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Exercise oxygen uptake efficiency slope
independently predicts poor outcome in
pulmonary arterial hypertension

To the Editor:

Pulmonary arterial hypertension (PAH) remains a disabling and frequently lethal disease despite remarkable

advances in treatment. Cardiopulmonary exercise testing (CPET) has proved a valuable tool to objectively

quantify disease severity and estimate prognosis in these patients [1–3].

Exercise intolerance is characteristically multifactorial in PAH. Among its potential contributing

mechanisms, increased ventilatory response, deranged pulmonary mechanics, peripheral muscle impair-

ment and reduced oxygen delivery have been more widely investigated [1–5]. In this context, a CPET-

derived variable that conflates the effects of increased ventilation and poor O2 transfer and/or peripheral O2

utilisation is the O2 uptake efficiency slope (OUES) [6]. OUES is the slope of the linear relationship between

O2 uptake (V9O2) and the logarithmic transformation of minute ventilation (V9E) during rapidly

incremental exercise, i.e. it aims to reflect how effectively O2 is extracted from the atmosphere and taken

into the body as exercise progresses. We recently found that a combination of increased sub-maximal

exercise V9E as a function of carbon dioxide output (V9CO2) and reduced O2 delivery/utilisation (as

suggested by shallow V9O2–work rate relationship) were independent predictors of negative outcome in

PAH of mixed aetiology [7]. These findings prompted the hypothesis that OUES would combine the

prognostic information provided separately by those variables, thereby being the single predictor of poor

outcome in our cohort.

In order to address this question, we revisited our dataset and contrasted OUES prognostic relevance with

that of a range of resting and cardiopulmonary exercise responses to ramp-incremental cycle ergometry. In

the previous report [7], we described results from a group of 84 patients in whom 16 PAH-related deaths

and two atrial septostomies were observed in a 5-year follow-up. In this present article, we extend these

observations to 98 patients (70 females, 48 with idiopathic PAH and 50 with associated PAH) followed for

up to 6.5 years, in whom 17 PAH-related deaths and four atrial septostomies were recorded. Receiver

operating characteristic (ROC) curves were used to obtain the best cut-offs for prognostication. Cox

proportional hazards and Kaplan–Meier cumulative survival analyses were performed following standard

procedures. The statistical significance for all tests was p,0.05.

We found that event-positive patients showed lower OUES than their counterparts (mean¡SD

0.72¡0.27 L?min-1 per logV9E versus 0.91¡0.31 L?min-1 per logV9E, p,0.05). OUES was significantly

related to prognosis in the univariate analysis (hazard ratio (HR) (95% CI) 9.5 (3.8–23.8), p,0.01). The

ROC curve analysis (area under the curve 0.688, 95% CI 0.542–0.833; p,0.01) indicated a best OUES cut-

off for prognostication of 0.56 L?min-1 per logV9E. Among a range of resting and exercise variables, only

peak O2 uptake (V9O2peak), V9E/V9O2peak, change in (D)V9E/DV9CO2 and DV9O2/Dwork rate were also

predictors of poor outcome in the univariate analysis (HR (95% CI) 2.4 (1.1–5.7), 8.4 (1.2–55), 4.2

(1.5–11.6) and 6.8 (2.6–17.3), respectively; p,0.05). Considering the close similarity between OUES and

V9E/V9O2peak, multivariate regression analyses were performed using either of these variables. The
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prognostic power of OUES (HR (95% CI) 4.63 (1.38–15.5), p50.01) overcame that of V9O2peak and the

slopes of DV9E/DV9CO2 and DV9O2/Dwork rate in the final model (HR (95% CI) 1.74 (0.69–4.37), p50.23;

2.20 (0.73–6.67), p50.16; and 2.24 (0.70–7.11), p50.17; respectively). DV9O2/Dwork rate, however,

remained in the final model when V9E/V9O2peak was considered instead of OUES (p,0.05). In line with our

hypothesis, therefore, OUES (but not V9E/V9O2peak) conflated the prognostic information provided by

DV9E/DV9CO2 and DV9O2/Dwork rate in our previous study (fig. 1). The same results were found when only

mortality was considered the main outcome (data not shown).

Some preliminary considerations about the ventilatory–metabolic coupling during incremental exercise

might be instructive to interpret our results. The ventilatory response to exercise is tightly coupled with the

rate at which CO2 is exchanged at the lungs, i.e. V9CO2. V9E is needed to clear a given amount of CO2 when

its arterial partial pressure is regulated at a lower set-point and the dead space fraction of the breath is

increased, as found in PAH [1–5]. Progressive lactic acidosis (i.e. beyond the point at which the bicarbonate

reserve is sufficient to fully tamponade H+) brings additional source of V9E stimuli at abnormally low levels

of exertion in these patients. Right-to-left shunt through an open foramen ovale might also expose the

carotid bodies to an extra burden of H+, which might sum up with variable levels of hypoxaemia. In fact, 21

(21%) out of 98 patients showed evidence of an open foramen ovale during exercise. As expected, DV9E/

DV9CO2 was greater and OUES lower in these patients compared with their counterparts (82¡25 versus

52¡12 and 0.65¡0.16 L?min-1 per log V9E versus 0.90 0.29 L?min-1 per log V9E, respectively). However,

foramen ovale opening was not predictive of negative outcome in our sample. Additional sources of

increasing nonmetabolic drive include excessive sympathetic drive, respiratory muscle weakness,

ergoreceptor stimuli and increased pulmonary artery/right ventricle pressures [1–5]. These premises fully

justify the notion that excessive V9E response to CO2 (DV9E/DV9CO2 slope) is a valuable marker of disease

severity and progression in PAH [1–5, 7].

OUES is substantially more complex to interpret than DV9E/DV9CO2. Therefore, while V9E is appropriately

considered the dependent variable in DV9E/DV9CO2, it is the independent parameter in OUES.

Consequently, part of the information provided by OUES is intrinsically linked to the mechanisms

regulating CO2 exchange. However, the rate at which O2 is taken into the body during the incremental

phase of exercise (the dependent variable in OUES) is not limited by the ventilatory response in PAH but

rather dependent upon cardiovascular, haematological and muscular adjustments [1–5]. In other words,

abnormalities in any of the determinants of exercise hyperpnoea during exercise (either metabolic or

nonmetabolic) plus derangements in systemic O2 transfer might reduce OUES. The inordinate high

ventilatory response in PAH coupled with severe reductions O2 delivery/utilisation might explain why

OUES seems to have a higher prognostic relevance in these patients than in chronic heart failure [8]. In fact,

whereas OUES cut-offs to indicate poor prognosis in chronic heart failure were in the range of

1.3–1.5 L?min-1 per logV9E [9], substantially lower values should be used in PAH (0.56 L?min-1 per logV9E).

OUES calculation in PAH, however, may have some caveats that should be carefully considered. It should

be noted that log transformation works particularly well in pronouncedly skewed data. If this is not the case,

it may overcompensate a right-skewed data set and create a left-skewed one [10]. In practice, these caveats

might promote nonlinearities and artificially increase OUES. This would be particularly anticipated in

patients with high exercise V9E from the start of the test who are able to sustain exercise long above the
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‘‘anaerobic’’ threshold. In fact, NIEMEIJER et al. [11] found that the anaerobic threshold impacted on OUES

linearity in chronic heart failure. Moreover, WILLIAMSON et al. [12] reported that OUES increased as exercise

progressed, with a peak value of V9CO2/V9O2 of ,1. The best approach to calculate OUES in PAH patients

with extremely elevated V9E responses during exercise tests that are not too short (i.e. 8–12 min of

incremental phase) remains to be determined. V9E/V9O2peak is a more straightforward variable and it might

provide an interesting alternative to OUES. As a discrete, end-exercise variable, however, V9E/V9O2peak is

expected to be more influenced by effort (or early exercise cessation due to intolerable dyspnoea) and degree

of ventilatory response to lactic acidosis than OUES. Additional studies aiming to contrast the prognostic

relevance of OUES and V9E/V9O2peak are therefore warranted.

In conclusion, OUES is a powerful prognostic index in patients with PAH. Although this variable is not

usually available during CPET, most of the commercially available systems allow post-test data

transformation making its calculation clinically friendly. Future investigations, however, should address

whether restraining OUES estimation to specific time frames (e.g. below or above any inflection point)

would further increase its prognostic relevance in PAH.
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