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ABSTRACT

Clustering is an important tool for data analysis, since it al-
lows the exploration of datasets with no or very little prior
information. Its main goal is to group a set of data based on
their similarity (dissimilarity). A well known mathematical
formulation for clustering is the k-medoids problem. Current
versions of k-medoids rely on heuristics, with good results re-
ported in the literature. However, few methods that analyze
the quality of the partitions found by the heuristics have been
proposed. In this paper, we propose a hybrid Lagrangian
heuristic for the k-medoids. We compare the performance
of the proposed Lagrangian heuristic with other heuristics
for the k-medoids problem found in literature. Experimen-
tal results presented that the proposed Lagrangian heuristic
outperformed the other algorithms.

Categories and Subject Descriptors

I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods; I.5.3 [Clustering]: Metrics—Algorithms

Keywords

clustering, bioinformatics, heuristic, PAM, integer program-
ming

1 Introduction

Clustering deals with the unsupervised classification of pat-
terns (observations, data items or feature vectors) into grou-
ps (clusters) (14). Clustering algorithms can be roughly di-
vided into two main approaches: partitioning clustering al-
gorithms and hierarchical clustering algorithms. Partition-
ing clustering algorithms look for a partition that optimizes
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a given clustering criterion (14). Hierarchical clustering al-
gorithms produce a nested series of partitions based on a cri-
terion that either combines (agglomerative algorithms) or di-
vides clusters (divisive algorithms) based on a similarity mea-
sure. There are many areas where clustering algorithms have
been successfully used, such as pattern recognition, group-
ing, decision making, data mining and pattern classification
(1; 4; 27).

Several clustering algorithms have been proposed in the
last decades (19; 9; 21). Good surveys on clustering algo-
rithms can be found, e.g., in (14; 28). Most of these algo-
rithms are either deterministic or based on hill-climbing and
can get trapped into local optimal solutions. Some heuristics
may reduce the occurrence of this problem, by searching for
multiple possible solutions.

Mathematical programming can be also employed in clus-
ter analysis. Earlier studies have explored a mathematical
formulation for the clustering problem, like, for example,
(23; 19; 10; 24). One advantage of using mathematical pro-
gramming is its easier validation, since it enables the genera-
tion of good bounds for a optimization problem by methods
like Lagrangian relaxation. The Lagrangian relaxation is able
to find lower (upper) bounds for a minimization (maximiza-
tion) mathematical model by relaxing some of its constraints.
The process works by multiplying relaxed constraints by a
constant penalty and adding the result to the objective func-
tion. Lagrangian relaxation has been adopted by many re-
searchers with interesting results for different kinds of opti-
mization problems (19; 26).

This paper proposes a hybrid heuristic based on a La-
grangian heuristic (19) and a local search method (Partition
Around Medoids, PAM) (15). PAM is a widely used heuris-
tic for solving for the k-medoids problem for data clustering.
To evaluate the solutions achieved by the proposed heuristic,
called LPAM, we compare it with the Lagrangian heuristic
proposed by Mulvey and Crowder (19) and with the original
PAM. As a result, the gap relaxation of the proposed heuris-
tic is very low for all partitions, outperforming the other
Lagrangian heuristic. The comparison of LPAM with PAM
showed that, particularly in datasets with the largest num-
ber of objects, LPAM presented much better results. The
results from this experiment show a very good efficiency of
the heuristic considering the objective function as the pa-
rameter of comparison.

This paper is structured as follows. Section 2 presents a
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mathematical model for the k-medoids clustering problem.
In Section 3, the algorithms and strategies proposed in the
literature to solve the studied problem are investigated. Sec-
tion 4 presents the proposed heuristic to solve the k-medoids
problem, LPAM. Section 5 reports the experimental results
obtained in the computational tests and Section 6 concludes
the paper presenting the final remarks.

2 k medoids problem

This section presents a mathematical model for the k-medoi-
ds clustering problem. This formulation is a p-median pro-
blem (which consists in locating p facilities in order to mini-
mize the customer demands regarding these facilities) (17; 8)
and it can be formulated as:

min
PN

i=1

PN
j=1 dijxij

subject to:

NX

j=1

xij = 1 i = 1, . . . , N (1)

xij ≤ xjj i, j = 1, . . . , N (2)

NX

j=1

xjj = M (3)

xij ∈ {0, 1} i, j = 1, . . . , N (4)

where N is the number of objects; M is the number of clus-
ters; dij is the distance between objects i and j; xij is a
binary variable which assumes value 1, if the object i be-
longs to the cluster whose medoid is the object j and 0,
otherwise. The objective function of this formulation aims
to minimize the dissimilarity of the objects regarding their
medoid. Constraints (1) assure that a object i is associated
with one medoid, i.e., it belongs to one cluster. Constraints
(2) force the object i to be associated with the medoid j only
if j is really a medoid, i.e., if xjj = 1. Constraints (3) as-
sure that the number of medoids of the partition is M and
Constraints (4) obligate all the variables to be binaries.

According to Cornuejols et al. (3), the problem of finding
the optimal solution for this problem is NP-hard. In the next
section we present some algorithms to solve heuristically the
k-medoids formulation.

3 Related work

One of the most popular heuristics for the investigated pro-
blem is the Partition Around Medoids, PAM (15). PAM is a
deterministic algorithm composed of two stages. While the
first stage (known as BUILD) defines a set of initial medoids,
the second stage (known as SWAP) fine tunes the medoids
by swapping objects between the clusters. Kaufman and
Rousseeuw (15) also proposed a variation of PAM, Cluster-
ing large Applications named CLARA, to make the algorithm
manageable for large datasets. Large datasets mean datasets
of order of thousands of objects. In this strategy, subsamples
of the original dataset are clustered by PAM, instead of the
whole original data. The best solution found through these
subsample strategy is kept, producing the final partition.

A modified version of CLARA was proposed by Ng and
Han (22), named CLARANS. This strategy uses a graph
to represent the sets of medoids, indicated in its nodes. A
local search with restricted neighbors is performed to find

the nodes with the best medoids. The main difference be-
tween CLARA and CLARANS is that, the former limits the
search for the medoids to the objects from the sorted sub-
sample, whereas the latter, restricts the neighborhood of the
local search for the medoids, which can be any object of the
dataset.

Another method to solve the k-medoids formulation for
large datasets was presented in (25). It consists in a hybrid
genetic algorithm (GA) that does not require the definition
of the number of clusters a priori.

A solution method to solve the k-medoids formulation,
strongly related to the proposed methodology, is the La-
grangian relaxation presented in (19). This methodology
is detailed in Section 4, together with the proposed hybrid
heuristic.

4 Lagrangian Relaxation

The Lagrangian relaxation is a technique of relaxing some
constraints of hard optimization problems. This relaxation
enables the study of an easier (relaxed) problem, for which
it is possible to propose exact solution methods. Moreover,
it is a powerful technique to provide bounds for the original
problem.

A Lagrangian relaxation of a minimization problem yields
lower bounds for the original problem. The lower bound en-
ables the assessment of the quality of the feasible solution
found by some strategy. The quality of these lower bounds
depends on the trait of the relaxation. The Lagrangian relax-
ation employed in this paper aims to dualize Constraints (1)
of the previous model, resulting in a trivial problem, as pro-
posed in (19). This relaxation is carried out in the following
way:

Let μ be a N-vector of real numbers of Lagrangian multi-
pliers and let L(μ) be the Lagrangian function defined as:

L(μ) = {min
NX

i=1

NX

j=1

dijxij +

NX

i=1

μi(1−
NX

j=1

xij) : s.t.(2− 4)}.

(5)
For our purpose, it is necessary to get the best lower bound,

which is obtained by maximizing the L(μ) function. There-
fore, consider the following problem:

max
μ
{min

NX

i=1

NX

j=1

(dij − μi)xij +
NX

i=1

μi : s.t. (2− 4)}. (6)

Notice that the function (5) was rearranged in order to
make its solution simpler. The solution of the maximiza-
tion problem (6) provides the best lower bound for the pro-
posed mathematical model. In order to get the best μ that
maximizes L(μ), we use the subgradient algorithm. This
algorithm is an iterative method that produces a μ for each
iteration k, μk, guided by the subgradient of the relaxed con-
straints, with k = 1, . . . , Max iterations, where Max iterations
is a fixed number of iterations. Therefore, for each La-
grangian iteration k, a vector μk is supplied for the calcu-
lation of a new lower bound. Generally, the initial value μ0

is a null vector. When k > 0, μk is calculated by the following
equation:

μk = μk−1 + αk ∗ gk, (7)
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where αk indicates the step size in the subgradient direction
in the iteration k and the N-dimensional vector gk is the sub-
gradient of the model, being given by: gk

i = 1−PN
j=1 xij +

θgk−1
i , for i = 1, . . . , N.
Initially, g0 is a null vector, gk

i is the i-th component of
gk, and θ ∈ [0, 1]. The αk parameter can assume many
distinct values and be updated by different rules. In this
paper, we adopted the step rule from (11). We also tested two
other rules for updating αk: keeping it constant or randomly
changing it at each iteration using a value in the range [0, 1].
Its formulation is given by: αk = α0ρ

k, where α0 is the initial
value of α and ρ < 1. Different parameter values were tested
with this formulation, but their results were not as good and
stable as those obtained using the step rule proposed in (11).
In (11), the step size rule, αk, is updated at each Lagrangian
iteration as follows.

αk = λk
(bestupper − bestlower)PN

i=1 gk
i gk

i

, (8)

where bestlower and bestupper are, respectively, the best lower
bound and the best upper bound found until iteration k. The
λk parameter is generated by a decreasing sequence that de-
pends on other parameters: nit, r and MAX. The calcula-
tion of λk is given by the following steps:

Calculating λk(k)
Step 1: Define (λ0, r, nit, MAX).
Step 2: For each nit iterations do:

• If k < MAX, then nit = nit
r

and λk = λk
r

.

• If k ≥ MAX, then the parameters nit and λk will
be equal to nit in its previous iteration and λMAX−1,
respectively.

Therefore, the solution of maximizing L(μk) is determined
by the following steps.

Maximization of L(μk)
Step 1: (Definition of the medoids) Make xjj = 1 for every
j ∈ S, where S is the set of the M indexes 1 ≤ j ≤ N that
provides the smallest values among

PN
i=1 min(dij − μk

i , 0).
Step 2: (Assignment of the objects) For every i ∈ {1, . . . , N},
such that dij − μk

i < 0 for j ∈ S, make xij = 1; otherwise,
xij = 0.

As can be observed, the relaxation of some model con-
straints turns the model easy to solve. Nevertheless, this
solution is just a lower bound for the original problem and
its feasibility is not guaranteed.

Meanwhile, the knowledge of an effective lower bound has
the advantage of estimating how acceptable is the upper
bound that is a feasible solution for the original model. To
find upper bounds, this paper proposes a novel Lagrangian
heuristic (LPAM) based on the Lagrangian relaxation found
in (19). In this heuristic, the medoids provided by each step
of the Lagrangian relaxation are used as initial medoids for
PAM. Giving the initial medoids for PAM, one of its two
phases, the BUILD, is not used. Each step of the proposed
Lagrangian heuristic is detailed as follows.

Procedure LPAM(x,d,μ)

Step 1: k ← 0, μ0 ← 0.
Step 2: (Lagrangian Evaluation) Find the solution of L(μk),
the k-th lower bound, according to the routine Maximization

of L(μk). Replace the best lower bound by the k-th lower
bound if k = 0 or the best lower bound is lower than this
found in iteration k.
Step 3: (Find the upper bound by LPAM) Perform PAM,
defining its initial medoids those found in the Lagrangian
step to produce lower bound of the current iteration.
Step 4: (Solution Update) Replace the best solution by the
solution found in iteration k if it is lower than the current
best solution or if k = 0.
Step 5: (Lagrangian Parameters Update) Update the La-
grangian parameters according to the routine Calculating
λk(k). Calculate αk and μk using, respectively, Equations
8 and 7.
Step 6: k ← k +1. If k > Max iterations or gap = 0, where
gap is calculated according to Equation 10, then return the
best solution and lower bound. Else, go to Step 2.

In the Lagrangian heuristic proposed by (19), named LH,
the Step 2 is replaced by:
Step 2: (Find the upper bound by LH) Define as medoids
of the upper bound those from the relaxed solution of the
actual iteration. To produce the upper bound, assign each
object from the dataset to its nearest medoid.

Next section reports the computational experiments per-
formed using some biological datasets.

5 Computational Experiments

The first experiment compares the proposed LPAM with the
other k-medoids algorithms, LH and PAM. In this exper-
iment, all parameters of the Lagrangian heuristics, LPAM
and LH, are set according to their performance in the tests.
In another experiment, we evaluate the clustering partitions
found by LPAM according to the real classification of the
data sets using an external validation index. In this exper-
iment, we compare LPAM with three other clustering algo-
rithms: k-means (15), k-medians (15) and PAM.

5.1 Data sets

Progresses in biology research have lead to the production of
a large amount of data, which needs to be analyzed. Cluster-
ing algorithms have become an important tool in the analysis
of biological data, because they can discover useful patterns
to support the understanding of biological processes. One of
these processes is observed in gene expression data, where
tumor tissues can be grouped by the identification of their
underline patterns.

To evaluate the use of LPAM for clustering, we carried
out experiments using: six cancer tissues data sets, another
biological data set and one artificial data set. The real clas-
sification of these data sets is known. In some cases, there is
more than one classification structure for the data set. Each
classification is defined as a structure. Moreover, each one
of these structures may have a different number of groups
or classes. The main characteristics of these eight data sets
can be seen in Table 1, which illustrates, for each data set,
the number of objects (�Obj.), the number of different struc-
tures (�Str.) and the number of groups for each different
structure between parenthesis (�Groups), the number of at-
tributes (�Attrib.) and the main paper reference (Reference).

The objective function of the k-medoids problem requires
a dissimilarity measure between pairs of objects from the
data sets. To supply this dissimilarity matrix, D = [dij ]N×N ,
this paper evaluates the Manhattan and Euclidean distances.
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Table 1: Data sets main characteristics. This table
shows the main characteristics of each data set used
in the experiments.

Data set
Main characteristics

�Obj. �Str. (�groups) �Attrib. Reference

Golub 72 4 (2,3,4) 3571 (7)
Leukemia 327 2 (3,7) 271 (29)
Novartis 103 1 (4) 1000 (12)
MultiA 103 1 (4) 5565 (12)
MiRNA 218 6 (2,3,4,9, 20) 217 (16)
Breast 699 1 (8) 9 (2)
Simulated6 60 1 (6) 600 (18)
Ecoli 336 1 (8) 7 (20)

Both are special cases of the p-distance metric and can be
represented by equation (9):

dij = (

NaX

k=1

|aik − ajk|p)
1
p , (9)

where aik and Na represent, respectively, the k-th attribute
of the object i and the number of attributes of the objects,
and p is an integer number that depends on the studied met-
ric. If p = 1, the distance is known as the Manhattan dis-
tance; if p = 2, the distance is defined as the Euclidean dis-
tance, which is the most frequently used dissimilarity metric.

5.2 Experiment I

We implemented LH and LPAM using the R language from
the R-project v.2.8.1. The implementation of PAM used in
the LPAM was obtained from the R-project package cluster.
This implementation enables the user to define the initial
medoids for the PAM algorithm.

To check and compare the performance of the Lagrangian
heuristics, a quantitative measure is adopted: the gap be-
tween the lower bound and upper bound. This gap indicates
how far is the feasible solution obtained by LPAM and by
LH from the best lower bound found by the relaxation of the
mathematical model. It is calculated in the following way:

gap =
(zupper − zlower)

zlower
∗ 100 (10)

where
zupper is the upper bound, i.e., the feasible solution;
zlower is the Lagrangian lower bound.

Given that the subgradient method has a profound impact
on the performance of the Lagrangian heuristics, we investi-
gated the effect of different parameter values in them. For
such, we considered the following range values for the param-
eters: MAX ∈ {5, 10, 15}; nit ∈ {20, 25, 30}; r ∈ {1, 2, 3};
and λ0 ∈ [0.70, 2.0]. The step size used for the interval of
the last parameter, λ0, was 0.05. For the data sets used in
this paper, we found the best values adopting the follow-
ing parameter values: MAX = 15, nit = 25, r = 2 and
λ0 = 1.75. Other values were tested, but the gaps outside
the previous parameter ranges achieved very high values. We
also adopted α0 = 0 and a null value for the vector μ0. The
number of maximum Lagrangian iterations, Max iterations
parameter, was set to 100 for LPAM and 500 for LH. The
number of maximum iterations fixed to LH was set accord-
ing to the elapsed time that LPAM took to perform its 100
iterations. The number of iterations for LPAM was set after

Table 2: Mean and standard deviation of the gaps
in percentage of LPAM considering the Euclidean
distance metric.

Data set
LPAM LH

Mean SD Mean SD

Simulated6 0.046 0.102 0.149 0.232
Golub 0.039 0.045 0.335 0.288
MultiA 0.057 0.080 0.445 0.567
Novartis 0.059 0.104 0.411 0.518
MiRNA 0.126 0.064 1.591 1.819
Leukemia 0.040 0.028 0.314 0.412
Ecoli 0.281 0.146 4.966 4.141
Breast 2.869 1.585 25.387 13.278

Table 3: Mean and standard deviation of the gaps
in percentage of LPAM considering the Manhattan
distance metric.

Data set
LPAM LH

Mean SD Mean SD

Simulated6 0.034 0.120 0.160 0.295
Golub 0.150 0.269 0.608 0.562
MultiA 0.104 0.122 0.501 0.521
Novartis 0.153 0.276 0.679 0.766
MiRNA 0.089 0.074 1.304 2.182
Leukemia 0.150 0.085 0.905 0.641
Ecoli 0.448 0.167 5.405 4.213
Breast 4.435 2.203 30.860 17.570

tests that showed that the gap reduction is not so significant
after 100 iterations for most of the data sets. The value for
the parameter θ was defined 0.0 after preliminary tests. In
these tests, we took into account the performance of both
Lagrangian heuristics, LPAM and LH.

Initially, we present, in Tables 2 and 3 the mean gap val-
ues of the proposed Lagrangian heuristic, LPAM, and the
Lagrangian heuristic found in the literature, LH. These val-
ues are the average gap results for LPAM and LH consider-
ing the Euclidean and Manhattan distances. This table also
presents the standard deviation of the gaps. For each data
set, we consider M ∈ {2, . . . , 30}. We display these results
in Figures 1 and 2 for every data set. These results refer to
M = 15, considering the Euclidean distance as the dissimi-
larity between the pairs of objects. We used M = 15 because
we wanted the heuristics found partitions with a reasonable
number of medoids. The adopted time interval refers to 0 and
the least elapsed time between LPAM and LH to achieve the
last best gap, in the considered number of iterations.

Figure 1 presents the behavior of the data sets with the
lowest number of objects. It can be noticed that, except for
the MultiA, Figure1(d), LPAM achieved much better results
than LH in the considered time interval. The inset subplots
present the behavior of the gaps in the last period, discrimi-
nating their differences in such period.

Figure 2 clearly shows the superior performance of LPAM
over LH. Although for MiRNA, Leukemia and Breast there
were some intervals that LH was superior to LPAM, LPAM
was more robust than LH, always achieving better final gaps
for all data sets. It can also be observed that the differences
between the final gaps of LPAM and LH were very significant
in the last two data sets.

It can be observed from Tables 2 and 3 that, in all data
sets, the mean gaps of LPAM outperformed the mean gaps of
LH. Moreover, the standard deviations of the gaps of LPAM
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Figure 1: Relation gap versus elapsed time of LPAM
and LH for, respectively, Simulated6, Golub, Novartis
and MultiA data sets.
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Figure 2: Relation gap versus elapsed time of LPAM
and LH for, respectively, MiRNA, Leukemia, Ecoli and
Breast data sets.
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were much lower than those from LH. These results evidence
the best performance of LPAM over LH. It is worth men-
tioning that, although the number of data sets is 8, 29 runs
corresponding to different numbers of clusters were carried
out. Moreover, two different dissimilarity metrics were used.
Therefore, the total number of test cases was 464.

In order to compare the results from the original PAM with
LPAM, we confronted their objective function solutions. For
such, we calculated how far are the solutions found by PAM
and LPAM using the following equation.

gap =
zPAM − zLPAM

zLPAM
(11)

In this equation, zPAM and zLPAM correspond to, respec-
tively, the PAM solution and the LPAM solution. This gap
is presented in percentage in the experiments. It is worth
mentioning that the LPAM solutions were always better than
or equal to the PAM solutions. Figure 3 presents the results
of this comparison. Table 4 present the results of these com-
parisons.

Table 4: Mean and standard deviation of the gaps in
percentage for LPAM.

Dataset
Euclidean Manhattan

Mean SD Mean SD

Simulated6 0.029 0.027 0.006 0.014
Golub 0.038 0.039 0.075 0.080
MultiA 0.002 0.005 0.002 0.011
Novartis 0.041 0.049 0.048 0.107
MiRNA 0.106 0.192 0.242 0.212
Leukemia 0.022 0.030 0.028 0.057
Ecoli 0.251 0.229 0.282 0.228
Breast 0.287 0.476 0.283 0.310

Note that, in Table 4, the higher the number of objects, the
better the solutions found by LPAM over PAM. This is an
indicative of a good performance of the proposed heuristic,
since the higher the dimension of the matrices, the more
difficult is to find good quality solutions for them.

In Figure 3, the data sets were divided into two sets. The
set 1 refers to the data sets with the lowest number of objects,
whereas the set 2 has the 4 data sets with the highest number
of objects. Figures 3(a) and 3(c) show the results for the
set 1, when the Euclidean and Manhattan distances between
objects were used, respectively. It can be noticed that both
Golub and MultiA presented the highest gaps. Moreover, the
gaps were more significant when the Manhattan distance was
used.

For the set 2, Figure 3(b) and 3(d) indicates that Breast,
the data set with the highest number of objects, achieved
the highest gaps. Moreover, considering the Figure 3(d),
it can be observed that all data sets presented gaps higher
than the previous analyzed data. Therefore, all these results
demonstrate the superiority of LPAM over LH and PAM for
the k-medoids problem.

5.3 Experiment II

In this experiment, we compare LPAM with three well known
clustering algorithms from literature: k-means (15), k-medi-
ans (15) and PAM. The software implementation of the two
first algorithms was obtained from (5). The use of the k-
means and the k-medians for comparison is due to, as well as
the k-medoids problem, they produce cluster with spherical
shape.
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Figure 3: These graphs present the gaps between
LPAM and PAM regarding their number of clusters.
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We evaluated the partitions produced by the four algo-
rithms using the CRand measure (13), which is based on the
real data classification. Thus, CRand provides an external
evaluation criterion that estimates how much the partitions
determined match the real classification. The CRand varies
from -1 to 1, and the larger the CRand, the more accurate is
the partition regarding the true classification. It is worth to
remind that this is a classification index and it is just a valida-
tion measure for evaluating partitions found by a clustering
algorithm. It indicates the agreement between a partition
found and the real classification.

The experimental results present the CRand values with
respect to the Euclidean and the Manhattan distances. Alike
(9), we performed tests by firstly generating partitions with
cluster numbers in the set {2, . . . , 30} for each data set. The
partitions with the highest CRand are reported. This proce-
dure was followed for every clustering algorithm used in this
experiment.

A performance profile analysis proposed by Dolan and
Moré (6) was employed to compare the CRand values of the
four different algorithms. Let S and P be, respectively, the
set of ns algorithms to be analyzed and the set of np prob-
lems (data sets) into consideration. A factor, known as per-
formance ratio, evaluates the performance of the algorithm
s with regard to the problem (or instance) p. It is given by
the following equation:

rps =
tps

min{tps|s ∈ S} (12)

The value of tps, used in the comparison of the algorithms,
gives the performance of the algorithm s in the problem p.
According to Dolan and Moré (6), the lower this value, the
better. Regarding Equation 12, it must be observed that the
best rps is 1, which occurs when tps has the minimum value
among all algorithms.

Another factor considered in (6) is the ratio: the number of
problems that an algorithm s presented a performance ratio
equal to or better than an coefficient τ divided by the total
number of problems (ρs(τ ) = 1

np
size{p ∈ P |rps ≤ τ}).

This ratio ρs(τ ) represents the probability that an algo-
rithm s has a performance ratio within a factor τ . In this
performance analysis graph, the curves of the graph are plot-
ted according to the values of τ and ρs(τ ).

In this paper, S is composed by the four algorithms an-
alyzed according to the CRand value: LPAM, k-means, k-
medians and PAM. The distance matrix associated with each
data set was considered an instance. Every CRand was taken
into account for analysis, which means that a total of 34 in-
stances composes the set P .

Figure 4 displays the results from this analysis. τ = 1
shows the percentage that an algorithm s achieved results
better than the other algorithms. Both LPAM and PAM
achieved the best results in more than 60% of the problems.
However, LPAM presented a slightly higher percentage than
PAM, as can be observed in the subplot of Figure 4. Each
one of the other algorithms achieved the best results in a
little more than 20% of the instances. The robustness of the
algorithms in the instances analysed can be observed when
τ > 1. For example, for τ = 1.2, y-axis indicates the per-
centage of instances that an algorithm s achieved results at
most 20% worse than the best results. It can be noticed that
LPAM achieved the best results for almost every value of τ .
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Figure 4: This graph shows the performance pro-
file of all distance metrics, algorithms and data sets
relating to the CRand index.

The subplot in Figure 4 highlights the superior performance
of LPAM over PAM for small values of τ .

6 Final Remarks

This paper investigated a hybridization of a Lagrangian based
heuristic with a known local search clustering method, PAM
for the k-medoids problem. The first experiment investi-
gated the efficiency of LPAM, comparing it with another k-
medoids heuristics found in literature for the same problem.
According to the experimental results, LPAM outperformed
the other heuristics, mainly in the data sets with high number
of objects. In the second experiment, the proposed heuris-
tic was compared with the real partitions using the CRand
index. In this experiment, LPAM was compared with the
k-means, k-medians and PAM algorithms. The proposed al-
gorithm performed better in most of the partitions, consid-
ering the Euclidean and Manhattan distances. Furthermore,
LPAM is deterministic, in contrast to k-means and k-medians
methods, known for the variation of the partitions obtained
in different runs. PAM achieved, for some cases, the same
clustering partitions as LPAM, however, the medoids were
different, presenting worse solutions than LPAM. Regarding
the computational time, LPAM took just some few seconds
to find its solutions, even for medium sized data sets.
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