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This study evaluated the impact of sex on the short term consequences of different periods of sleep
deprivation and the effect of the respective sleep recovery periods on nociceptive responses. Male and female
C57BL/6J mice were assigned to the following groups: paradoxical sleep deprived (PSD) for 72 h, sleep
restricted (SR) for 15 days, exposed to respective recovery periods for 24 h, or untreated home-cage controls
(CTRL). Mice were submitted to a noxious thermal stimulus to evaluate their nociceptive response after PSD,
SR, or recovery periods. Blood was collected for hormonal analysis. The nociceptive response was significantly
lower in PSD and SR mice compared to CTRL animals, regardless of the sex. However, SR females had a lower
paw withdrawal threshold than males. Sleep recovery was able to restore normal nociceptive sensitivity after
PSD in both sexes. The hyperalgesia induced by SR was not reversed by sleep rebound. In females, low
concentrations of estradiol were found after SR, and these concentrations continued to decrease after
24 hours of sleep recovery. The PSD male mice exhibited higher concentrations of corticosterone than the
CTRL and SR male mice. Corticosterone levels were not affected by SR. Our study revealed that PSD and
SR induce hyperalgesia in mice. The SR groups showed marked changes in the nociceptive response, and
the females were more sensitive to these alterations. This finding indicates that, although different periods
of sleep deprivation change the nociceptive sensitivity in male and female mice, sex could influence
hyperalgesia induced by chronic sleep loss.
gia - Universidade Federal de
o - SP- 04024-002, São Paulo

ndersen).

evier OA license.
© 2010 Elsevier Inc. Open access under the Elsevier OA license.
Introduction

Sleep is a vital function that is related to several physiological
systems. This relationship is demonstrated by a significant body of
research that describes the impairment of health and well-being after
periods of sleep deprivation. For example, a lack of sleep has often
been associated with increased pain (Moldofsky, 2001; Smith and
Haythornthwaite, 2004; Edwards et al., 2008; Andersen et al., 2009a;
Haack et al., 2009; Jones et al., 2009). Total sleep deprivation or
selective REM/paradoxical sleep deprivation may have direct effects
on nociceptive responses, leading to hyperalgesia in both humans
(Onen et al., 2001a; Lautenbacher et al., 2006; Roehrs et al., 2006) and
rodents (Onen et al., 2000; Nascimento et al., 2007; Damasceno et al.,
2009). Although several studies have demonstrated an association
between sleep loss and pain, most of them report the repercussions of
acute sleep deprivation. Limited attention has been given to the
consequences of chronic sleep reduction. Nevertheless, gradual sleep
loss over long periods is becoming increasingly prevalent in modern
life, and this circumstance warrants further investigation.

It appears that the distinct changes in multiple physiological
processes that result from sleep disruption are sex-dependent
(Andersen et al., 2008, 2009b, 2010). This finding indicates that
alterations in the nociceptive system induced by sleep loss may be
different between males and females. Likewise, some animal studies
have identified sex differences in the nociceptive response (DeLeo and
Rutkowski, 2000; LaCroix-Fralish et al., 2005; Schütz et al., 2009).
However, it is not clearwhether sex differences exist in the nociceptive
system, or whether these differences are present only in specific
painful conditions.

Despite several studies that demonstrate a bidirectional association
between sleep and pain and many studies reporting sex differences in
the pain responses, there have been limited studies regarding the
interaction between sleep loss, pain, and sex differences. Moreover,
further investigation is needed on the repercussions of chronic sleep
restriction on the nociceptive system. Therefore, the aim of this study
was to evaluate the effect of different periods of sleep deprivation on
nociceptive responses and to investigate possible sex differences in
these responses. We also examined whether sleep recovery periods
could reverse alterations in the nociceptive system induced by sleep
loss. Finally, we analyzed the effect of sleep deprivation conditions on
hormone concentrations (i.e., corticosterone and estradiol).
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Methods

Subjects

Adult male and female C57BL/6J mice aged 90 days were bred in
the animal facility of the Centro de Desenvolvimento de Modelos
Experimentais (Universidade Federal de São Paulo, Brazil). The
animals were housed in standard polypropylene cages in a colony
maintained at 22 °C with a 12:12-h light-dark cycle (lights on at
07:00 h). Food and water were available ad libitum. The experimental
protocol was approved by the University's Ethical Committee for
animal experimentation (#707/09).
Paradoxical sleep deprivation (PSD)

Mice were placed inside cages (38×31×17 cm, 5 mice per cage)
containing 13 circular platforms (3.5 cm in diameter) withwater 1 cm
above the platform surface for 72 h. At the onset of each paradoxical
sleep episode, the animals experienced a loss of muscle tonus and fell
into the water, causing them to awaken. The water in the cage was
changed daily, and food and water were available ad libitum
throughout the PSD period in the form of pellets and water bottles
that were placed on a grid located on top of the tank. We recently
demonstrated that this protocol can suppress paradoxical sleep
during all periods and can significantly compromise slow-wave
sleep in adult mice (Zager et al., 2009). A control (CRTL) group was
maintained in cages that contained sawdust and the same number of
animals as the treated groups.
Sleep restriction (SR)

Mice were submitted to a modified multiple platform method
(Zager et al., 2009) as described above (5 mice per cage containing
13 circular platforms) for 21 h (beginning at 13:00 h) and for
15 days (SR period). After each 21 h sleep deprivation period, the
mice were allowed to sleep for 3 h (sleep opportunity beginning at
10:00 h).
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Fig. 1. The experimental design is illustrated. Abbreviations are as follows: CTRL, control;
deprivation; PSD-R, paradoxical sleep deprivation + sleep recovery; d, day of the experime
Hot plate test

Immediately after PSD, SR, recovery, or the equivalent period in CTRL
mice, individual animals were placed on a hot plate (Ugo Basile,
Biological ResearchApparatus Company, Italy)maintained at 50±0.1 °C
for the evaluation of nociceptive sensitivity. The latency to withdraw
the paw (lick of either a hindpaw or forepaw or jumping off) to avoid
thermal nociception was measured (in seconds), at which point the
mouse was immediately removed from the hot plate. A latency
period of 90 sec was defined as complete analgesia and used as the
cut-off time for mice that did not respond (Bolles and Fanselow,
1982). The test was conducted between 08:00 and 10:00 h.

Experimental design

Male and female mice were randomly assigned to CTRL (n=10),
PSD (n=10 males and 9 females), SR (n=9 males and 8 females),
and recovery period groups. The recovery period groups were sleep-
deprived or sleep-restricted and then returned to home cages and
allowed to have undisturbed, spontaneous sleep for 24 h. These
groups were named PSD-R (n=10 males and 8 females) and SR-R
(n=9). The CTRLmice weremaintained in separate cages in the same
room as the experimental mice during the procedures and were
euthanized on the same day as the other groups. By housing all of the
groups in the same room, we controlled for the environmental
conditions. After residing in the water tanks (PSD and SR groups) or
home-cages (CTRL, PSD-R, and SR-R groups), the mice were brought
individually to an adjacent room for pain behavior assessment (Fig. 1).
Throughout the experimental protocol, the females were submitted to
vaginal smear cytology to determine their estrous cycle phases
(Caligioni, 2009). During the process of running the PSD and SR
protocols, some animals were euthanized because they failed to
remain on the top of the platforms and developed hypothermia. As a
result, the number of animals in each group was different.

Hormonal analysis

At the end of the hot plate test, all animals were brought
individually to an adjacent room and decapitated between 10:00 and
d13
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SR, sleep restriction; SR-R, sleep restriction+sleep recovery; PSD, paradoxical sleep
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12:00 h. Blood was collected in glass tubes and centrifuged
(3,500 rpm/15 min) at 4 °C to obtain samples of plasma. Intra-assay
coefficients of variation are given in parentheses. Plasma corticoste-
rone concentrations (7.1%) were assayed using a double antibody
radioimmunoassay method specific for rats and mice using a
commercial kit (MP Biomedicals, USA). The sensitivity of the assay
was 0.25 ng/ml. The radioimmunoassay technique was used to
determine the concentrations of estradiol (7.6%, MP Biomedicals,
USA), and the minimum detection limit was 10 pg/ml.

Statistical analysis

The results of the nociceptive response tests and the hormonal
concentrations showed a non-normal distribution. Therefore, the data
were analyzed using the non-parametric Kruskal-Wallis test. Post hoc
comparisons were performed using the Games-Howell test when
necessary. The body weight gain data were evaluated by an analysis of
variance (ANOVA) followed by Tukey's test for comparisons between
the groups. The results are expressed as medians±SEM. The level of
significance was set at pb0.05.

Results

Effects of sleep loss on body weight

As expected, the CTRL groups had a gain in body weight during the
experimental period. Acute and chronic sleep loss significantly
affected body weight. Both the PSD (pb0.05) and SR (pb0.005)
groups showed significant body weight loss compared to CTRL mice,
as revealed by a one-way ANOVA [F(5,50)=14.359; pb0.001] followed
by Tukey's test (Fig. 2A). The body weight remained reduced in the
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Fig. 2. The effects of sleep loss on body weight gain in control (CTRL, n=10),
paradoxical sleep deprived (PSD, n=10 males and 9 females), sleep restricted (SR,
n=9 males and 8 females) (panel A) and sleep recovery period (PSD-R, n=10 males
and 8 females, and SR-R, n=9) (panel B) male and female mice are shown. The data are
shown as means±SEM. * vs. respective CTRL group; † vs. other sex, same treatment.
pb0.05.
PSD-R (pb0.001) and SR-R (pb0.001) males compared to CTRL group
(one-way ANOVA [F(5,50)=14.261; pb0.001]). In addition, the PSD-R
(pb0.05) and SR-R (pb0.001) males showed significant body weight
reductions compared to PSD-R and SR-R female groups, respectively
(see Fig. 2B). These data demonstrate that 24 h of sleep rebound was
not enough to body weight regain in PSD-R and SR-R male groups.

Effects of sleep loss on pain sensitivity

A lack of sleep induced significant hyperalgesia in both male and
female mice (Kruskal-Wallis [H(5)=36.525; pb0.001]). The PSD
(pb0.001), and SR (pb0.001) groups showed a significant increase in
the nociceptive response compared to the CTRL groups (Fig. 3A). For
example, the PSD group showed a reduction in paw withdrawal
latency of 43% in males and 55% in females, whereas the SR group
exhibited a decrease of 38% and57% inmales and females, respectively,
compared to the CTRL animals. The SR females exhibited shorter paw
withdrawal latencies than the SR males (15.3 vs. 22.6 sec; pb0.01).

Effects of sleep recovery on pain sensitivity

As shown in Fig. 3B, sleep recovery for 24 h was able to restore
nociceptive sensitivity to control levels in the PSD mice. The paw
withdrawal latency was still shorter in the SR males (pb0.05) and
females (pb0.01) when compared with the respective CTRL group
even after 24 h of sleep recovery (Kruskal-Wallis [H(5)=25.245;
Fig. 3. The effects of sleep loss on the paw withdrawal threshold in response to thermal
noxious stimulus in control (CTRL, n=10), paradoxical sleep deprived (PSD, n=10
males and 9 females) and sleep restricted (SR, n=9 males and 8 females) male and
female mice (panel A) and after sleep recovery periods (PSD-R, n=10 males and
8 females, and SR-R, n=9) (panel B) are shown. The data are shown as means±SEM. *
vs. respective CTRL group; † vs. other sex, same treatment. pb0.05.
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Fig. 4. Mean±SEM concentrations of plasma estradiol in control (CTRL, n=9), sleep-
restricted (SR, n=6) and recovery period (SR-R, n=5) female mice groups are shown.
* vs. CTRL and SR. pb0.05.

177P. Araujo et al. / Hormones and Behavior 59 (2011) 174–179
pb0.001]). The SR-R females also had lower paw withdrawal thresh-
olds than the SR-R males (17 vs. 26.1 sec; pb0.05).

Hormone concentrations

The corticosterone concentration values are presented in Table 1.
The PSD mice exhibited higher concentrations of corticosterone than
the CTRL and SR groups. The Kruskal-Wallis test (H(5)=22.781;
pb0.05) followed by Games-Howell post hoc test demonstrated that
the PSD males showed significant differences compared to the CTRL
group (136.4 vs. 28.4 ng/ml; pb0.05). Moreover, in the recovery
groups the levels of corticosterone in the SR-R males were statistically
lower than those in the SR-R females (51 vs. 32.2 ng/ml; pb0.05), as
revealed by Kruskal-Wallis test ([H(5)=25.23; pb0.05]). Because the
SR mice showed sex differences in their nociceptive responses, we
elected to examine the estradiol concentrations only in the female
mice that were submitted to the SR protocol. Low concentrations of
estradiol were observed after SR (-21% in relation to CTRL), and the
estradiol concentrations were decreased after 24 h of sleep recovery
relative to the CTRL and SR groups (Kruskal-Wallis [H(2)=11.112;
pb0.005]), as shown in Fig. 4 (pb0.01). It is important to note that all
females submitted to SR, regardless of their estrous cycle phase at the
start of the protocol, showed a constant diestrus during the SR period.
In contrast, the CTRL and PSD females displayed regular estrous cycles.
Several aliquots of plasma were excluded from the hormonal analysis
due to refrigeration problems. Therefore, the number of animals used
in the hormonal analysis was lower than that for the pain behavior
analysis.

Discussion

The present findings reveal that acute and chronic experimental
sleep loss were both able to produce marked alterations in the
nociceptive sensitivity in male and female mice. Our findings
demonstrated sex differences in nociceptive responses during chronic
SR, with females exhibiting a lower paw withdrawal threshold during
a hot plate test. Moreover, an investigation of the positive effects of
sleep recovery on the modulation of the nociceptive response
indicated that 24 h of sleep reversed the hyperalgesia produced by
PSD. In contrast, the same period of sleep recovery was not able to
restore normal nociceptive sensitivity in the SR mice.

An increase in nociceptive sensitivity after sleep deprivation has
been reported in animal studies (Hicks et al., 1978, 1979; Onen et al.,
2000, 2001b; Nascimento et al., 2007; Wei et al., 2008; Andersen et al.,
2009a;Damascenoet al., 2009). However, these studieswere conducted
primarily in rats. Only one study evaluated the nociceptive response in
mice, and it found no significant change in the thermal threshold for the
hot plate test after 48 h of PSD (Asakura et al., 1992). Our study is the
first to demonstrate that male and female mice submitted to acute and
chronic sleep deprivation show hyperalgesia.

The ability of sleep recovery to reverse the increase in nociceptive
sensitivity induced by sleep loss is still controversial. Hicks et al.
(1979) showed that hyperalgesia in female Sprague-Dawley rats
persisted until 96 h after the end of PSD. However, Onen's study
reported that the alterations in the nociceptive response in male
Wistar rats induced by 72 h of PSD returned to baseline levels after
Table 1
The effects of acute and chronic sleep loss on concentrations of plasma corticosterone (ng/

Groups

CTRL PSD

Male 28.43 (±0.9) 136.47 (±39.4)a

Female 35.96 (±2.2) 164.86 (±57.7)

CTRL: control (n=8 males and 9 females); PSD: paradoxical sleep deprivation (n=10 male
sleep deprivation+recovery (n=10 males and 8 females); SR-R: sleep restriction+recove
24 h of sleep rebound (Onen et al., 2000). More recently, our group
demonstrated that 96 h of PSD decreased the paw withdrawal
threshold for the hot plate test in male Wistar rats, and that this
effect persisted after 24 h of sleep recovery (Nascimento et al., 2007).
Our current study found that the hyperalgesia induced by 72 h of PSD
was reversed by sleep recovery. It is interesting to note that 24 h of
sleep rebound was not sufficient to return the nociceptive response to
control baseline values in the SR mice. The fact that the nociceptive
sensitivity remained altered after sleep recovery suggests that gradual
sleep loss over long periods causes more marked alterations in the
nociceptive system than acute sleep deprivation. Altogether, it seems
that variations in the duration of sleep deprivation, the type of
noxious stimulus, and the sex and strain of the animal could explain
some of the discrepancies in the literature.

Themechanisms throughwhich sleep loss can induce hyperalgesia
are not fully understood. It has been reported that some brain
structures and neurotransmitter systems that regulate the sleep-wake
cycle are also involved in the control of the nociceptive response
(Bannister et al., 2009;Watson et al., 2010). Sleepdeprivationhas been
shown to produce changes in various neurotransmitter systems, such
as the monoaminergic system (mainly the serotonergic raphe nuclei,
the noradrenergic locus coeruleus, and dopaminergic neurons), which
are involved in the control of pain and sleep (Bannister et al., 2009;
Ohayon, 2009). These alterations in the neurotransmitter levels can lead
to changes in neurotransmitter receptor function (Longordo et al.,
2009). For example, the capacity of serotonin (5-HT) to inhibit or
facilitate the nociceptive response depends on the receptor subtype
that is expressed in the sensory pathway. It is known that the spinal
5-HT1A receptorsmodulate antinociceptive actions, and that the 5-HT2C
and 5-HT3 receptors mediate pronociceptive actions (Bannister et al.,
2009). However, both the intrathecal administration of selective 5-HT1A
or 5-HT2C receptor antagonists into the lumbar level of the spinal cord
reduced nociceptive hypersensitivity induced by PSD in rats (Wei et al.,
2008). This finding suggests that the continuous stimulation of the
wake-promoting system during sleep deprivation may alter the
receptor function and contribute to maintenance of hyperalgesia.
Although additional studies are needed to elucidate possible central
mechanisms and neurotransmitter systems through which sleep loss
could alter nociceptive sensitivity, it is speculated that REM/paradoxical
sleep is essential for the integrity of the nociceptive system.
ml) are shown. The data are expressed as medians±SEM.

SR PSD-R SR-R

34.34 (±1.2) 28.19 (±0.44) 33.22 (±1.7)
121.1 (±46.5) 67.84 (±14.2) 51 (±3.8)b

s and 9 females); SR: sleep restriction (n=5 males and 8 females); PSD-R: paradoxical
ry (n=5 males and 9 females). a vs. respective CTRL group; b vs. SR-R male. pb0.05.
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The relationship between sex and nociception is complex. Whereas
some studies have demonstrated that female rodents show a greater
nociceptive response to noxious stimuli (Mogil et al., 2000; Tall and
Crisp, 2004; Li et al., 2009), others have found no sex differences in
nociception (Greenspan et al., 2007; Leo et al., 2008). For example, in a
series of tests of thermal and mechanical acute nociception in female
andmalemiceof four strains, includingC57BL/6J (whichwasused in the
present study), the authors failed to find significant differences in
nociception between the sexes (Leo et al., 2008). Consistent with these
results, our findings did not show sex differences in pain behavior
within the CTRL group or after PSD. In contrast, when the animals were
submitted to 15 days of SR, the females exhibited lower nociceptive
thresholds. This indicates that sex may influence the nociceptive
response during chronic sleep deprivation.

The SR method mimics the human lifestyle of restricted sleep
durations and prolonged wakefulness, a condition that is progres-
sively increasing in current society. In our study, the SR group showed
marked changes in the nociceptive response, with females beingmore
susceptible thanmales to the negative effects of chronic sleep loss. It is
reasonable to assume that these alterations in the nociceptive system
could be related to changes in estradiol levels. Females exhibited low
endogenous concentrations of estradiol after the SR protocol, and this
decrease was more accentuated in SR females after 24 h of sleep
rebound. This result may indicate a possible long-lasting impairment
of the gonadal hormones that results from sleep loss. Estrogens have
been suggested to play a role in the nociceptive system (Craft et al.,
2004; Craft, 2007). However, the exact role of estradiol is still
controversial. The results of animal studies have suggested that high
concentrations of estradiol are both pronociceptive (Lu et al., 2009)
and antinociceptive (Kramer and Bellinger, 2009; Aloisi et al., 2010).
In this context, low estradiol concentrations could be related to sex
differences in the nociceptive response and in the hyperalgesic effects
of chronic sleep loss.

It is important to note that SR females had their estrous cycles
disrupted. We previously demonstrated that estrous cyclicity is
markedly affected after PSD in rats (Antunes et al., 2006). In that
study, only the females that started PSD during the diestrus phase
showed an anestrous period (constant diestrus phase) during sleep
recovery. In the present study, all of the female mice submitted to SR
exhibited an anestrous phase throughout the chronic SR protocol. These
findings indicate that SRmayprofoundly affect ovarianhormone release
andmodulate physiological and behavioral processes related to estrous
cyclicity.

Evidence suggests that prolonged stress can decrease the noci-
ceptive threshold and exacerbate some painful conditions (Alexander
et al., 2009). Thus, the question arises as to whether the alterations we
observed in pain thresholds were caused by PSD/SR or by the stress
inherent in our methodology. It is well established that the PSD
method induces increases in corticosterone (Andersen et al., 2004,
2005). In fact, our results showed that corticosterone levels changed
after 72 h of PSD. We acknowledge that sleep deprivation is an
inherently stressful procedure, so it may not be possible to completely
extricate the sleep deprivation effects from the general stress effects.
Nevertheless, several aspects of our findings argue against the
possibility that non-specific stress could account for our observations.
Interestingly, the SR mice showed no significant increases in
corticosterone, whereas they showed marked changes in nociceptive
sensitivity. Of note, our previous study demonstrated that the SR
method did not affect corticosterone levels in rats (Zager et al., 2007;
Andersen et al., 2009b). It seems that there is an adaptation of the
hypothalamic-pituitary-adrenal response in animals that are submitted
to chronic stress. To our knowledge, this is the first time that the
influence of 15-day SR on the corticosterone levels of mice has been
reported. The lack of increased levels of corticosterone after partial sleep
loss suggests that themicewere able to copewith the stress inherent in
the procedure. Because the animals showed hyperalgesia after being
exposed toSR,whereas their corticosterone levels remainedunchanged,
these results suggest that the changes in pain sensitivity were due to
sleep loss rather than to stress.

In recent years, there has been increasing evidence regarding the
health dangers caused by inadequate sleep. Among the many impacts
of sleep deprivation on health and well-being, alterations in pain
sensitivity have received considerable attention. Given the close
associations between acute and chronic pain and sleep disturbance,
and the substantially greater prevalence of many pain conditions in
women, it is critical to understand how changes in sleep patterns, like
PSD and SR, can alter pain and the interaction of these changes with
gonadal hormones. Furthermore, it is crucial to understand the roles of
the nervous, endocrine, and immune systems in the sex differences in
hyperalgesia inducedbysleep loss.Ourfindings revealed that chronic SR
changes the nociceptive response in mice, and that females were more
affected by these alterations. This knowledge is essential for a better
understanding of the role of sleep in the nociceptive system and how
sleep loss could modulate sex differences in nociception.
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