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Abstract

The use of b-blockers is mandatory for counteracting heart failure (HF)-induced chronic sympathetic hyperactivity, cardiac
dysfunction and remodeling. Importantly, aerobic exercise training, an efficient nonpharmacological therapy to HF, also
counteracts sympathetic hyperactivity in HF and improves exercise tolerance and cardiac contractility; the latter associated
with changes in cardiac Ca2+ handling. This study was undertaken to test whether combined b–blocker and aerobic exercise
training would integrate the beneficial effects of isolated therapies on cardiac structure, contractility and cardiomyocyte
Ca2+ handling in a genetic model of sympathetic hyperactivity-induced HF (a2A/a2C- adrenergic receptor knockout mice,
KO). We used a cohort of 5–7 mo male wild-type (WT) and congenic mice (KO) with C57Bl6/J genetic background randomly
assigned into 5 groups: control (WT), saline-treated KO (KOS), exercise trained KO (KOT), carvedilol-treated KO (KOC) and,
combined carvedilol-treated and exercise-trained KO (KOCT). Isolated and combined therapies reduced mortality compared
with KOS mice. Both KOT and KOCT groups had increased exercise tolerance, while groups receiving carvedilol had
increased left ventricular fractional shortening and reduced cardiac collagen volume fraction compared with KOS group.
Cellular data confirmed that cardiomyocytes from KOS mice displayed abnormal Ca2+ handling. KOT group had increased
intracellular peak of Ca2+ transient and reduced diastolic Ca2+ decay compared with KOS group, while KOC had increased
Ca2+ decay compared with KOS group. Notably, combined therapies re-established cardiomyocyte Ca2+ transient paralleled
by increased SERCA2 expression and SERCA2:PLN ratio toward WT levels. Aerobic exercise trained increased the
phosphorylation of PLN at Ser16 and Thr17 residues in both KOT and KOCT groups, but carvedilol treatment reduced lipid
peroxidation in KOC and KOCT groups compared with KOS group. The present findings provide evidence that the
combination of carvedilol and aerobic exercise training therapies lead to a better integrative outcome than carvedilol or
exercise training used in isolation.
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Introduction

Heart failure (HF) is a common endpoint for many forms of

cardiovascular disease. In addition, this syndrome is the leading

cause of morbidity and mortality in older individuals [1]. The

development of end-stage HF often involves an initial insult to the

myocardium that reduces cardiac output and arterial baroreceptor

stimulation leading to a compensatory increase in sympathetic

nervous system activity, which ultimately results in cardiac

dysfunction and remodeling [2,3] In fact, sympathetic hyperac-

tivity is associated with poor prognosis and constitutes an

independent predictor of mortality [4,5]. For counteracting

sympathetic hyperactivity, the use of b-blockers is mandatory for

HF therapy [6].

The treatment with b-blockers decreases sympathetic activity

measured directly by microneurography performed on the

anterior fibular nerve of HF patients [7], and promotes positive

impact on cardiac function associated with a reverse remodeling

[8]. In a genetic model of HF based on disruption of a2A/a2C-
adrenergic receptors from mouse genome, we have previously

observed that the third generation b–blocker, carvedilol, has no
impact on exercise capacity but display an anti-cardiac remodeling

effect and improves cardiac contractility [9,10], which is in-

dependent of changes in isolated cardiac myocyte Ca2+ transients

[9]. Accumulated evidence shows that aerobic exercise training is

also an important strategy for the prevention and treatment of

cardiovascular diseases [11], besides being an efficient adjuvant
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therapy for HF. Aerobic exercise training improves exercise

tolerance and cardiac contractility; the later associated with

changes in cardiac Ca2+ handling [12–14].

To increase the knowledge about different impact of b-blockers
and aerobic exercise training on cardiac and skeletal muscle, we

previously compared the isolated effects of exercise training and

carvedilol treatment on exercise tolerance and cardiac contractility

and remodeling in mice with an early stage HF induced by

sympathetic hyperactivity [13,15]. We observed that both aerobic

exercise training and carvedilol therapy improved, to the same

extent, the ventricular function in mild HF. However, while the

benefits of aerobic exercise training were mainly associated with

increased aerobic capacity and capillary density of skeletal muscle,

the benefits of carvedilol were restricted to the effect on cardiac

structure [15]. Although both carvedilol and aerobic exercise

training have been highly recommended to the treatment of HF, it

is unknown whether the combination of aerobic exercise training

and carvedilol has integrative effects on the treatment of HF. In

addition, the cellular basis of associative therapy on cardiac

contractility has not been clarified yet.

In the present study, we used a genetic model of sympathetic

hyperactivity-induced HF in mice to determine the combined

effects of carvedilol and aerobic exercise training on cardiac

structure and function, and overall functional capacity. Further-

more, we studied the expression of proteins involved in cardiac

intracellular Ca2+ regulation and Ca2+ transients isolated from

cardiomyocytes of all mice studied.

Materials and Methods

Animal Care
A cohort of male wild-type (WT) and congenic a2A/a2CARKO

mice (KO) with C57Bl6/J genetic background aged 5–7 months

was studied. At this age, KO mice display advanced stage

cardiomyopathy as previously described [16]. Genotypes were

determined by PCR on genomic DNA obtained from tail biopsies

using primers to detect the intact and disrupted genes. Mice were

maintained in a light-controlled (12-hour light/dark cycle) and

temperature-controlled (22uC) environment and were fed a pellet

rodent diet (Nuvital Nutrientes S/A, Curitiba, PR Brazil) ad

libitum and had free access to water. Mice were randomly assigned

into five groups: control (WT), HF placebo (KOS), HF exercise

trained (KOT), HF carvedilol-treated (KOC) and, HF exercise

trained and carvedilol-treated (KOCT). This study was carried out

in accordance with Ethical Principles of animal research adopted

by the Brazilian College of Animal Experimentation (www.cobea.

org.br). In addition, this study was approved by the Faculty of

Medicine of University of São Paulo Ethics Committee (CEP 897/

06). The experimental design is shown in Figure 1.

Measurements and Procedures
Drug treatment and exercise training protocol. Drug

treatment consisted of 8 weeks of placebo (saline) or carvedilol

(38 mg/kg, Baldacci S.A., SP, Brazil) by gavage. Carvedilol is

a third generation non-selective b-blocker with a1-blocking
properties with a wide use in HF pharmacological therapy.

Carvedilol did not change cardiac function, structure, Ca2+ or

cardiac oxidative index in control mice. Therefore, we used only

one WT group for further comparisons with KO groups. The dose

of carvedilol was optimized to achieve comparable heart rate (HR)

levels observed in age matched control group.

Moderate intensity aerobic exercise training was performed on

a motor treadmill over 8 weeks, 5 days/week. The running speed

and duration of exercise were progressively increased to elicit 60%

of maximal speed, achieved during a graded treadmill exercise

protocol, for 60 min. At the fourth week of exercise training,

graded exercise test were repeated for readjusting the running

speed. This intensity was maintained during the rest of the training

period. All untrained mice were exposed to treadmill exercise

(5 min) three times a week to become accustomed to exercise

protocol and handling. The training sessions were performed

during the dark cycle of the mice.

Graded treadmill exercise test. Exercise capacity, estimat-

ed by total distance run, was evaluated using a graded treadmill

exercise protocol for mice. After being adapted to treadmill

exercises over 1 week (10 min of exercise session), mice were

placed on the treadmill streak and allowed to acclimatize for at

least 30 min. Exercise began at 6 m/min with no grade and

increased by 3 m/min every 3 min thereafter until exhaustion.

The graded treadmill exercise test was performed in WT and KO

mice before and after the aerobic exercise training period.

Additionally, it was repeated at the fourth week of exercise

training in order to adjust the training intensity as described

above.

Cardiovascular measurements. HR and blood pressure

were determined noninvasively using a computerized tail-cuff

system (BP 2000 Visitech Systems, USA) described elsewhere [17].

Mice were acclimatized to the apparatus during daily sessions over

6 days, 1 week before starting the experimental period. HR

measurements were obtained serially in WT and KO mice once

a week throughout the 8 weeks of experiments. Noninvasive

cardiac function was assessed by two-dimensional guided M-mode

echocardiography, in halothane-anesthetized WT and HF mice

(Fig. 1). Briefly, mice were positioned in the supine position with

front paws wide open, and an ultrasound transmission gel was

applied to the precordium. Transthoracic echocardiography was

performed using a Sequoia 512 echocardiography machine

(Acuson, Mountain View, CA, USA) equipped with a 14-MHz

linear transducer and heart rate was kept similar in all groups

studied during the evaluation to avoid artifactual changes in

fractional shortening. Left ventricle systolic function was estimated

by fractional shortening as follows:

Fractional shortening (%) = [(LVEDD – LVESD)/LVEDD] 6
100, where LVEDD means left ventricular end-diastolic di-

mension, and LVESD means left ventricular end-systolic di-

mension.

For cardiac structural analysis, at the end of intervention period

(Fig. 1), the heart was stopped at diastole (KCl, 14 mM) and

dissected to obtain the left ventricle, which corresponds to the

remaining organ upon removal of both atria and free wall of the

right ventricle. For morphometric analysis, left ventricle samples

obtained from the free wall, at the level of papillary muscle, were

fixed in 4% buffered formalin and embedded in paraffin, cut in

4 mm sections and subsequently stained with hematoxylin and

eosin. Two randomly selected sections from each animal were

visualized by light microscopy using an objective with a calibrated

magnification (4006). Myocytes with visible nucleus and intact

cellular membranes were chosen for diameter determination. The

width of individually isolated cardiomyocyte displayed on a viewing

screen was manually traced, across the middle of the nuclei, with

a digitizing pad and determined by a computer assisted image

analysis system (Quantimet 520; Cambridge Instruments, UK).

For each animal approximately 15 visual fields were analyzed.

Quantification of left ventricular fibrosis was achieved by Sirius

red staining. Two randomly selected sections from each animal

were visualized by light microscopy using an objective with

a calibrated magnification of 2006. Interstitial collagen area was

quantified by a computer assisted image analysis system
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(Quantimet 520; Cambridge Instruments, UK). For each animal

approximately five visual fields were analyzed.

Cardiomyocyte isolation and Ca2+ recording. To verify

the cardiomyocyte Ca2+ transients, the other part of the animals

received an intraperitoneal injection of pentobarbital sodium

(100 mg/kg), and after full anesthesia the heart was rapidly

removed. Cardiac ventricular myocytes were isolated, and imaged

for [Ca2+]i as previously described [18]. The Ca2+ level measured

with confocal microscopy was reported as F/F0, where F0 is the

resting Ca2+ fluorescence. Images were obtained using the ZEISS

Meta confocal microscope from CEMEL (Biological Sciences

Institute, UFMG, Brazil).

Antibodies. Mouse monoclonal antibodies to SERCA2

(1:2,500), Phospholamban (PLN, 1:500) and Na+–Ca2+ exchanger

(NCX, 1:2,000) were obtained from Affinity BioReagents (Golden,

CO, USA); rabbit polyclonal antibody to protein phosphatase type

1 (PP1, 1:1,000) were obtained from Upstate (Lake Placid, NY,

USA); phospho-Ser16-PLN (1:5,000) and phospho-Thr17-PLN

(1:5,000) by Badrilla (Leeds, UK); Ryanodine antibody (RyR)

was obtained from ABR Incorporation, EUA (1:5,000); Glyceral-

dehyde-3-phosphate dehydrogenase (GAPDH, 1:2,000) was ob-

tained from Advanced Immunochemical (Long Beach, CA, USA).

Targeted bands were normalized to cardiac GAPDH.

Western blot analysis. Left ventricular homogenates were

analyzed by Western blotting to compare SERCA2, PLN,

phospho-Ser16-PLN, phospho-Thr17-PLN, NCX, PP1 and RyR.

Briefly, liquid nitrogen-frozen ventricles isolated from WT and HF

mice were homogenized in a buffer containing 50 mM potassium

phosphate buffer (pH 7.0), 0.3 M sucrose, 0.5 mM DTT, 1 mM

EDTA (pH 8.0), 0.3 mM PMSF, 10 mM NaF, and phosphatase

inhibitor cocktail (1:100, Sigma-Aldrich; Saint Louis, MO).

Samples were subjected to SDS-PAGE in polyacrylamide gels

(6% or 10% depending on protein molecular weight). After

electrophoresis, proteins were electrotransferred to nitrocellulose

membrane (Amersham Biosciences; Piscataway, NJ, USA). Equal

loading of samples (50 mg) and even transfer efficiency were

monitored with the use of 0.5% Ponceau S staining of the blot

membrane. The blotted membrane was then blocked (5% nonfat

dry milk, 10 mM Tris-HCl, pH 7.6, 150 mM NaCl, and 0.1%

Tween 20) for 2 h at room temperature and incubated with

specific antibodies overnight at 4uC. Binding of the primary

antibody was detected with the use of peroxidase-conjugated

secondary antibodies (rabbit or mouse depending on the protein,

1:10,000, for 1 h:30 min at room temperature) and developed

using enhanced chemiluminescence (Amersham Biosciences, USA)

detected by autoradiography. Quantification analysis of blots was

performed with the use of Scion Image software (Scion based on

NIH image).

Lipid hydroperoxides. Myocardial lipid hydroperoxide

measurement was evaluated as an index of cardiac oxidative

injury by the ferrous oxidation-xylenol orange technique (FOX2)

[19]. Heart samples were homogenized (1:20 w/v) in cold

phosphate-buffered saline (100 mM, pH 7.4) and immediately

centrifuged at 12,000 g for 20 min at 4uC.
Proteins were precipitated with trichloroacetic acid (10% w/v)

and supernatant was mixed with FOX reagent and incubated for

30 min. The absorbance of the sample was read at 560 nm.

Statistical Analysis
All variables showed normal distribution, when analyzed using

the Shapiro-Wilk normality test, and therefore, the parametric

statistical analysis was used. Data were expressed as mean 6

standard error. The variables (peak of Ca2+ transient, decay Ca2+

transient, fractional shortening, cardiomyocyte diameter, collagen

fraction and western blot analysis) were compared among groups

by one-way analysis of variance (ANOVA) or one way ANOVA

with repeated measures (exercise tolerance, heart rate, and blood

pressure). For mortality rate, log rank analysis was used (Gehan-

Breslow-Wilcoxon Test). In case of statistical significance, Tukey’s

post hoc test was adopted. For all analyses, we adopted the

significance level of P,0.05. The software used for statistical

analysis was Statistica version 7.0.

Results

Effects of Therapies in Heart Rate and Blood Pressure
KOS displayed baseline tachycardia when compared with age-

matched control mice even though resting blood pressure was

similar among all groups (P,0.05, Figures 2A and 2B). Blood

pressure remained unchanged while baseline HR was reduced in

WT group levels from the fourth week in both isolated and

combined carvedilol and aerobic exercise training therapies,

showing similar effectiveness of the therapies to reduce HR in

KO toward WT levels (P,0.05, Figures 2A and 2B).

Effects of Therapies on Survival, Exercise Tolerance, and
Cardiac Function
While KOS mice presented 40% mortality rate after eight

weeks of the study, aerobic exercise training, carvedilol treatment

or carvedilol associated with exercise training significantly reduced

HF mice mortality to 20%, 19% and 13%, respectively (P,0.05,

Figure 3A). Exercise tolerance was reduced in KOS after 8 weeks

Figure 1. Experimental design. WT, wild type mice (control group); KOS, heart failure placebo; KOT, heart failure exercise trained; KOC, heart
failure carvedilol-treated; and, KOCT, heart failure carvedilol-treated and exercise trained mice.
doi:10.1371/journal.pone.0062452.g001
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of the study (P,0.05, Figure 3B). Both isolated aerobic exercise

training and combined aerobic exercise training and carvedilol

increased exercise tolerance in KO mice (P,0.05, Figure 3B) and

exercise performance was comparable to that achieved for WT

trained mice (data not shown). As expected, fractional shortening

was reduced in KOS mice, and both carvedilol treatment and

carvedilol combined to aerobic exercise training increased

fractional shortening to WT mice levels (P,0.05, Figure 3C).

The result cannot be explained by differences within groups in

HR, because there were no significant differences between the HR

under anesthesia (474611.8, 47567.6, 471616.5, 465620,

467618.8 bpm for WT, KOS, KOT, KOC and KOCT,

respectively). Therefore, HR would not be expected to artifac-

tually change the fractional shortening.

Effects of Therapies in Cardiac Structure, Renal Mass and
Lung Water Content
As expected, KOS mice displayed increased left ventricular

mass (P,0.05, Table 1), cardiomyocyte cross sectional diameter

and ventricular collagen volume fraction (P,0.05, Figure 4)

compared with WT mice suggesting cardiac remodeling. All

isolated and combined therapies were equally efficient in reducing

left ventricular mass (P,0.05, Table 1) and cardiomyocyte cross

sectional area in KOS mice to levels comparable to WT mice

(P,0.05, Figure 4A). However, only carvedilol treatment and

carvedilol combined to aerobic exercise training reduced the left

ventricle collagen volume fraction to WT levels (P,0.05,

Figure 4B).

KOS mice displayed increased kidney mass compared with WT

mice (P,0.05, Table 1) with no significant changes in plasma

creatinine (data not shown). No differences were observed in lung

mass and wet:dry lung mass between KOS andWTmice (Table 1).

Figure 2. Heart rate (A) and blood pressure (B) during
interventions in control (WT), heart failure placebo (KOS),
heart failure exercise trained (KOT), heart failure carvedilol-
treated (KOC) and, heart failure carvedilol-treated and exer-
cise-trained (KOCT) mice. Note that all interventions decreased to
the same extent the baseline HR of KO mice, which became similar to
HR of WT group. Data are presented as mean 6 SE. The number of
animals studied is shown between parentheses (Panel A) or indicated
by numerals on the abscissa (Panel B). *P,0.05 vs. other groups
(groups indicated by lines).
doi:10.1371/journal.pone.0062452.g002

Figure 3. Survival (A), Exercise tolerance (B) and fractional
shortening (FS, C) in control (WT), heart failure placebo (KOS),
heart failure exercise trained (KOT), heart failure carvedilol-
treated (KOC) and, heart failure carvedilol-treated and exercise
trained (KOCT) mice. FS was evaluated after 8 weeks of intervention.
Note that all interventions reduced mortality rate. However, only
trained groups (KOT and KOCT) increased exercise tolerance. Data are
presented as mean 6 SE. The number of animals studied is shown
between parentheses (Panel A) or indicated by numerals on the
abscissa (Panels B and C). Panel A: *P,0.05 between KOS and WT, and
among KOS and other groups. Panel B and C: *P,0.05 among groups
indicated by lines.
doi:10.1371/journal.pone.0062452.g003
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Combined carvedilol and aerobic exercise training, but not

isolated therapies, significantly reduced kidney mass and wet:dry

lung mass ratio when compared to KOS group (P,0.05, Table 1).

Effects of Therapies in Cardiomyocyte Ca2+ Transients
and Expression of Cardiac Ca2+ Handling Proteins
Given the fact that Ca2+ handling is closely linked to cardiac

contractile function regulation, we further examined the Ca2+

transients in isolated cardiomyocytes from all groups studied.

Cardiomyocytes from KOS mice displayed reduced peak of

Ca2+ transient compared with WT mice(P,0.05, Figure 5A).

Aerobic exercise training increased peak of Ca2+ transient

compared with cardiomyocytes from KOS mice (P,0.05,

Figure 5A), which was not changed by isolated carvedilol

treatment (Figure 5A). Surprisingly, carvedilol associated with

aerobic exercise training had no impact on peak of Ca2+

transient (Figure 5A). Diastolic Ca2+ decay were not changed in

KOS group when compared to WT group (Figure 5B), but

increased by isolated carvedilol therapy (P,0.05, Figure 5B).

Interestingly, both isolated aerobic exercise training and

combined carvedilol and aerobic exercise training therapies

decreased Ca2+ decay compared with KOS group (P,0.05,

Figure 5B). To gain further insight into this response, we

investigated the expression of key cardiac Ca2+ handling

proteins. We observed that SERCA2 expression levels were

not changed in KOS when compared to WT mice (Figure 6A).

Interestingly, combined carvedilol and aerobic exercise training

therapies significantly increased SERCA2 expression and

SERCA2:PLN ratio compared with WT and KOS mice

(P,0.05, Figures 5A and 5B). Phospho-Ser16-PLN:PLN ratio

was increased by both aerobic exercise training or combined

carvedilol and aerobic exercise training therapies in KO mice

compared with WT and KOC, respectively (P,0.05, Figure 6C).

The PP1 expression, which is mainly involved in depho-

sphorylating PLN at Ser16 residue, was similar among groups

studied (Figure 6D). Phospho-Thr17-PLN:PLN ratio was signif-

icantly increased in KOS, KOT and KOCT compared with

WT mice (P,0.05, Figure 6E). The KOC group presented

similar phospho-Thr17-PLN:PLN levels to WT mice (Figure 6E).

No changes were observed in NCX, PLN and RyR protein

expression among the groups studied (Figures 6F and 6G).

GAPDH protein levels remained unchanged in all blots analyzed

and among the four groups studied (data not shown) and were

used to normalize the cardiac Ca2+ handling protein levels.

Effects of Therapies on Marker of Oxidative Stress
As expected, KOS mice displayed significantly increased

cardiac lipid peroxides compared with WT mice (P,0.05,

Figure 7). Carvedilol treatment or combined carvedilol and

aerobic exercise training therapies reduced lipid peroxidation

compared with KOS group (P,0.05, Figure 7), while isolated

aerobic exercise training therapy had no impact on cardiac lipid

peroxides compared with KOS group (Figure 7).

Discussion

Here, we report that combined carvedilol and aerobic exercise

training therapies integrate the distinctly different beneficial effects

of isolated therapies on exercise capacity, ventricular function and

remodeling associated with improved Ca2+ homeostasis and

reduced ventricular oxidative stress. The main findings of the

present study are that combined carvedilol and aerobic exercise

training therapies: a) reduce mortality toward WT mice group

level, b) improve exercise tolerance, c) re-establish left ventricle

contractility and leads to a ventricular reverse remodeling, d) alter

expression levels of proteins involved in Ca2+ handling and, e)

prevent ventricular lipid peroxidation.

In the present study, we observed that improved exercise

tolerance was restricted to exercised groups while re-established

ventricular contractility and anti-cardiac remodeling were mainly

observed in the groups receiving carvedilol. It is well-known that

increased exercise tolerance, improved ventricular function and

reduced cardiac remodeling are associated with improved survival

in cardiovascular disease [20–22].

Presently, both isolated aerobic exercise training and carvedilol

therapies improved survival, which might be related to their

specific effects on exercise tolerance (KOT group) and ventricular

function/remodeling, respectively. Therefore, our data suggest

that aerobic exercise training and b-blockers have a positive

impact on HF by different mechanisms and these findings

corroborate previous studies from our group [9,13–15] and others

[7,23,24]. Of great interest, here we demonstrated that the positive

effect of isolated therapies on survival, exercise tolerance and

cardiac contractility and remodeling are preserved and integrated

when aerobic exercise training is associated to carvedilol therapy.

Regarding the molecular mechanisms underlying the positive

effects of isolated therapies, we have previously provided

compelling evidence that aerobic exercise training improves

cardiac Ca2+ handling [13,14], which is directly associated with

cardiac contractility. In fact, we presently observed that aerobic

exercise training improves cardiac Ca2+ homeostasis by increasing

Table 1. Body mass, cardiac chambers mass, kidney mass, lung mass and wet: dry lung mass ratio of control (WT), heart failure
placebo (KOS), heart failure exercise trained (KOT), heart failure carvedilol-treated (KOC) and, heart failure carvedilol-treated and
exercise-trained (KOCT).

Body mass (g)
Right ventricle
mass (g) Left ventricle mass (g) Kidney mass (g) Lung mass (g)

Wet :dry lung
mass (g)

WT 2860.9 (10) 0.0360.01 (10) 0.0960.041 (10) 0.3060.01 (6) 0.2060.01 (9) 4.8560.53 (8)

KOS 2960.8 (7) 0.0360.00 (7) 0.1160.011*(7) 0.3760.01*(4) 0.2060.02(7) 6.1860.67 (7)

KOT 2961.3 (5) 0.0360.001 (4) 0.0960.001# (4) 0.3760.01* (4) 0.1760.01(5) 4.8960.11 (5)

KOC 2760.8 (8) 0.0360.01 (8) 0.0960.002# (8) 0.3260.02#` (4) 0.1960.01 (5) 4.8560.21 (5)

KOCT 2760.7 (12) 0.0360.001 (12) 0.0960.041# (12) 0.3260.01#` (12) 0.2660.02 (12) 4.7660.20 (11)#

*P,0.05 vs. WT;
#P,0.05 vs. KOS;
`P,0.05 vs. KOT. The number of animals studied is shown between parentheses.
doi:10.1371/journal.pone.0062452.t001
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the peak of Ca2+ transient, decreasing diastolic Ca2+ decay

associated with increased phosphorylation of PLN at Ser16 and

Thr17 in KO mice. Considering that phosphorylation of PLN at

either Ser16 or Thr17 removes the inhibitory effect of PLN on

SERCA2, it is reasonable to suggest that increased levels of

phosphorylated PLN induced by aerobic exercise training

contribute to the improved Ca2+ reuptake, as reported by faster

diastolic Ca2+ decay. Carvedilol treatment had no impact on Ca2+

transient dynamics, since it failed to increase Ca2+ peak and

prolonged Ca2+ decay, and significantly attenuated phospho-

Ser16-PLN and Ser17-PLN expression levels. We previously

demonstrated that despite no impact on Ca2+ transients, carvedilol

reduces phosphorylation of troponin I at Ser23/24-residues [9],

which ultimately leads to an increased sensitivity of contractile

myofilament to Ca2+ associated with the antioxidant properties of

carvedilol. In fact, carvedilol has a well-recognized antioxidant

activity [25–27], which led us to investigate whether it would

reduce myocardial oxidative stress in KO groups. Indeed, only

groups treated with carvedilol reduced ventricular oxidative stress.

The molecular effects of combined carvedilol and aerobic

exercise training therapies also rely on the integrative effects of

isolated therapies. Combined therapies increased SERCA2 and

phosphorylation of PLN expression at both Ser16 and Thr17

residues and reduced myocardial oxidative stress. Interestingly,

these responses reflected on faster Ca2+ decay time observed in

KOCT compared with KOS, KOT and KOC groups, which

suggests a synergistic action of combined therapies on ventricular

relaxation. Therefore, we provide compelling evidence that the

combination of carvedilol and aerobic exercise training may

represent better prognostic power in life long-treatment. It will be

important, however, to further explore whether life long-term

combination therapy leads to increased efficacy in reducing

mortality and if so, what is the potential role of the preferential

Figure 4. Cardiomyocytes cross-sectional area (A) and ventric-
ular collagen volume fraction (B) in control (WT), heart failure
placebo (KOS), heart failure exercise trained (KOT), heart
failure carvedilol-treated (KOC) and, heart failure carvedilol-
treated and exercise trained (KOCT) mice. Data are presented as
mean 6 SE. The number of animals studied is indicated by numerals on
the abscissa. *P,0.05 among groups indicated by lines.
doi:10.1371/journal.pone.0062452.g004

Figure 5. Intracellular Ca2+ transient in isolated ventricular
myocytes in control (WT), heart failure placebo (KOS), heart
failure exercise trained (KOT), heart failure carvedilol-treated
(KOC) and, heart failure carvedilol-treated and exercise trained
(KOCT) mice. A: Averaged data showing peak of Ca2+ transient B: Bar
graph shows a comparison of Ca2+ transient kinetics (time from peak to
90% decay) between the different groups of cells. Data are presented as
mean6 SE. The number of cells studied is indicated by numerals on the
abscissa. *P,0.05 for WT vs. indicated groups; (WT vs. all groups in
Panel A and WT vs. KOT, KOC and KOCT in Panel B); #P,0.05 for KOS vs.
KOT; +P,0.05 for KOS vs. KOT, KOC and KOCT; `P,0.05 for KOT vs. KOC
and KOCT; **P,0.05 for KOC vs. KOCT.
doi:10.1371/journal.pone.0062452.g005
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Figure 6. SERCA2 (A), SERCA2A:PLN (B), Phospho-Ser16-PLN:PLN (C), Phosphatase 1 (D), Phospho- Thr17-PLN:PLN (E), Na+– Ca2+

exchanger (NCX, F), Ryanodine receptor (RyR, G), Phospholamban (PLN, H). Data are presented as mean 6 SE. *P,0.05 among groups
indicated by lines.
doi:10.1371/journal.pone.0062452.g006
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Ca2+ transient improvement associated to aerobic exercise training

versus the greater ventricular anti-remodeling and antioxidant

effects mediated by carvedilol.

The relative contribution of aerobic exercise training and

carvedilol for improving cardiac function and survival is hampered

by known limitations in clinical studies including patients number,

etiology, co-morbidities and genetic makeup to name a few. In the

present study, we took advantage of a congenic genetic model of

sympathetic hyperactivity-induced HF to assess potential differ-

ences in cardiac structure and function when the animals were

treated with carvedilol or exercised at a moderate level to achieve

comparable HR exhibited by the WT group for two months.

Therefore, the isolated effect of each therapy could be considered

equally efficient in reducing HR, an important marker of both

aerobic exercise training and b-blocker therapy efficacy.

Conclusion
Taken together, we provided evidence that combined therapies

with carvedilol and aerobic exercise training integrate the

beneficial effects of isolated ones on survival, exercise tolerance

and cardiac contractility and structure. The molecular mechan-

isms underlying the beneficial effects of combined therapies rely on

the improved cardiac Ca2+ homeostasis mainly related to

moderate aerobic exercise training effect and reduced myocardial

oxidative stress and reverse ventricular remodeling associated with

carvedilol therapy.
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