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Objective: We aimed to evaluate the effects of resistance exercise (RE) and leucine (LEU) supple-
mentation on dexamethasone (DEXA)-induced muscle atrophy and insulin resistance.
Methods: MaleWistar ratswere randomlydivided intoDEXA (DEX), DEXAþRE (DEX-RE),DEXAþ LEU
(DEX-LEU), and DEXAþ REþ LEU (DEX-RE-LEU) groups. Each group received DEXA 5mg $ kg�1 $ d�1

for 7 d from drinking water and were pair-fed to the DEX group; LEU-supplemented groups received
0.135 g $ kg�1 $ d�1 through gavage for 7 d; the RE protocol was based on three sessions of squat-type
exercise composed by three sets of 10 repetitions at 70% of maximal voluntary strength capacity.
Results: The plantaris mass was significantly greater in both trained groups compared with the
non-trained groups. Muscle cross-sectional area and fiber areas did not differ between groups.
Both trained groups displayed significant increases in the number of intermediated fibers (IIa/IIx),
a decreased number of fast-twitch fibers (IIb), an increased ratio of the proteins phosphoSer2448/
total mammalian target of rapamycin and phosphoThr389/total 70-kDa ribosomal protein S6 kinase,
and a decreased ratio of phosphoSer253/total Forkhead box protein-3a. Plasma glucose was signif-
icantly increased in the DEX-LEU group compared with the DEX group and RE significantly
decreased hyperglycemia. The DEX-LEU group displayed decreased glucose transporter-4 trans-
location compared with the DEX group and RE restored this response. LEU supplementation
worsened insulin sensitivity and did not attenuate muscle wasting in rats treated with DEXA.
Conversely, RE modulated glucose homeostasis and fiber type transition in the plantaris muscle.
Conclusion: Resistance exercise but not LEU supplementation promoted fiber type transition and
improved glucose homeostasis in DEXA-treated rats.

� 2012 Elsevier Inc. Open access under the Elsevier OA license.
Introduction Several studies have demonstrated its therapeutic role in im-
Leucine (Leu) supplementation has been a constant focus of
investigation of skeletal muscle disorders characterized bymuscle
wasting owing to its unique non-pharmacologic properties [1,2].
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proving muscle nitrogen balance under experimental conditions
such as muscle immobilization [3], aging [4–6], and sepsis [7].
Some reports have also showed that, as an insulin secretagogue,
Leu has a potential role in modulating glucose homeostasis [8,9].
Thus, Leu has emerged as an interesting nutritional strategy for
treating conditions characterized by skeletal muscle atrophy and
disturbance in glucose metabolism.

Similarly, resistance exercise (RE) has been described as one
of the strongest and most effective non-pharmacologic treat-
ments against skeletal muscle atrophy [10,11]. In animal models,
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despite the limitations of the RE models and protocols, some
studies have also observed attenuation of muscle atrophy under
catabolic conditions such as muscle disuse [12–16]. Furthermore,
we recently demonstrated in a case report that chronic RE with
vascular occlusion attenuated the loss of skeletal muscle func-
tionality (strength) in a subject with body inclusionmyositis [17].
RE also promotes the therapeutic role of glucose homeostasis,
because mechanical stimuli are widely known to improve
glucose uptake to skeletal muscle through glucose transporter-4
(GLUT4) translocation to the sarcolemma [18]. In this context,
our group observed that type 2 diabetic subjects who submitted
to chronic exercise improved glycemic control most likely by
enhancing the GLUT4 translocation [19]. In view of these find-
ings, RE may also be considered an effective therapy to coun-
teract simultaneously muscle wasting and insulin resistance.

Conversely, despite their wide therapeutic actions [20],
glucocorticoids used in high doses or chronically for longer
periods can induce several side effects that may include, among
others, diabetes mellitus [21,22] and selective skeletal muscle
atrophy [23–26] of fast-twitch fibers [27]. It has been described
that steroidal glucocorticoids can stimulate the translocation of
specific transcription factors to the nucleus thatmay enhance the
transcription of genes involved in skeletal muscle loss [26]. This
effect can bemodulated directly, through glucocorticoid receptor
translocation, and/or indirectly by the impairment of signaling
pathways that are responsive to insulin [28]. The potential role of
Leu supplementation and RE in counteracting such effects and
the possible mechanisms underlying these responses are not
totally elucidated.

Therefore, the aim of the present study was to investigate the
effects of Leu supplementation and RE on the skeletal muscle
atrophy and glucose homeostasis of rats treated with a high dose
of dexamethasone (DEXA). Furthermore, we evaluated the
possible molecular mechanisms involved in muscle wasting and
glycemic control. Our main hypothesis was that RE exercise
could attenuate muscle atrophy and improve glucose homeo-
stasis in this model and that Leu supplementation would exert
positive synergic effects through the stimulation of protein
synthesis initiation and glucose uptake.

Materials and methods

Animals

The experiments were conducted in accordance with the National Research
Council’s Guidelines for the Care and Use of Laboratory Animals. All methods
usedwere approved by the ethical committee for animal research of the School of
Physical Education and Sports, University of Sao Paulo. Adult male Wistar rats
(w400 g) were housed under controlled environmental conditions (temperature
22�C, 12-h dark period). They were given free access to commercial laboratory
chowandwater before the experiments were performed. Twenty-three ratswere
randomly divided into the following groups: DEXA (DEX; n ¼ 06), DEXA þ RE
(DEX-RE; n¼ 05), DEXAþ Leu (DEX-LEU; n¼ 07), and DEXAþ REþ Leu (DEX-RE-
LEU; n ¼ 05). DEXA (a synthetic glucocorticoid analog that does not bind
to plasma-binding proteins) was replaced fresh every morning at 09:00 h
with the drinking water. Each group received DEXA 5 mg $ kg�1 $ d�1 for 7 d
with the drinking water; DEXA concentrations were adjusted every day based on
the intake of drinking water the day before. This protocol was chosen based
on our previous study demonstrating that this DEXA dosage can promote
significant plantaris muscle atrophy compared with healthy animals [28].
Leu-supplemented groups received 0.135 g $ kg�1 $ d�1 through gavage [29] for 7
d. Because DEXA has been reported to decrease food intake, all groups were pair-
fed to the DEX group. Thus, differences among groups do not originate from
different food intakes. Animals were euthanized by decapitation 48 h after the
last RE session and a 12-h fast. The plantaris muscles of each limb were isolated,
weighed, and frozen at �80�C for protein expression analysis. For the GLUT4
translocation experiments, we repeated the experimental protocols and animals
had free access to food and water and then were euthanized in the basal state
(not fasted; n ¼ 4 per group).
RE protocol

Resistance exercise was based on the model of Wirth et al. [30]. Briefly, rats
performed three sessions of a squat-type exercise in one daily session, with a rest
interval of 2 d between sessions. In each session, the rats performed 30 repeti-
tions (3 sets of 10 repetitions) composed of concentric forces [30], which lasted
approximately 20 min. The minimum height for collar lifting was fixed at 3.0 cm
becausewe observed that in our training apparatus this was theminimum height
required for the animals to perform a full plantar flexion. The rest interval
between repetitions was about 10 to 20 s, and the load lifted in each session was
70% of the maximal voluntary strength capacity (MVSC). The eighth repetition
test was used to assess the MVSC of each rat and was previously standardized by
our group [31–33]. If the rat was successful, the load was increased by 2% until
failure. When a lift was not properly performed, the load was decreased by 2% in
relation to the MVSC. The load of 70% MVSC was chosen not only because it is
within the range of load capable of inducing hypertrophy in human studies [34]
but also because it was observed that the rats proved unable to lift the near
maximal/maximal loads (>95%MVSC). To obtain the initial MVSC value, the total
mass of weights on the lever was gradually increased until the rats proved unable
to lift the lever. Therefore, the loads were always lifted in an individualized
manner and adjusted according to the MVSC.

Muscle dry/wet ratio

Muscle tissues were desiccated for 5 d in a drying oven set at 50�C before
determination of the dry weight. The dry/wet weight ratio was determined as
previously described [35].

Histologic analysis

The collected plantaris muscles were also embedded in tissue tek, cooled in
isopentane, frozen in liquid nitrogen, and sectioned with a cryostat. The resulting
10-mm transverse sections were examined with adenosine triphosphatase
staining (pH 4.6). To decrease the influence of anatomic area on the fiber type
distribution, all plantaris muscles were sectioned in the belly after removal.
Fibers without horizontal orientation and/or damaged owing to the section
process were not considered for analysis. Cross-sectional areas (CSAs) of 450
muscle fibers of a muscle from each rat were measured using Image Pro-Plus
(Media Cybernetics, Bethesda, MD, USA) software.

Plasma insulin and glucose levels

Bloodwas collected and serum samples were separated after allowing blood to
clot on ice. Serum was stored at �80�C for further analysis. Plasma insulin was
measured using commercial radioimmunoassay kits (DPC Medlab, S~ao Paulo, SP,
Brazil). Plasma glucose levels were measured using an automatizedmethod (Accu-
Chek Active System, Roche Diagnostics, Mannheim, Germany). The homeostasis
model for assessment of insulin resistance (HOMA-IR) index was calculated as
follows: HOMA-IR index (mmol $ mU $ L�2) ¼ fasting insulin (mU/L) � serum
glucose (mmol/L)/22.5 [36].

Cellular fractionation for GLUT4 protein expression

Muscle samples were minced and homogenized in ice-cold lysis buffer (2
mM ethylenediaminetetraacetic acid, 10 mM ethylene glycol bis[2-aminoetyl
ether]-N,N,N0 ,N0 ,-tetraacetic acid, 0.25 M sucrose, 1:300 Sigma (Sigma-Aldrich,
St. Louis, MO, USA) protease inhibitor cocktail, and 20mM Tris-HCl at pH 7.5). The
homogenate was centrifuged at 100 000 � g for 30 min (4�C) to obtain the
membrane fraction.

Western blot

Bradford assays were used to determine the sarcoplasmic protein concen-
tration and then samples were standardized to 1 mg/mL by dilution with 3�
Laemmli loading buffer. Briefly, samples were subjected to sodium dode-
cylsulfate polyacrylamide gel electrophoresis in 8% polyacrylamide gels. After
electrophoresis, proteins were electrotransferred to a nitrocellulose membrane
through a Transblot Semi Dry Transfer Cell Bio-Rad Laboratories (Hercules, Cal-
ifornia, USA). Equal loading of samples and transfer efficiency were monitored
with the use of 0.5% Ponceau S staining of the blot membrane. The blotted
membrane was then blocked with 5% low-fat milk (total) or 5% bovine serum
albumin (for phospho-antibodies) in Tris-buffered saline with Tween (TBS-T) for
1 h, and then membranes were incubated overnight with the following primary
antibodies to evaluate glucose homeostasis and the synthetic and proteolytic
signaling pathways: GLUT4 (1:1000; Millipore, Billerica, MA, USA), total
mammalian target of rapamycin (mTOR), phospho-mTORSer2448, total 70-kDa
ribosomal protein S6 kinase (p70S6k), phospho-p70S6kThr389, total Forkhead
box protein-3a (FoxO3a), phospho-FoxO3aSer253, and muscle-specific RING



Table 1
Body weight, skeletal muscle weight, blood glucose, and plasma insulin of each experimental group*

Variable Group

DEX (n ¼ 6) DEX-LEU (n ¼ 7) DEX-RE (n ¼ 5) DEX-RE-LEU (n ¼ 5)

Basal BW (g) 409 � 17.9 414 � 31.3 396 � 13.4 416 � 20.1
Final BW (g) 306 � 0.9 290 � 33.5 315 � 20.1 292 � 32.6
Plantaris weight (mg) 265 � 40.2 256 � 38.3 313 � 29.1yz 316 � 35.8yz

Plantaris dry/wet ratio (mg) 0.26 � 0.04 0.25 � 0.07 0.25 � 0.04 0.26 � 0.04
Plantaris weight/basal BW (mg/g) 0.65 � 0.09 0.62 � 0.09 0.79 � 0.07yz 0.77 � 0.08yz

Blood glucose (mmol/L) 7.8 � 1.3x 16.1 � 2.0yx{ 5.3 � 0.5 7.6 � 1.8x

Plasma insulin (mU/L) 47.7 � 3.3x 65.7 � 22.4yx{ 25.9 � 2.9{ 49.5 � 11.2x

HOMA-IR index (mmol $ mU�1 $ L�2) 12.7 � 7.4 47.7 � 11.0yx{ 6.2 � 0.2{ 16.8 � 3.6x

BW, body weight; DEX, dexamethasone; HOMA-IR, homeostasis model for assessment of insulin resistance; LEU, leucine supplementation; RE, resistance exercise
* Values are presented as mean � SD.
y P < 0.05 versus DEX.
z P < 0.05 versus DEX-LEU.
x P < 0.05 versus DEX-RE.
{ P < 0.05 versus DEX-RE-LEU.
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finger-1 (MuRF-1; 1:1000; Cell Signalling, Danvers, MA, USA). Membranes were
then washed with TBS-T and incubated for 1 h at room temperature with
a horseradish peroxidase–conjugated anti-rabbit secondary antibody (1:10 000;
Cell Signalling), before further washing with TBS-T and incubation for 1 minwith
enhanced chemiluminescence (ECL). Quantification analysis of blots was per-
formed using Image J (National Institute of Health, Bethesda, MD, USA). Protein
expressions were normalized against glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH).
Data analysis

The dependent variables were tested by one-way or two-way analysis of
variance. A post hoc test with a Tukey adjustment was performed for multiple
comparison purposes. Student’s t test was used for comparisons between trained
groups. The significance level was set at P < 0.05. The results are expressed as
mean � standard deviation.
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Fig. 1. Body weight (A) and food intake (B) progression data among groups. (A)
aP < 0.05 significant differences among all groups versus baseline. DEX, dexa-
methasone; LEU, leucine supplementation; RE, resistance exercise.
Results

Characterization of RE protocol

All groups underwent the stages of exercise adaptation as
proposed by Wirth et al. [30]. At the end of the apparatus-
adaptation phase, the animals from the DEX-RE and DEX-RE-
LEU groups were subjected to the MVSC test, which did not
differ between these groups (P > 0.05; Supplemental
Figure S1A). Animals from groups DEX and DEX-LEU were sub-
jected to the same period of environmental stress as the animals
from the trained groups. The average length of each exercise
session was 1461 � 225 and 1370 � 109 s for the DEX-RE and
DEX-RE-LEU groups, respectively (P > 0.05; Supplemental
Figure S1C). The mean time of each set was also measured and
did not differ among groups (P > 0.05). As observed in Supple-
mental Figure S1B, the length of the first set (609 � 192 and
610 � 80 s for the DEX-RE and DEX-RE-LEU groups, respectively)
was quite superior compared with the second set (318 � 47 and
367� 70 s for the DEX-RE and DEX-RE-LEU groups, respectively)
and the third set (350 � 79 and 428 � 74 s for the DEX-RE and
DEX-RE-LEU groups, respectively). This is explainable because
the exercise sessions were separated by 48 h, and in the first set
of each session, the animals recognized the environment before
engaging in the exercise protocol. The height of the collar
displacement did not differ between groups and presented
average values of 3.02 � 0.74 for the DEX-RE group and 3.44 �
0.69 for the DEX-RE-LEU group (P > 0.05; Supplemental
Figure S1D). Concentric strength also did not differ among
groups during the entire experiment (P > 0.05; Supplemental
Figure S2).
RE and Leu supplementation did not modulate body weight and
food intake in DEXA-treated animals

As presented in Table 1, both groups started and finished the
experiment with similar body weights (P > 0.05). Despite body
weight and food intake being significantly decreased from the
second to the last day of treatment (P < 0.05; Fig. 1A,B), these
variables did not differ among groups (P > 0.05), demonstrating
that neither RE nor Leu supplementation counteracted the
effects induced by the DEXA treatment. Water intake was not
different among groups (data not shown).

RE, but not Leu supplementation, increased plantaris muscle mass
in DEXA-treated animals

Of all the interventions applied, only RE was able to increase
the plantaris muscle mass in DEXA-treated rats. The DEX-RE and
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DEX-RE-LEU groups presented higher values of plantaris muscle
mass and plantaris mass/basal body weight compared with the
other groups (P < 0.05; Table 1) but without significant differ-
ences between them (P > 0.05). Thus, Leu supplementation did
not promote synergistic effects on RE inmodulating the plantaris
muscle mass. The DEX-LEU group did not show any modification
in the plantaris mass compared with the DEX group (P > 0.05),
demonstrating that Leu supplementation alone also was not able
to modulate the plantaris muscle mass. The muscle dry/wet ratio
did not differ among groups (P > 0.05).

RE, but not leucine supplementation, did not change plantaris
CSA but modulated fiber type profile in DEXA-treated animals

Figure 2 shows the plantaris muscle CSA and fiber type profile
of all groups. Leu supplementation (DEX-LEU) did not change any
of these parameters compared with the DEX group (P > 0.05;
Fig. 2). However, in the DEX-RE group, although the plantaris
muscle CSA and fiber areas were unaltered compared with the
other groups (P > 0.05; Fig. 2F,G), the number of intermediate
fibers (IIa/IIx) was significantly increased and the number of fast-
twitch fibers (IIb) was decreased compared with the DEX and
DEX-LEU groups (P < 0.05; Fig. 2E). The DEX-RE-LEU group did
not show any difference in the plantaris muscle CSA compared
with the other groups (P> 0.05; Fig. 2G) and in similar fiber type
phenotype compared with the DEX-RE group (P > 0.05; Fig. 2E).

RE improved glucose homeostasis in DEXA-treated animals
through GLUT4 translocation and Leu supplementation
minimized such responses

Resistance exercise (DEX-RE group) decreased fasting blood
glucose (P < 0.05 versus others) and Leu supplementation (DEX-
LEU group) aggravated it (P < 0.05 versus others) and partly
blunted the therapeutic effect of RE (DEX-RE-LEU group; P< 0.05
Fig. 2. Examples of transverse muscle sections with histochemical staining for myosin a
DEX, (B) DEX-LEU, (C) DEX-RE, and (D) DEX-RE-LEU groups. Fiber types I, IIa, IIx, and IIb
area data are presented as mean � SD. aP < 0.05 versus DEX group; bP < 0.05 versus D
exercise.
versus others). Plasma insulin and HOMA-IR followed the same
result pattern of blood glucose (DEX-LEU¼DEX-RE-LEU>DEX>

DEX-RE group; P < 0.05; Table 1).
Total GLUT4 protein expression did not differ among groups

(P > 0.05; Fig. 3A). However, RE (DEX-RE group) significantly
increased the basal membrane/total GLUT4 ratio (P< 0.05 versus
others; Fig. 3B). Leu supplementation (DEX-LEU group) impaired
the GLUT4 translocation to the cell surface (P < 0.05 versus
others) and partly decreased (DEX-RE-LEU) the effect induced by
RE (P < 0.05 versus others).

DEXA treatment modulated the expression of proteins involved in
muscle remodeling and RE, but not Leu supplementation,
improved such responses

Regarding synthetic machinery, the total protein expression
of mTOR, p70S6k, and FoxO3a did not differ among groups (P >

0.05l; Fig. 3A). However, the DEX-RE and DEX-RE-LEU groups
presented significantly increased the phosphoSer2448/total mTOR
ratio (Fig. 3C) and phosphoThr389/total p70S6k ratio (Fig. 3D)
compared with the untrained groups (P < 0.05) but without
differences between them (P > 0.05), suggesting no synergistic
effects of Leu supplementation on RE responses. Leu supple-
mentation (DEX-LEU group) did not modulate the expression of
such protein ratios compared with the DEX group (P> 0.05). The
phosphoSer253/total FoxO3a ratio (Fig. 3E) was similarly
decreased in both trained groups compared with the untrained
groups (P< 0.05). MuRF-1 did not differ between the trained and
untrained groups (P > 0.05; Fig. 3F).

Leu supplementation attenuates performance in RE-trained and
DEXA-treated rats

Because the animals were euthanized 48 h after the last
exercise session, we were unable to perform an MVSC test at the
denosine triphosphatase, preincubated at pH 4.6 in plantaris muscles from the (A)
were identified. (E) Fiber type profile, (F) fiber area, and (G) muscle cross-sectional
EX-LEU group. DEX, dexamethasone; LEU, leucine supplementation; RE, resistance
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end of the experiment because it can induce severe alterations in
the phosphorylation status of several proteins. Therefore, we
considered the concentric strength of the last session as a func-
tional parameter. Although the concentric strength of the entire
experiment did not differ between trained groups (P > 0.05;
Supplemental Figure S1A), this variable was significantly altered
in the last exercise session. As shown in Figure 4, the DEX-RE
group presented higher concentric strength compared with the
DEX-RE-LEU group (P < 0.05).

Discussion

To our knowledge, this is the first study that investigated the
effects of RE combined with Leu supplementation on skeletal
muscle remodeling and glucose homeostasis in a DEXA treat-
ment experimental model. The major findings of the present
study were that RE positively modulated the skeletal muscle
phenotype and improved glucose homeostasis in DEXA-treated
animals. Such an effect can be partly explained by the phos-
phorylation of proteins involved in the synthetic (mTOR and
p70S6k phospho/total ratio) and proteolytic (FoxO3a phospho/
total ratio) machinery and glucose uptake (GLUT4 translocation
to the sarcolemma) in skeletal muscle. In contrast, Leu supple-
mentation did not promote any therapeutic effect and worsened
glucose homeostasis, as evidenced by the metabolic (insulin
sensitivity), molecular (GLUT4 translocation), and functional
(concentric strength) data.

Exercise training has been considered a key complementary
tool in many different health conditions, mainly aimed at
performance. However, more recently, RE also has been used as
a therapeutic tool to treat several different diseases to prevent
the loss of muscle mass and to improve the metabolic profile of
the whole body or specific tissues [37], as in the case of pro-
longed and high-dose DEXA treatment. In the present study, we
demonstrated that even three sessions of high-intensity RE (70%
MVSC with intervals of w10 s between repetitions and w90 s
between series) were capable of drastically decreasing the
consequences of high-dose DEXA treatment in the RE-trained
group, improving the metabolic profile linked with impaired
glucose homeostasis (as evidenced by decreased fasting plasma
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insulin and blood glucose levels) and the molecular signaling
pathway of glucose, such as basal GLUT4 translocation to the cell
sarcolemma [18,38,39].

In a previous study by our group, the present protocol of
DEXA demonstrated the promotion of significant plantaris
muscle wasting and insulin resistance compared with healthy
animals [28]. Although the weight of the plantaris muscle was
increased in the RE-trained groups compared with the untrained
groups, this datumwas not reproduced in the histologic analysis,
which was probably due to the variability in the dissection of the
tendon and connective tissues spared by RE. Thus, three RE
sessions were not capable of preventing the DEXA-induced
muscle atrophy but increased the phosphorylation of mTOR
and p70S6k in key residueamount that contribute to protein
synthesis [40–43]. Such a biological response reflects the
residual effect of RE because the groups were euthanized 48 h
after the last training session. Thus, it is possible to speculate that
RE executed during a more prolonged period, even in the pres-
ence of high doses of DEXA, could significantly attenuate plan-
taris muscle loss. Conversely, changes in the phenotype of
muscle fibers occurred, and this is a condition that could improve
the molecular muscle engine and potentially lead to increases in
the strength and power of the muscle fiber [41]. In fact, as ex-
pected, there was a transition from type IIb to type IIa/IIx muscle
fibers in the RE-trained animals compared with the untrained
animals. Such a change might represent a beneficial physiologic
effect that was not blocked by DEXA treatment alone, as previ-
ously demonstrated [44].

Leucine supplementation has been considered a nutritional
non-pharmacologic approach in aging [4–6,45–47]. However,
the effect of very high doses of DEXA combined with RE and Leu
supplementation (in a dose that is known to be capable of
increasing skeletal muscle protein synthesis in healthy condi-
tions) [29] has not yet been demonstrated. Based on these
previous experiments, we expected that Leu supplementation
combined RE would be capable of promoting the synergistic
effects on RE in preventing skeletal muscle atrophy and
improving glucose homeostasis. However, we observed that Leu
supplementation did not promote any benefits for muscle
remodeling and worsened glucose homeostasis compared with
the other groups, as demonstrated by insulin sensitivity, fasting
blood glucose, and the HOMA-IR index and the molecular data of
basal GLUT4 translocation to the cell surface. These data
corroborate with the literature [5]. Leu supplementation per se
interacted with DEXA treatment in worsening glucose homeo-
stasis, an effect that was not dependent on muscle mass.
Recently, Leu supplementation has been demonstrated to induce
a delay in the insulin signaling pathway (IR/PI3K protein
expression) in skeletal muscle [48]. Thus, the conclusion that was
considered for Leu supplementation is that it does not promote
synergistic effects on RE in muscle remodeling, induces a signif-
icant degree of insulin resistance in skeletal muscle, and atten-
uates the therapeutic effect of RE on glucose homeostasis under
DEXA treatment (e.g., similar muscle mass, mTOR and p70S6K
phospho/total ratio, FoxO3a transcription factor phospho/total
ratio, and decreased basal GLUT4 translocation to the sarco-
lemma). For protein synthesis, we assumed that the Leu effects
could be more visible in the postprandial state instead of the
postabsorptive state. However, this was not the case for the basal
GLUT4 translocation because the animals were not in a fasted
state.

In summary, our results are conclusive that RE, even in the
presence of high doses of DEXA, improves glucose homeostasis
and increases the phosphorylation of key protein kinases (mTOR
and p70S6k phospho/total ratio) and the transcription factors
(FoxO3a phospho/total ratio) related to RE-induced muscle
remodeling. However, unexpectedly, Leu supplementation in
a dose known to increase muscle protein synthesis in healthy
rats worsened and decreased such beneficial effects of RE. Future
studies should address the potential role of other RE protocols,
the dose–response effect of Leu supplementation, and the effect
of exercise in the death toll in such catabolic conditions.
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