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A B S T R A C T

Thrombospondin-1 (TSP-1) gives rise to fragments that have both pro- and anti-angiogenic effects in

vitro and in vivo. The TSP-HepI peptide (2.3 kDa), located in the N-terminal domain of TSP-1, has

proangiogenic effects on endothelial cells. We have previously shown that TSP-1 itself exhibits a dual

effect on endothelial colony-forming cells (ECFC) by enhancing their adhesion through its TSP-HepI

fragment while reducing their proliferation and differentiation into vascular tubes (tubulogenesis) in

vitro. This effect is likely mediated through CD47 binding to the TSP-1 C-terminal domain. Here we

investigated the effect of TSP-HepI peptide on the angiogenic properties of ECFC in vitro and in vivo. TSP-

HepI peptide potentiated FGF-2-induced neovascularisation by enhancing ECFC chemotaxis and

tubulogenesis in a Matrigel plug assay. ECFC exposure to 20 mg/mL of TSP-HepI peptide for 18 h

enhanced cell migration (p < 0.001 versus VEGF exposure), upregulated alpha 6-integrin expression, and

enhanced their cell adhesion to activated endothelium under physiological shear stress conditions at

levels comparable to those of SDF-1a. The adhesion enhancement appeared to be mediated by the

heparan sulfate proteoglycan (HSPG) syndecan-4, as ECFC adhesion was significantly reduced by a

syndecan-4-neutralising antibody. ECFC migration and tubulogenesis were stimulated neither by a TSP-

HepI peptide with a modified heparin-binding site (S/TSP-HepI) nor when the glycosaminoglycans

(GAGs) moieties were removed from the ECFC surface by enzymatic treatment. Ex vivo TSP-HepI priming

could potentially serve to enhance the effectiveness of therapeutic neovascularisation with ECFC.
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1. Introduction

Angiogenesis triggered by vascular injury or tissue ischemia is a
multistep process involving the mobilisation, migration, prolifera-
tion, adhesion and differentiation of endothelial cells and the
release of cytokines, soluble growth factors, proteases, and
extracellular matrix proteins [1,2]. Endothelial progenitor cells
(EPC) from bone marrow migrate to ischemic tissues and
participate in neovascularisation [3], representing a potential tool
for autologous cell therapy of vascular diseases such as heart and
leg ischemia [4]. EPC targeting to sites of neovascularisation
involves their migration, adhesion, and differentiation into mature
endothelial cells [5,6]. Various cell populations play a role in
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angiogenesis [7,8], but only one subset, endothelial colony-
forming cells (ECFC), has been shown to possess all of the
characteristics of a true endothelial progenitor capable of forming
neovessels in vivo [9].

Thrombospondin-1 (TSP-1) is a homotrimeric 180-kDa cell
matrix protein first identified as a natural inhibitor of angiogenesis.
The anti-angiogenic activity of TSP-1 is mainly exerted through the
binding of type I repeats (TSR) to the CD36 receptor on
microvascular cells and also by its pro-collagen homology domain
[10,11]. The C-terminal domain of TSP-1, which contains the
integrin-associated protein/CD47-binding sites, may also play a
role [12]. However, there is growing evidence that TSP-1 also
possesses pro-angiogenic properties both in vitro and in vivo. In
particular, TSP-1 expression is enhanced at the sites of vascular
injury [13]. In addition, we have previously reported that TSP-1 is
expressed in newly formed vessels in patients with peripheral
arterial disease who received local injections of bone marrow
mononuclear cells, suggesting a possible modulation of tissue
ischemia by TSP-1 [14]. We also found that TSP-1 had a dual effect
on ECFC: its N-terminal domain enhanced ECFC adhesion, while
the whole protein reduced ECFC proliferation and differentiation
into vascular tubes in vitro. These last effects were most likely
mediated by CD47 binding to the TSP-1 C-terminal domain [14].

We and others have independently attributed the pro-
angiogenic activities of TSP-1 to its N-terminal heparin-binding
domain or HBD [15–20] through its binding to several receptors
including calreticulin/LDL-related receptor [15], integrins a3b1

[16], a4b1 [17], and a6b1 [18] and, as reported by our group, the
cell-surface heparan sulfate proteoglycan (HSPG) syndecan-4 [19].
We characterised two specific motifs within the HBD of TSP-1,
namely TSP-HepI/A1 (spanning residues 17–35) and TSP-HepII/A2
(spanning residues 78–94), that can interact with mature human
umbilical cord endothelial cells (HUVEC) and induce their
differentiation into vascular tube-like structures when immobi-
lised in fibrin matrices [20] or Matrigel [19]. These pro-angiogenic
peptides both exhibit high affinity for glycosaminoglycans (GAG)
and interact with syndecan-4 [19].

In vitro studies have shown that the HBD is readily released
from TSP-1 and can be detected in platelet aggregation super-
natants [21,22] as well as in endothelial cell-conditioned medium
[22,23]. Thrombin, plasmin, cathepsins and matrix metalloprotei-
nases, specifically ADAMTS1, cleave TSP-1 and release its HBD in

vitro [21,23,24]. A 25-kDa fragment of the HBD has also been
shown to induce angiogenesis in vivo (rabbit cornea model) by
enhancing the effect of FGF-2 [25].

In keeping with our finding that recombinant human TSP-1 acts
as an adhesion molecule for ECFC and reduces ECFC proliferation
and differentiation into vascular tubes, we subsequently showed
that under the same experimental conditions, TSP-HepI peptide,
mimicking part of the TSP-1 N-terminal domain, strongly
increased ECFC adhesion similarly to TSP-1, but without affecting
cell proliferation [14]. The aim of the present study was to
investigate the effects of TSP-HepI peptide on the angiogenic
properties of ECFC in vitro and in vivo.

2. Material and methods

2.1. Animals

Animal care conformed to French guidelines (Services Vétér-
inaires de la Santé et de la Production Animale, Ministère de
l’Agriculture, Paris, France), and all experiments were performed in
accordance with the guidelines set by the Université Paris
Descartes and the Institutional Committee on Animal Care and
Use (C75.06.02).
2.2. Reagents

Recombinant human TSP-1 was purchased from R&D Systems
Europe (Lille, France, 3074-TH-050). The peptides TSP-HepI and S/
TSP Hep I, derived from the N-terminus of TSP-1 and modified at
amino acid positions essential for GAG binding, were synthesised
at the Department of Biophysics at UNIFESP (Federal University of
São Paulo, Escola Paulista de Medicina, Brazil) using an automated
bench-top simultaneous multiple solid-phase peptide synthesiser
(PSSM 8 System; Shimadzu, Tokyo, Japan), followed by HPLC
purification. The molecular weight was determined by MALDI-TOF
mass spectroscopy, and the sequences were verified with a PPSQ-
23 (Shimadzu) sequencer. Matrigel was purchased from Becton-
Dickinson Biosciences (BD; Le Pont de Claix, France). Basic
fibroblast growth factor (FGF-2), vascular endothelial growth
factor (VEGF), and stromal cell-derived factor-1 alpha (SDF-1a)
were purchased from R&D Systems Europe (Lille, France).
Heparinase II (Heparin lyase; EC4.2.2.7), heparinase III (HS lyase;
EC4.2.2.8), and chondroitinases ABC (chondroitinases ABC lyase;
EC4.2.2.4) were purchased from Sigma–Aldrich (Lyon-Saint
Exupéry, France). R-PE-conjugated monoclonal antibody directed
against a6-integrin (CD49f, clone G0H3), R-PE-conjugated mouse
anti-human IgG2a, secondary R-PE-conjugated anti-mouse and R-
PE conjugated mouse anti-human IgM were purchased from BD
Biosciences (Le Pont de Claix, France). Monoclonal antibody
directed against human heparan sulfate (clone F-58-10E4) was
purchased from AMS Biotechnology (Abingdon, UK). R-PE-conju-
gated monoclonal antibody directed against the ectodomain of
human syndecan-4 (SDN4, clone 5G9) and mouse anti-human
IgG2a were purchased from Santa Cruz Biotechnology (Tebu-Bio, Le
Perray en Yvelines, France).

2.3. Cell isolation, culture and pretreatment

Umbilical cord blood was collected with the mothers’ consent
(n = 20). The study was approved by the ethics committee of
Hôpital des Instructions et des Armées de Begin
(France) (201008043234797), and the protocol conformed to the
ethical guidelines of the Declaration of Helsinki. ECFC were isolated
from human umbilical cord blood, expanded and characterised as
previously described [26]. HUVEC were isolated by enzymatic
digestion as previously described [27]. Endothelial cells were
defined as being positive for both DiI-AcLDL uptake (Invitrogen,
Molecular Probes, Saint Aubin, France) and BS-1 lectin binding
(Sigma–Aldrich, Saint-Quentin Fallavier, France). Expression of the
following cell-surface antigens of the endothelial lineage was
assessed by FACS analysis (FACSCalibur, Becton Dickinson, BD
Biosciences, Le Pont de Claix, France): CD31 and CD34 (Immuno-
tech, Marseille, France), Tie-2 and Flt-1 (BD Biosciences, Le Pont de
Claix, France), CD144 (Tebu-Bio, Le Perray en Yvelines, France) and
KDR (Sigma–Aldrich, Saint-Quentin Fallavier, France). One day
before experiments, cells were growth-arrested for 18 h in EBM-2
with 2% FCS and released from growth arrest by adding EBM-2 with
5% FCS, with or without 20 mg/mL of TSP-HepI, for 18–20 h at
37 8C. They were then washed, detached with accutase (Sigma–
Aldrich, Saint-Quentin Fallavier, France) and washed twice with
Hank’s buffered salt solution with 0.5% BSA before use in
angiogenesis assays in vitro. All assays were performed in triplicate
with cells cultured for less than 30 days.

2.4. Migration assay

A directional migration (chemotaxis) assay was carried out in
modified Boyden chambers as previously described [26]. The
choice of an optimal dose, 20 mg/mL (10 mM), was based on
preliminary assays performed with HUVEC and ECFC. All
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conditions used in a given experiment were tested in triplicate. A
migration index was calculated as the ratio of the number of cells
that migrated in the test conditions, as compared to the control
(M199 supplemented with 2% BSA).

2.5. Shear-flow adhesion assays

Flow adhesion experiments were conducted with a parallel-
plate flow chamber in physiological shear stress conditions as
previously described [28]. HUVEC monolayers (3 � 105) were
seeded on cover slips, maintained at 37 8C for 4 days, placed in the
flow chamber, and then stimulated by exposure to a shear rate of
50 s�1 for 30 min. To distinguish between adherent pre-treated
ECFC and detached endothelial cells (HUVEC), the ECFC were
stained with calcein (Interchim, FluoroProbes, Montluçon, France).
The calcein-labelled ECFC (3 � 106) in adhesion buffer (cation-free
HBSS, 10 mmol/L HEPES, 1 mmol/L CaCl2, 1 mmol/L MgCl2, 2 mg/
mL BSA, pH 7.4) were perfused over HUVEC monolayers for 15 min
at 37 8C at a shear rate of 50 s�1, and the coverslips were washed
with adhesion buffer for 10 min. Adherent cells were examined by
phase-contrast microscopy. All experiments were observed in real-
time and videotaped for offline analysis. Fluorescence micrographs
of 40 random microscopic fields (10 � objective) were collected
with Replay software (Microvision Instruments, France). Data were
expressed as the number of adherent cells per field. The results
from three different experiments were pooled for each study.
Adherent ECFC were tested for resistance to detachment from the
model endothelium by increasing the flow rate from 50 to 5000 s�1

for over one minute and counting the number of remaining
adherent cells at one-minute intervals.

2.6. FACS analysis

Cell-surface antigen expression on TSP-HepI-treated and
untreated ECFC was analysed after immunofluorescent labelling
in an FACS-SORT flow cytometer (BD Biosciences). Labelling with
mouse anti-human heparan sulphate antibody (1 mg/mL) was
visualised with a PE-conjugated anti-mouse antibody. A PE-
conjugated anti-a6 antibody was used to visualise human a6-
integrin. In each immunofluorescence experiment, an isotype-
matched IgG antibody was used as a control, and the fluorescence
intensity of stained cells was gated according to established
methods. Data were analysed with CellQuestTM software (BD
Biosciences).

2.7. In vitro tube formation assay

Basement-membrane gels used for three-dimensional assays
were prepared by Matrigel polymerisation (8 mg/mL) for 30 min at
37 8C. When required, 10 mg/mL of TSP-HepI were included in the
gels before polymerisation. ECFC (105 cells/cm2) diluted in EBM-2
containing 2% FCS were seeded and allowed to form pseudotubes
for 6 h at 37 8C with 5% CO2. The cells were then fixed with 1.1%
glutaraldehyde for 15 min and stained with Giemsa. The total
length of the tube structures was quantified with Videomet
software (Microvision Instruments, France). The results are
reported as the average of three different experiments in each
condition. When appropriate, the ECFC were pretreated for 2 h at
37 8C with a mixture of 0.5 U/mL heparinase I, 0.1 U/mL heparinase
III and 0.2 U/mL chondroitinases ABC before the inclusion of TSP-
HepI in the Matrigel.

2.8. Murine angiogenesis assay

Ice-cold Matrigel (8 mg/mL) mixed with PBS and FGF-2 (350 ng/
mL), alone or supplemented with TSP-HepI peptide (200 mg/mL),
was prepared and maintained in liquid form at 4 8C. The solution
was injected subcutaneously in C57Bl/6 mice (8 weeks old, from
Janvier, France), and the Matrigel plug was recovered 14 days later.
Haemoglobin content was measured as previously described [29].
Functional vessels were identified as vessels containing red blood
cells by light microscopy.

2.9. Statistical analysis

Significant differences between mean values were identified by
ANOVA with the Tukey post-test for multiple comparisons. The
results are expressed as the mean � SEM of at least three
experiments. P-values less than 0.05 were considered significant.

3. Results

The ECFC were isolated from human umbilical cord blood on the
basis of CD34 expression. The presence of Weibel–Palade bodies
and the combined expression of endothelial markers (CD31, Tie-2,
KDR, Flt-1, CD144) unequivocally confirmed the endothelial
phenotype of the isolated ECFC (data not shown). Furthermore,
the ECFC did not express leuko-monocytic markers such as CD14
and CD45 [14].

3.1. TSP-HepI peptide enhances FGF-2-induced neoangiogenesis in
vivo

To evaluate the proangiogenic potential of TSP-HepI in vivo, we
used a mouse model of implanted Matrigel plugs. In this model,
host endothelial cells and ECFC, attracted by growth factors such as
FGF-2 and/or peptides included in the gel, migrate into the
implanted plugs and form a capillary network within two weeks
[30]. Matrigel (0.5 mL) containing PBS (control), TSP-HepI alone
(200 mg/mL), FGF-2 (350 ng/mL) alone, or a mixture of TSP-HepI
and FGF-2 was injected into the flank of C57BL/6 mice. As shown in
Fig. 1A and B, plugs from the PBS control group and plugs
containing TSP-HepI alone were mostly translucent and pale in
colour, indicating little or no vessel formation after two weeks. In
contrast, plugs containing FGF-2 alone were redder (Fig. 1C),
indicating new vessel formation. Surprisingly, plugs treated
concurrently with FGF-2 and TSP-HepI had an intense red colour,
indicating the presence of abundant new capillary vasculature
formation (Fig. 1D). An analysis of haemoglobin content confirmed
that TSP-HepI and FGF-2 together enhanced neoangiogenesis
compared to TSP-HepI alone (p < 0.001, Fig. 1E). Thus, TSP-HepI
peptide appeared to enhance the FGF-2-induced recruitment of
circulating cells, suggesting a synergistic effect on angiogenesis in

vivo.

3.2. TSP-HepI and HSPG promote ECFC chemotaxis and tubulogenesis

Having previously shown that TSP-1 is present at sites of
neovascularisation [14] and that TSP-HepI potentiates FGF-2-
induced neoangiogenesis, we hypothesized that the local release of
TSP-1 N-terminal domain fragments by protease cleavage might
participate in the recruitment of circulating progenitor cells and in
their differentiation into mature endothelial cells at neovascular-
isation sites. Therefore, we first examined whether the TSP-HepI
peptide promoted ECFC chemotaxis by a standard migration assay.
We found that the TSP-HepI peptide (20 mg/mL) significantly
enhanced ECFC migration (Fig. 2) to a similar extent as the
proangiogenic chemotactic factor FGF-2. Under the same experi-
mental conditions, we showed that the S/TSP-HepI peptide, which
was modified in the GAG-binding consensus motif, does not have
any effect (Fig. 2). We then evaluated the effect of TSP-HepI on
ECFC tubulogenesis in vitro. While capillary-like tube formation



Fig. 1. TSP-HepI enhances FGF-2-induced angiogenesis in vivo, in a mouse model of Matrigel plug assay. (A–D): Representative photographs of plugs excised on day 14

containing (A) PBS, (B) TSP-HepI alone (200 mg/mL), (C) FGF-2 (350 ng/mL) alone or (D) FGF-2 (350 ng/mL) + TSP-HepI (200 mg/mL). (E) Haemoglobin quantification: values

represent mean � SEM of the haemoglobin content in Matrigel plugs excised from C57Bl/6 mice (n = 10 per experimental group); ** p < 0.01 and *** p < 0.001 versus PBS; #

p < 0.05, ### p < 0.001 versus TSP-HepI and £ p <0.05 versus FGF-2.
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was enhanced when 10 mg/mL of TSP-HepI was added to the
Matrigel prior to polymerisation, TSP-1 significantly inhibited
capillary-like tube formation under the same conditions (Fig. 3A).
Because we had previously shown that the effect of TSP-HepI on
HUVEC tubulogenesis involved HSPG syndecan-4 binding [19], we
then examined whether the proangiogenic effects of TSP-HepI on
ECFC involved GAG binding. The ECFC were incubated for 2 h at
37 8C with enzymes that selectively removed heparan and
chondroitin sulfates (Fig. 3B), and then they were seeded on the
Matrigel containing TSP-HepI peptide (Fig. 3C). As shown in Fig. 3A
and 3C, ECFC treatment with enzymes that specifically removed
heparan sulfate reduced tube formation in the Matrigel by 45%
(p < 0.001). Similarly, ECFC treatment with the same enzymes
reduced tubulogenesis in TSP-HepI-containing Matrigel by 72%
(p < 0.001). Our S/TSP-HepI peptide reduced pseudotube forma-
tion by 30% (p < 0.01) under the same experimental conditions, as
compared to TSP-HepI (Fig. 3A). Thus, the interaction of TSP-HepI
peptide with HSPG seems essential for the promotion of ECFC
migration and tubulogenesis, likely through the activation of
specific HSPG-dependent signalling pathways.
Fig. 2. TSP-HepI stimulates ECFC chemotaxis. Migration assays were performed

using chemotaxis chambers, towards M199/2% BSA (control medium), FGF-2

(10 ng/mL, positive control), TSP-HepI (20 mg/mL) or S/TSP-HepI peptide (20 mg/

mL) in the lower chamber. ECFC (7 � 104) were seeded in the upper chamber and

incubated for 6 h at 37 8C. Data are expressed as a percentage of the control group

value. Values are a mean � SEM of six determinations. ** p < 0.01 and *** p < 0.001

versus control, £££ p < 0.001 versus FGF-2 and ### p < 0.001 versus TSP-HepI.
3.3. TSP-HepI peptide preconditioning promotes ECFC adhesion to

activated HUVEC monolayers under physiological shear stress

conditions

We then investigated whether TSP-HepI had a direct effect on
ECFC adhesion to endothelium, which is one of the key steps of
endothelial progenitor recruitment to ischemic sites. Prior to
adhesion, the ECFC were incubated overnight in EBM-2 with 2%
FCS and then stimulated for 18 h with various concentrations of TSP-
HepI in medium supplemented with 5% FCS. We used a flow-based
adhesion assay using HUVEC monolayers to investigate the binding
of TSP-HepI-stimulated ECFC to activated endothelium. The
experimental conditions mimicked the shear forces encountered
by ECFC adhesion to vascular endothelial cells in vivo. In pilot
experiments, we found that TSP-HepI at 20 mg/mL resulted in the
greatest adhesion to activated endothelium, under shear stress
conditions (Fig. 4A). Compared to control cells, ECFC pretreated with
TSP-HepI adhered more rapidly to HUVEC (Fig. 4B), while TSP-1
pretreatment did not affect ECFC adhesion. As shown in Fig. 4C, TSP-
HepI treatment increased the percentage of adhered ECFC (265%
treated versus 100% control after 10 min; p < 0.001), a result similar
to what was observed with SDF-1 pretreatment. Only 110% of TSP-1-
treated ECFC adhered under the same conditions (p < 0.01; 100% of
control) (Fig. 4C). Additionally, TSP-HepI-stimulated ECFC adhered
more strongly and were more resistant to washing than control
untreated cells at shear rates of up to 2000 s�1 (Fig. 4D).

3.4. Syndecan-4 is involved in TSP-HepI-stimulated ECFC adhesion to

HUVEC monolayers

To assess the possible role of syndecan-4 (SDN4) in the effects of
TSP-HepI under dynamic flow conditions, we first used FACS
analysis to examine SDN4 surface expression on ECFC. As shown in
Fig. 5A (right panel), ECFC expressed similar SDN4 levels as HUVEC
(Fig. 5A, left panel). We then pre-incubated ECFC with anti-SDN4 or
control antibody prior to TSP-HepI stimulation and adhesion assay.
The ECFC stimulated with TSP-HepI adhered similarly to the
previous experiment (Fig. 5B and C), and anti-SDN4 preincubation
reduced their adhesion by 84% (p < 0.001, Fig. 5C). The control
antibody had no significant effect on ECFC adhesion after TSP-HepI
stimulation (Fig. 5B and C).



Fig. 3. TSP-HepI-HSPG interaction mediates vascular tube formation by ECFC. ECFC treated with a cocktail of heparinases and chondroitinases (GAG�) or untreated (GAG+)

were seeded (1 � 105 cells/cm2) in Matrigel containing 10 mg/mL of TSP-HepI. In addition, ECFC (1 � 105 cells/cm2) untreated (GAG+) were seeded in Matrigel mixed with

TSP-1 (10 mg/mL) or S/TSP-HepI peptide (10 mg/mL). (A) Quantification of tubular structures in Matrigel. Data are expressed as a percentage of the TSP-HepI group value.

Values are a mean � SEM of three determinations. *** p < 0.001 versus control, ### p < 0.001 versus TSP-HepI. (B) Flow cytometry analysis of heparan sulfate expression on (GAG+)

and (GAG�) ECFC surface. (C) Morphological aspect of Matrigel assays after 6 h, for untreated (GAG+) and treated (GAG�) ECFC, in the presence or absence of TSP-HepI.
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3.5. TSP-HepI preconditioning enhances ECFC expression of the

a6-integrin subunit.

We previously reported that increased vascular tube formation
by HUVEC is associated with a6-integrin subunit overexpression
[26]. Furthermore, we demonstrated that a6-integrin plays a
major role in the proangiogenic properties of ECFC [31]. Therefore,
we suspected that a6 subunit modulation might also occur after
ECFC stimulation with TSP-HepI. We used flow cytometry to
measure a6-subunit surface expression on ECFC before and after
18 h of TSP-HepI stimulation (Fig. 6). Expression of the a6-subunit
measured by fluorescence intensity was 1.5-fold higher on the TSP-
HepI-stimulated ECFC than on the control ECFC (p < 0.001),
suggesting that TSP-HepI might also enhance the proangiogenic
properties of ECFC by modulating a6-subunit expression. FGF-2
treatment, also used in this analysis as a positive control for a6-
integrin upregulation [26], led to a near three-fold increase of a6
integrin expression on ECFC surface.

3.6. TSP-HepI preconditioning enhances ECFC motility

Finally, we examined the effect of TSP-HepI pretreatment for 18 h
on ECFC motility. As shown in Fig. 7, TSP-HepI-treated ECFC migrated
more rapidly than untreated ECFC and approximately twice as fast as
VEGF-pretreated ECFC (p < 0.001). To determine the role of GAG in
this effect, we used the S/TSP-HepI peptide devoid of the GAG-
binding consensus motif. Indeed, the S/TSP-HepI-stimulated
ECFC had a reduced migratory capacity compared to the TSP-
HepI-stimulated ECFC (p < 0.001). Thus, TSP-HepI binding to GAGs
may contribute to the observed enhancement of ECFC angiogenic
potential.

4. Discussion

The N-terminal domain of TSP-1 has a proangiogenic effect on
mature endothelial cells, whereas the C-terminal region and the
intact protein have antiangiogenic effects [10,12,13]. We have
previously reported that TSP-HepI, a 2.3-kDa synthetic peptide
derived from the N-terminal domain (HBD) of TSP-1, markedly
enhances ECFC adhesion to a similar extent as intact TSP-1, but the
peptide has no effect on ECFC proliferation [14]. Here, we
demonstrate that TSP-HepI also modulates the angiogenic
properties of ECFC. Additionally, the data presented here demon-
strate that TSP-HepI potentiates FGF-2-induced neovascularisation
in an in vivo Matrigel plug model, suggesting that the synergy
between the pro-angiogenic factor FGF-2 and TSP-HepI would lead
to better vascularisation.

Several groups have reported that Matrigel plug model support
a vascular response when supplemented with significant doses of
growth factors [32–34] and/or heparin [35,36]. The in vivo pro-
angiogenic activity of the N-terminal domain of TSP-1 was
evaluated by only four groups so far [16,17,25,37] Among these,
Staniszewska et al. demonstrated that a fragment of N-terminal
domain, NOC1 (1-356), could stimulate in vivo formation of new



Fig. 4. TSP-HepI-pretreated ECFC showed enhanced adhesion to activated endothelium, at a shear rate of 50 s�1. Before flow perfusion, ECFC were incubated for 18–20 h

(overnight) with EBM-2/5% FCS (control medium), TSP-HepI peptide (20 mg/mL) or TSP-1 (10 mg/mL). SDF-1 stimulation (100 ng/mL) for 30 min was used as a positive

control. (A) Dose-response analysis of ECFC adhesion to activated HUVEC: calcein-labelled ECFC suspensions (3 � 106 cells) were pretreated overnight with varying

concentrations (10, 20 and 40 mg/mL) of TSP-HepI peptide and then perfused over confluent HUVEC monolayers for 15 min. Adhering ECFC were quantified as described in

Section 2. (B) Time-course of ECFC adhesion to activated HUVEC, following overnight pretreatment of ECFC with TSP-HepI peptide (20 mg/mL). (C) ECFC adhesion to HUVEC

monolayers, after ECFC overnight pretreatement with TSP-HepI peptide (20 mg/mL), as compared with SDF-1 and TSP-1. (D) Analysis of the ECFC resistance to detachment

after overnight pretreatment with TSP-HepI peptide (20 mg/mL), as compared with SDF-1 and TSP-1, under increasing shear stress rates (from 50 to 5000 s�1). (E):

Fluorescent micrographs calcein-labelled ECFC (black arrows) over a HUVEC monolayer (gray). The scale bar represents 30 mm in the photomicrographs. Control (*), SDF-1

(&), TSP-1 (^) and TSP-HepI (~). Data are expressed as a percentage of the control group value. Values are a mean � SEM of four determinations. * p < 0.05 versus control;

*** p < 0.001 versus control; £££ p < 0.001 versus SDF-1, ### p < 0.001 versus TSP-1.
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vessels in the absence of growth factors, but in the presence of
heparin [37]. In our experimental conditions, we choose FGF-2 as a
positive control for angiogenesis promotion and tested it in vivo at
the concentration of 350 ng/mL, based on dose-response curves
obtained in pilot experiments (unpublished results). TSP-HepI
peptide was used at 200 mg/mL (corresponding to 100 mM), based
on several in vivo studies using synthetic peptides at concentra-
tions 10-times higher than those used in vitro assays [38,39].
Despite keeping these guidelines, we could not see any positive
effect of TSP-HepI peptide when tested alone.

A number of factors can be considered as possible contributors
to the observed in vivo outcome. Firstly, based on the ratio between
the in vitro FGF-2 concentration (10 ng/mL) versus the in vivo one
(350 ng/mL), we should have tested a dose 35-fold higher for the
TSP-HepI peptide – about 700 mg/mL – which was inconceivable.
Thus, the concentration of TSP-HepI peptide used in vivo was most
probably too low to allow the detection of the potent direct
stimulatory effects observed with endothelial cells in vitro.
Nevertheless, we cannot rule out other aspects expected to affect
TSP-HepI availability to cells, such as the rate of peptide turnover/
clearance from Matrigel plugs after 14 days of assay.

However, the concentration of TSP-HepI peptide used in our work
clearly boosted FGF-2 angiogenic response in vivo, and this observation
is largely in accordance with the available literature. Taraboletti et al.



Fig. 5. A monoclonal antibody directed against the ectodomain of syndecan-4 (SDN4) inhibits TSP-HepI stimulation of ECFC adhesion to activated endothelium. ECFC were

incubated with either an anti-SDN4 monoclonal antibody or a non-immune IgG2a isotype control (both at 1 mg/mL) and then overnight exposed to TSP-HepI (20 mg/mL),

before being perfused over HUVEC monolayers at 50 s�1, as described in Section 2. (A): Flow cytometric analysis of SDN4 expression by ECFC and HUVEC. (B) Time-course of

ECFC adhesion: control (*), TSP-HepI (~), TSP-HepI + anti-SDN4 (*) and TSP-HepI + IgG2a (5). (C) Total number of ECFC adhering to activated HUVEC. Data are expressed

as a percentage of the control group value, which was considered as 100%. Values are a mean � SEM of four determinations. *** p < 0.001 versus control; ### p < 0.001 versus

TSP-HepI.
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reported that the 140-kDa carboxy-terminal fragment of TSP-1 – but
not 25-kDa N-terminal heparin-binding fragment – fully retained a
FGF-2 binding capacity, and that this interaction led to inhibition of
proliferation and chemotaxis induced by FGF-2 in mature endothelial
cells [40]. Accordingly, the 140 kDa C-terminal portion bear the anti-
angiogenic motifs of TSP-1 [41–43]. Another study by Taraboletti and
colleagues [25] showed that the 25 kDa N-terminal domain indeed
potentiated in vivo FGF-2-induced angiogenesis. In this study, the
Fig. 6. TSP-HepI pretreatment of ECFC induces a6-integrin subunit expression. ECFC

were incubated overnight with EBM-2/5% FCS (control medium), FGF-2 (5 ng/mL,

positive control) or TSP-HepI peptide (20 mg/mL) and then quantified by flow

cytometry for analysis of surface expression of the a6-integrin chain. Data are

expressed as a percentage of the mean fluorescence intensity in each condition, as

compared with the control condition, considered as 100% (mean � SEM of four

experiments). *** p < 0.001 versus control; £££ p < 0.001 versus FGF-2; ### p < 0.001

versus TSP-HepI.
25 kDa fragment was effective alone, but it should be noted that it is 10
times larger than our peptide (2.3 kDa).

In addition to being able to bind FGF-2 through HS chains and to
present it to FGF tyrosine kinase receptors, syndecan-4 directly
initiates a number of intracellular signaling events. From our
Fig. 7. TSP-HepI pretreatment of ECFC enhances cell migration. Before the migration

assay, ECFC were incubated overnight with EBM-2/5% FCS (control medium), TSP-

HepI peptide (20 mg/mL), S/TSP-HepI peptide (20 mg/mL) or VEGF (10 ng/mL –

positive control). Migration was assayed in a chemotaxis chamber, as described in

Section 2. ECFC (7 � 104) were seeded in the upper chamber and incubated for 6 h at

37 8C. Data are expressed as a percentage of the VEGF condition value. Values are a

mean � SEM of three determinations. *** p < 0.001 significantly different from

control; £££ p < 0.001 versus VEGF, ### p < 0.001 versus TSP-HepI.
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experience, it has been clearly established that syndecan-4 is a
major receptor for the pro-angiogenic motifs within the N-
terminal domain of TSP-1, in both mature and progenitor
endothelial cells [19,20 and the present work]. The engagement
of syndecan-4 by TSP-HepI peptide directly activates PKC and Akt
signalling pathways [19], both of them essential for angiogenic
morphogenesis [44–46].

It has been proposed that syndecan-4 also increases FGF-2
internalization and targeting to the nucleus, where additional
and powerful stimulatory gene regulation will further activate
cell proliferation and migration [47–49]. A strong piece of
evidence in support of such a mechanism was provided by a
recent paper by Jang et al., who showed that syndecan-4-
enriched lypossomes improved the revascularization of ischemic
hind limbs, by enhancing FGF-2 signaling and targeting to the
nucleus, when this angiogenic factor was administered to lesions
as a therapeutic agent [50]. Thus, we hypothesize that a
synergistic action could be also triggered by the simultaneous
engagement of tyrosine-receptors and syndecan-4 by FGF-2 and
TSP-HepI, respectively, leading to a more vigorous downstream
pro-migratory and proliferative response of endothelial cells.
This suggests that TSP-HepI peptide, even in sub-optimal
concentrations – which would preclude potent direct effects
on endothelial cells in vivo – could be an useful tool to intensify
FGF-2 pro-angiogenic activity.

TSP-HepI modulated the main angiogenic properties of ECFC in

vitro. The peptide stimulated ECFC chemotaxis with a similar
potency to FGF2, an effective stimulator of cell motility. In addition,
it enhanced ECFC differentiation into vascular tubes when
incorporated into Matrigel, whereas TSP-1 had no such effect.
Furthermore, TSP-HepI-pretreated ECFC adhered tightly to acti-
vated endothelium (HUVEC monolayers) under dynamic condi-
tions and were resistant to high shear rates, while their adhesion
was reduced by pretreatment with the whole TSP-1 molecule.
Importantly, the effect of TSP-HepI pretreatment in this assay was
comparable to that obtained with SDF-1, a chemokine which
potently recruits progenitor cells to ischaemic lesions [51]. Finally,
ECFC migrated faster when treated with TSP-HepI than with VEGF,
a well-known growth factor essential for endothelial cell recruit-
ment.

We have reported that the HSPG syndecan-4 contributes to the
proangiogenic activity of HUVEC by interacting with motifs
within the HBD of TSP-1 [19]. Additionally, Roberts and colleagues
identified several endothelial integrins such as a3b1, a4b1 and
a6b1 involved in the pro-angiogenic effects of the TSP-1 N-
terminal domain on microvascular endothelial cells [16–18].
There is a possibility that the cooperation between syndecan-4
and such integrins are able to modulate the response of HBD to
angiogenesis. The importance of TSP-HepI-HSPG interaction is
highlighted in our present findings as follows: (i) S/TSP-HepI
peptide (possessing a modified GAG-binding site) reduced
chemotaxis and vascular tube formation; (ii) pre-incubation with
a monoclonal antibody directed against syndecan-4 reduced TSP-
HepI-pretreated ECFC adhesion to HUVEC monolayers; and (iii)
pretreatment with S/TSP-HepI had no effect on ECFC motility. A
study of the crystal structure of the TSP-1 N-terminal domain
showed that the R29 residue at the TSP-HepI region is exposed and
available for interaction [52]. Thus, TSP-HepI peptide could
effectively mimic HBD in its interaction with HSPG such as
syndecan-4.

The a6-integrin subunit has been implicated in ECFC
recruitment to sites of ischemia [31], and a6-integrin over-
expression by ECFC enhances in vitro vascular tube formation
[26]. We observed a moderate increase in ECFC a6-integrin
expression after TSP-HepI stimulation although the functional
relevance of this effect remains to be established. The interaction
of a6-integrin with HSPG is known to induce proangiogenic
activity in HUVEC [53]. Interestingly, it has been recently shown
that TSP-1 induces a6-integrin chain expression on breast
carcinoma cells, which in turn become more adherent to
laminin-rich matrices [54]. Thus, one could expect that a6-
integrin also plays a role in ECFC adhesion to target sub-
endothelial matrices exposed by activated endothelium in sites
of neovascularisation. These authors were not able to block this
induction effect with an antibody against anti-TSP-1 type I
repeat, suggesting that other TSP-1 domains are responsible for
the increase in a6-integrin chain expression [54].

Taken together, our results suggest that the interaction of
TSP-HepI with syndecan-4, with a possible involvement of a6-
integrin, enhance the proangiogenic activity of ECFC. Syndecan-
4 is strongly expressed in ischemic tissues and at sites of vascular
injury. It acts as a co-receptor in focal adhesion via heparin-
binding growth factors (e.g., VEGF and FGFs) and extracellular
matrix proteins, and it binds to integrins such as a4b1 and a5b1
[55]. Two studies have suggested that syndecan-4 enhances
HUVEC motility by activating Rac1 in a protein kinase-C-a (PKC-
a) activation-dependent manner [56,57]. On the other hand, we
have previously observed that the adhesion of HUVEC activate
PKC-dependent Akt phosphorylation [19]. Nevertheless, we did
not find any evidence that TSP-HepI affects the pERK-1/2 or pAkt
signalling pathway in ECFC (data not shown), although both are
known to be activated by syndecan-4 and are involved in
endothelial cell adhesion, migration and survival [19,58,59]. We
showed that PKC-a inhibition led to a 4-fold decrease in the
spreading ratio of HUVEC adhesion to TSP-HepI. These findings
support the participation of syndecan-4 in intracellular signal-
ling in response to the N-terminal domain of TSP-1 [19]. Further
work is needed to determine whether TSP-HepI also activates
other signalling pathways in ECFC.

The dual effect of TSP-1 on angiogenesis seems to depend on
the availability of its soluble proteolytic products, whether free in
plasma or bound to extracellular matrix proteins and/or HSPG.
We have previously observed elevated plasma TSP-1 levels in
patients with peripheral artery disease [14]. Furthermore,
despite its anti-angiogenic properties, TSP-1 is expressed on
newly formed vessels following local injections of bone marrow
mononuclear cells. We demonstrated here that the soluble
proteolytic fragments of HBD of TSP-1 may modulate local
angiogenesis. The HBD is rapidly cleaved by proteases relevant to
the vascular process into 20–40 kDa fragments recognised by
specific antibodies [22]. However, the presence of smaller
peptides could not be addressed because monoclonal antibodies
directed against the TSP-1 N-terminal domain were unable to
recognize the smaller fragments and peptides derived from HBD.
No TSP-1 isoforms resulting from alternative splicing have so far
been identified [60]. Therefore, the known active TSP-1 frag-
ments appear to arise from in vivo proteolysis of the mature
protein. Indeed, TSP-1 cleavage that produces the N-terminal
fragment (40 kDa) was shown to occur in vivo in a wound healing
situation [24]. The physiological relevance of these fragments
remains to be formally demonstrated.

In summary, local release of TSP-HepI during neovascularisa-
tion could be an important factor in ECFC recruitment to sites of
ischemia by enhancing their capacity to adhere to the endotheli-
um, migrate and form an extensive tubular network. TSP-HepI
priming might be an interesting strategy to improve the efficiency
of therapeutic neovascularisation using bone-marrow-derived
endothelial precursors. Additionally, the combined use of TSP-
HepI and FGF-2 could be designed as a new approach for increasing
the efficacy of angiogenic growth factor therapies. Our results also
present new perspectives for understanding the clinical signifi-
cance of TSP-1 at sites of angiogenesis.
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