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Protein tyrosine phosphatases (PTPs) form a large family of enzymes involved in the regulation of numer-
ous cellular functions in eukaryotes. Several protein tyrosine phosphatases have been recently identified
in trypanosomatides. Here we report the purification and biochemical characterization of TcPTP1, a pro-
tein tyrosine phosphatase from Trypanosoma cruzi, the causing agent of Chagas’ disease. The enzyme was
cloned and expressed recombinantly in Escherichia coli and purified by Ni-affinity chromatography. Bio-
chemical characterization of recombinant TcPTP1 with the PTP pseudo-substrate pNPP allowed the esti-
mation of a Michaelis—-Menten constant K;,, of 4.5 mM and a k. of 2.8 s~!. We were able to demonstrate
inhibition of the enzyme by the PTP1b inhibitor BZ3, which on its turn was able to accelerate the differ-
entiation of epimastigotes into metacyclic forms of T. cruzi induced by nutritional stress. Additionally, this
compound was able to inhibit by 50% the infectivity of T. cruzi trypomastigotes in a separate cellular
assay. In conclusion our results indicate that TcPTP1 is of importance for cellular differentiation and inva-
sivity of this parasite and thus is a valid target for the rational drug design of potential antibiotics directed
against T. cruzi.
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1. Introduction Trypanosoma cruzi is the causing agent of Chagas’ disease, which

is estimated to affect 8-15 million people in Latin America leading

Protein tyrosine phosphatases (PTPs) form a large family of pro-
teins in eukaryotic genomes with a wide range of functions [1].
Solution of the structures of several PTPs has established an enzy-
matic mechanism where a catalytic cysteine from the core catalytic
motif (H/V)C(X)sR(S/T) (Supplementary Fig. S1) acts as a nucleo-
phile to form a covalent thiophosphate intermediate with the sub-
strate. This intermediate is additionally stabilized by a catalytic
arginine and hydrolyzed with the help of a catalytic aspartate,
which functions as a general acid/base [1,2].

Abbreviations: PTP, protein tyrosine phosphatase; pNPP, p-nitrophenylphos-
phate; BZ3, 3-(3,5-dibromo-4-hydroxy-benzoyl)-2-ethyl-benzofuran-6-sulfonic-
acid-(4-(thiazol-2-ylsulfamyl)-phenyl)-amide.
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Federal de Sao Paulo, Rua Talim 330, 12231-280 Sao José dos Campos, Brazil. Fax:
+55 12 3921 8857.
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to up to 20 thousand deaths yearly [3,4]. Eighty-six phosphatases
have been identified in the genome of T. cruzi, two of which show
signatures of PTPs [5]. These two have been termed TcPTP1 and
TcPTP2 and show 15% identity with Homo sapiens PTP1B [6].
TcPTP1 furthermore shows 62% identity with Trypanosoma brucei
PTP1 (TbPTP1; Supplementary Fig. S1) [7] which has been recently
shown to arrest the trypomastigote form of this parasite in the so
called “stumpy” form [8,9] and whose structure has been recently
solved [10].

Only two drugs (nifurtimox and benznidazole; [11]) are
currently available for the treatment of Chagas’ disease both
showing severe side-effects and/or a low overall efficacy
[12]. Due to the potential important function of PTPs in the
trypanosomatids cell cycle, and the interest in the field in
developing drugs against related PTPs from humans such as
PTP1B [6] and Shp2 [13], these proteins constitute an interest-
ing target for drug development. Here we provide the first
step to these approaches by cloning and characterizing PTP1
from T. cruzi.
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Fig. 1. Recombinant TcPTP1 expression. (A) Test expression after induction with 1 mM IPTG at 30 °C. (B) TcPTP1 affinity purification. Lane A: Total protein; lane B: Purified

protein.

2. Materials and methods
2.1. Construct

The protein tyrosine phosphatase TcPTP1 (GI:3554415
Tc00.1047053510187.234) from T. cruzi (CL Brener strain) was
amplified by PCR using the oligonucleotides 5'-ggccggagatctatgaat-
gattcgaactge and 5'-ggccggggtaccectacctgetattcaacagaccg as prim-
ers and inserted into the BamHI and Kpnl sites of the pQtev [14]
expression vector, leading to an expression construct with an N-
terminal His-tag. The construct was verified by sequencing using
a Hitachi 3130xI Genetic Analyzer (Applied Biosystem) sequencer.

2.2. Protein purification

TcPTP1 was expressed as a 36.8 kDa His-tagged protein after 4 h
induction (30 °C) with 1 mM IPTG. Protein was purified after cell
lysis using a French Press in 50 mM Tris—-HCI pH 7.5, 100 mM Na(l,
5 mM 2-mercaptoethanol buffer using Ni-affinity chromatography
(GE-Healthcare), dialyzed with 50 mM Tris-HCl pH 7.5, 3 mM DTT
and concentrated to 10 mg/mL.

2.3. Protein analytics

Protein was analyzed using SDS-PAGE [15] and quantified using
the Bradford method [16].

2.4. Activities assay (kinetics parameters)

Protein activity was determined by Michaelis—-Menten steady
state kinetics using the PTP pseudo-substrate pNPP (Sigma-
Aldrich) at different concentrations in 50 mM Tris-HCl pH 7.5,
100 mM NaCl, 3 mM DTT at room temperature with a Magellan™
plate reader (TECAN). Absorption of product (p-nitrophenol) was
measured as optical density at 405 nm. Data were fitted using
non-linear regression analysis using the GraphPad Prism software
package. ke, was calculated from Viax = Kear - [Eror] and Viax =
d(ODygs)/dt - ! -d;,}s.-s, the molar absorption coefficient of p-
nitrophenol at 405 nm was assumed to be 18,450 M~! cm™". Error
of measurement was calculated from several independent mea-
surements and is given as SEM.

2.5. Metacyclogenesis

The T. cruzi Dm28c strain was cultured in liver infusion tryptose
(LIT) medium, containing 10% fetal bovine serum at 28 °C [17]. To
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Fig. 2. Recombinant TcPTP1 kinetic analysis and inhibition analysis using BZ3. (A)
Non-linear regression analysis of the Michaelis-Menten plot. (B) Lineweaver-Burk
plot. Activity was determined using 0.25 pM (circles), 0.5 uM (squares) and 1 pM
(triangles) of TcPTP1 and different concentrations of pNPP. (C) TcPTP1 inhibition by
BZ3. Circles: 0 uM BZ3; squares: 10 uM BZ3; triangles: 100 uM BZ3.
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induce metacyclogenesis in vitro, a 6 x 10’/mL epimastigote cul-
ture was concentrated to 5 x 108 cells/mL and incubated in TAU
medium (190 mM NaCl, 17 mM KCl, 2 mM MgCl,, 2 mM CaCl,,
8 mM sodium phosphate buffer, pH 6.0) for 2 h at 28 °C. The para-
sites were then diluted in TAU3AAG medium (TAU medium sup-
plemented with 50 mM sodium glutamate, 10 mM t-proline,
2 mM sodium aspartate, 10 mM glucose) to a final concentration
of 5 x 10%cells/mL [18] and incubated with 100 uM of BZ3, a
PTP-1B phosphatase inhibitor (Calbiochem), diluted in DMSO or
DMSO (control) for 96 h at 28 °C. Culture supernatants were col-
lected after 96 h and the number of totally differentiated trypom-
astigotes was determined by fluorescence microscopy after
fixation in 4% p-formaldehyde in PBS and staining with 10 pg/mL
4,6-diamidino-2-phenylindole (DAPI).

2.6. Infection assay

Trypomastigotes of the T. cruzi Y strain were pre-treated with
100 pM of BZ3 (diluted in DMSO) or DMSO alone for 1 h at 28 °C
and then washed to remove completely any traces of BZ3 and
DMSO. Thereafter, 6 x 10° of these trypomastigotes were incu-
bated with 2 x 10 L6E9 (ATCC) rat skeletal muscle cells (30:1 par-
asite to host-cell ratio) for 2 h at 37 °C. The L6 cells were washed
with PBS to remove parasites in the medium and the number of in-
fected cells was determined by fluorescence microscopy (after
DAPI staining) as described previously [19].

3. Results and discussion

PTPs are important proteins in the cell signaling of eukaryotes.
Recently, several PTPs from trypanosomatids have been described

A 100

[8,10,20]. To obtain more data on the PTP1 from T. cruzi (TcPTP1),
we have cloned and expressed this protein in Escherichia coli using
an expression vector with an N-terminal His-Tag. Four hours of
induction with relative high amounts of IPTG (1 mM) at tempera-
tures of 30 °C were found to generate maximal levels of soluble
protein (shown in Fig. 1A). Higher temperatures and longer induc-
tion times did not lead to an improvement of the quantity of ex-
pressed TcPTP1 (data not shown).

The fact that PTP1 expresses in soluble form at usual tempera-
tures indicates that this phosphatase, as often the case for protein
phosphatases, is not toxic to E. coli, and has an acceptable solubil-
ity. Indeed several larger scale fermentations (4 L) allowed us to
obtain highly purified protein after the affinity step of Ni-affinity
purification, as indicated in Fig. 1B. We therefore abstained from
subsequent purification steps. The protein was eluted from the
Ni-affinity column using about 100 mM imidazol. After dialysis
to remove imidazol and salts from the protein solution we were
then able to concentrate the protein using microfilters to up to
10 mg/mL. The total yield of protein amounted to 15 mg/L of cul-
ture broth.

To biochemically characterize TcPTP1, we then set to establish a
Michaelis-Menten steady state assay using the protein tyrosine
phosphatase pseudo-substrate pNPP. We employed three concen-
trations of the protein and eight concentrations of pNPP to fit the
Michaelis-Menten equation, as shown in Fig. 2A. Linearization of
these curves after Lineweaver-Burk is shown in Fig. 2B, indicating
the good fit of the experiment. Averaging values obtained by non-
linear regression analysis, we can conclude that the recombinant
TcPTP1 is active with a K, of 45+03mM and a kg of
2.8+0.25s ! These values are comparable in magnitude to those
obtained by others for human PTP1B [21] and PTP1 from the T. bru-
cei, the causing agent of African Sleeping Disease [7].
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Fig. 3. TcPTP inhibition affects metacyclogenesis and infectivity of T. cruzi. (A) Acceleration of the differentiation of T. cruzi into the metacyclic form using BZ3. Percentage of
parasites after inducting differentiation of epimastigote forms into metacyclic forms, as determined by fluorescence microscopy. (a-c) Shows the percentage of different
intermediate metacyclic forms based on their morphology after 96 h, where (d) can be considered the end stage of the metacyclic form. Inhibition by BZ3 of the infectivity of
L6 rat skeletal muscle cells by T. cruzi trypomastigotes. (B) Percentage of in vitro infected cells in the presence of 100 uM BZ3 and DMSO control. (C) Number of parasites

internalized per 50 infected cells in the presence of 100 pM BZ3 and DMSO control.
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To further characterize TcPTP1, we carried out inhibition stud-
ies with the PTP1b inhibitor BZ3. BZ3 (3-(3,5-dibromo-4-hydro-
xy-benzoyl)-2-ethyl-benzofuran-6-sulfonicacid-(4-(thiazol-2-
ylsulfamyl)-phenyl)-amide) is thought to bind and inhibit human
PTP1b by an allosteric non-competitive mechanism [22]. Our re-
sults indicate that BZ3 also inhibits TcPTP1, in a manner that is
compatible with a non-competitive inhibitor, shifting k. more
than K, (Fig. 2C).

To corroborate the functional importance of this enzyme in T.
cruzi, we carried out in vivo cell culture studies using this inhibitor.
T. cruzi is known to differentiate from the epimastigote form to the
metacyclic form in the gut of its insect host vector. As shown in
Fig. 3A, BZ3 accelerates the differentiation of epimastigotes into
the metacyclic form. Under control conditions, T. cruzi differentiate
about 50% to the metacyclic form in our experiment. However,
when incubated in the presence of BZ3, about 90% of these cells
accumulated in late stages of the transformation, suggesting that
TcPTP1 participates in this differentiation process of the parasite.
A similar role has been suggested for TbPTP from T. brucei [7]
and was shown to participate in a glycosome signaling pathway
[8]. We can however not exclude that the effects of BZ3 in T. cruzi
are mediated through other phosphatases of T. cruzi like TcPTP2.

The involvement of PTPs in cellular differentiation and physiol-
ogy in mammalians makes these phosphatases interesting targets
for the design of drugs. The classical example for this are the con-
tinued efforts of the scientific community and the pharmaceutical
industry to develop drugs against human PTP1B [23], whose func-
tion can be linked to obesity and diabetes. Another example is the
recent development of inhibitors by the means of rational drug de-
sign targeted against Shp2, a PTP which is strongly linked with
Noonan Syndrome and the most common forms of Juvenile Leuke-
mia [13].

To investigate whether inhibition of T. cruzi PTP influences
infectivity of this parasite, we carried out a separate cellular infec-
tion assay, with a different cellular form of T. cruzi, termed trypo-
mastigote. Trypomastigotes are the mayor infective and
propagative form of T. cruzi after infection of human hosts. In our
assay, the trypomastigotes were pre-treated with 100 uM BZ3 for
1h and, after washing out this inhibitor, incubated with L6 rat
skeletal muscle cells. As shown in Fig. 3B and C, infectivity of try-
pomastigotes pre-treated with BZ3 was significantly lowered by
about 50% when compared with the infectivity of untreated try-
pomastigotes. A report described that other protein tyrosine phos-
phatase inhibitors affect cell invasion only when incubated with
the cells and parasites and propose that dephosphorylation reac-
tion participate in cell invasion [24]. Therefore it is also possible
that phosphorylation and dephosphorylation events participate
in many events of the parasite—cell interaction.

The sequencing of the genomes of trypanosomatids [25] like T.
cruzi [26], T. brucei [27,28] and Leishmania major [29] has led to the
detection of several PTPs in these species. The molecular functions
as well as the signaling pathways in which these proteins are in-
volved in the trypanosomatids are not well understood, although
two of these enzymes have been linked to cellular differentiation
processes in T. brucei and L. major [7,30,31]. The present data pro-
vide an important step in obtaining more biochemical, structural
and cell biological data for TcPTP1, allowing the establishment of
screening assays for the design of inhibitors against this protein.
We were able to obtain pure and functional TcPTP1 by recombi-
nant expression in E. coli. As proof of principle, we were able to in-
hibit the activity of this enzyme using a selective protein tyrosine
phosphatase inhibitor, demonstrating that the same inhibitor
accelerates metacyclogenesis of T. cruzi, and inhibits the infectivity
of T. cruzi trypomastigotes, thus indicating that TcPTP1 is an
essential and interesting target for design of inhibitors of this
organism.
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