treated with

rhEPO during the 12 weeks of treatment. The total force

of mdx mice is reported in Figure 1.

qRT-PCR
In order to determine whether recombinant EPO had

an effect on the regeneration process of mdx dystrophic

muscle in mice, we quantified expression of the myostatin

gene, TGF-b1, and TNF-a by qRT-PCR. After 12 weeks

of treatment with rhEPO, there was a significant decrease

in myostatin gene expression (Figure 2). There was no

difference in TGF-b1 and TNF-a gene expression between

groups.

Discussion

This study evaluated the possible beneficial effect of

recombinant EPO therapy in the degenerative process

of dystrophic muscles in mdx mice, the most common

experimental model used to study DMD (15). We observed

no change in strength between the control animals and

those treated with rhEPO during the 12 weeks of treatment.

Myostatin expression was significantly decreased in quad-

riceps from mdx mice treated with rhEPO; however, no

significant effect of rhEPO was seen in the expression of

TGF-b1 and TNF-a.

EPO reduces expression of myostatin in mdx dystrophic mice 967
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DMD is the most common lethal genetic disease.

Corticosteroids are currently the only available disease-

modifying therapy for DMD, by prolonging independent

ambulation and delaying the onset of secondary complica-

tions (16). However, the use of chronic high-dose cortico-

steroids for DMD is frequently associated with significant

side effects and does not stop disease progression (16). An

effective treatment for DMD requires a combination of

therapies, including pharmacological agents, gene therapy,

and target cells in an attempt to reach the process pathways

involved in muscle degeneration and necrosis (17). EPO

has several effects that could aid in the repair of skeletal

muscle injury and prevention of fibrosis (1). In mdxmice, we

did not observe any increase in muscle strength. An EPO

analog, carbamylated EPO, was not demonstrated as an

effective therapy for DMD in mdx mice (18).

We assessed the gene expression of cytokines involved

in the disease and observed a direct action of the drug in

spite of increased muscle oxygen delivery in vitro.
TGF-b1 is highly upregulated in dystrophic skeletal

muscle (19), and the level of TGF-b1 protein is significantly

elevated in the mdx diaphragm at 12 weeks of age (20).

These cytokines are expressed by inflammatory cells such

as macrophages (21) and have been shown to stimulate

collagen synthesis (22). In our experiments, the results of

TGF-b1 did not show any difference. Perhaps the EPO

concentration we usedwas not able to activate this pathway.

DMD patients have higher serum TNF-a levels, and

TNF-a-positive fibers have been found by in situ hybridiza-

tion and immunohistochemistry in muscles of dystrophic

DMD subjects (23). Controversial results and muscle type

dependent effects have been observed in TNF-a knockout

mdx mice; and histopathological analysis has found that the

absence of TNF-a in vivo resulted in equivocal findings as

opposed to amelioration of muscle pathology as predicted

(24), although long-term deletion of TNF-a appeared

beneficial in older (12 months) mdx/TNF-a(––/––) mice (25).

The pharmacological approach using weekly TNF-a anti-

body during early postnatal life clearly delayed and greatly

reduced the breakdown of dystrophicmuscle (26). However,

no proof of functional benefit of this specific anti-TNF-a
therapy has been provided. We did not observe a significant

effect of EPO in expression of the TGF gene.

Myostatin, a member of the TGF family, is an important

negative regulator of skeletal muscle mass (27). The

deletion of the myostatin gene in the mdx mouse increases

not only muscle mass but also muscle strength (as

measured by grip strength). Remarkably, histological

analysis of the diaphragm, one of the most severely affected

muscles in the mdx mouse, showed a reduced dystrophic

phenotype in myostatin/mdx double mutants (28). The

injection of anti-myostatin monoclonal antibodies into mdx

mice on a weekly basis for a period of 3 months resulted in

muscle mass increases up to 35% in individual muscles

after myostatin blockade (29). Conversely, transgenic mice

that overexpress myostatin selectively in skeletal muscle

have lower muscle mass (30). Finally, these observations

indicate that myostatin negatively regulates skeletal muscle

mass. For the first time, we report that a significant reduction

in myostatin expression in mdx mice treated with rhEPO

may signify a new direct mode of action of EPO in skeletal

muscle.

The direct actions of EPO in skeletal muscles indepen-

dent of its action in the hematopoietic system have been

Figure 1. Strength of the entire body of mdx mice treated with

recombinant human erythropoietin (rhEPO) or saline (control) for

12 weeks. P.0.05, GBStat test.

Table 1. Forward and reverse primers for quantitative real time PCR analyses.

Primer Sequence Product length (pb)

TGF-b1 (accession No. M13177) 80

Forward 59 CCCCACTGATACGCCTGAGT 39

Reverse 59 AGCCCTGTATTCCGTCTCCTT 39

TNF-a (accession No. NM_013693.2) 275

Forward 59 ATGAGCACAGAAAGCATGATC 39

Reverse 59 TACAGGCTTGTCACTCGAATT 39

Myostatin (accession No. NM_010834.2) 83

Forward 59 ACGCTACCACGGAAACAATC 39

Reverse 59 AAAGCAACATTTGGGCTTTC 39

TGF-b1: transforming growth factor beta 1; TNF-a: tumor necrosis factor alpha.
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studied by several authors (31,32). EPO has been

described as exerting effects similar to vascular endothelial

growth factor (VEGF) on the angiogenic process, and one

of the mechanisms by which EPO appears to promote

angiogenesis is by enhancing the level of VEGF in tissues.

A close association between VEGF and EPO in angiogen-

esis has been proposed (33), and EPO treatment has been

found to enhance the release of VEGF from marrow

stromal cells (31) and to increase levels of VEGF in brain

(32). Considering the importance of VEGF in skeletal

muscle capillary growth (34), it is, therefore, plausible that

one of the angiogenic effects of EPO is mediated by

promoting VEGF levels in muscle. This effect can explain

the decrease in myostatin in our experiments.

Human myoblasts treated with bupivacaine showed a

dose-dependent decrease in mitochondrial membrane

potential associated with unusual morphologies.

Impairment of mitochondrial bioenergetics was prevented

partially by the use of rhEPO co-administered with

bupivacaine (35).

Another interesting potential physiological role of EPO

in skeletal muscle is in muscle fiber growth. Erythropoietin

receptor (EPO-R) activation stimulates the signal transdu-

cer and activator of transcription 5 (STAT5), which is

known tomodulate cell proliferation and differentiation (36).

STAT5 also activates the phosphoinositide 3 (PI3)-kinase-

protein kinase B (Akt) signaling pathway (37,38), which is

believed to result in activation of AKT and p70s6K, which in

turn plays a role in transcription and cell cycle progression.

This pathway has been suggested to be critical in the

regulation of skeletal muscle hypertrophy (38), On the

basis of the above findings, it appears plausible that EPO-

R activation may contribute to the regulation of skeletal

muscle fiber growth, activating the STAT pathway and

downregulating myostatin, as shown in our results.

We can speculate that EPO regulates the expression of

various genes. Acute injections of rhEPO (15,000 IU) did not

change mRNA levels of VEGF, hypoxia-inducible factor 1a
(HIF-1a), insulin-like growth factor, ferroportin, myogenic

differentiation 1 (MyoD), and myogen in biopsies obtained 2,

4, 6, and 10 h after injection of rhEPO, while small

inductions of myoglobin, EPO-R, transferrin receptor, and

myogenic regulatory factor (MRF4) were observed (39).

In our study, the control group was mdx mice treated

with saline, because we wanted to observe the possible

beneficial effects of recombinant EPO therapy in the

degenerative process of dystrophic muscles. We adopted

the same experimental model with mdx mice, as had been

reported in a previous study from our group (40).

Studying the muscles of mice with muscular dystro-

phy, we observed no increase in muscle strength, but we

found a significant reduction in myostatin. This result can

help to clarify some of the mechanisms of the direct action

of EPO on skeletal muscle.
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