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Background. Following infection with viruses, bacteria or protozoan parasites, naı̈ve antigen-specific CD8+ T cells undergo
a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation
of specific effector CD8+ T cells varies widely according to different pathogens. We hypothesized that the timing of increase in
the pathogen load could be a critical parameter governing this process. Methodology/Principal Findings. Using increasing
doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing
of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse
relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8+ T cells
became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic
responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific
CD8+ cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8+ cytotoxic T cells is in fact
dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed
that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8+ cytotoxic T cells was dependent on MHC
class II restricted CD4+ T cells. Conclusions/Significance. Our results are compatible with our initial hypothesis that the
timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4+ T cell-dependent expansion
of pathogen-specific CD8+ cytotoxic T cells.
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INTRODUCTION
MHC class Ia-restricted CD8+ T cells are important mediators of

the adaptive immune response against infections caused by

intracellular microorganisms. Following infection with certain

viruses, bacterias or parasites, naı̈ve antigen-specific CD8+ T cells

go through a process of fast differentiation and proliferation,

generating effector cytotoxic cells (expansion phase). These

effector cells circulate between lymphoid and non-lymphoid

tissues to restrain the multiplication of the infectious pathogen.

Following pathogen elimination, the number of specific effector

CD8+ T cells is drastically reduced (contraction phase) and the

establishment of a long-lived population of memory T cells

responsible for perpetuating immunity against re-infection takes

place. This kinetics of effector CD8+ T cell expansion, contraction

and establishment of a memory population has been fairly well

reproduced and it is being thoroughly studied in a number of

experimental models, including virus, bacterias and protozoan

parasites (reviewed in ref. 1–3).

Using these experimental models, it was possible to establish

that specific CD8+ T cells differentiate and proliferate very quickly

reaching a peak between days 4 and 8 after immunization with

either lymphocytic choriomeningitis virus (LCMV), influenza

virus, vaccinia virus, Listeria monocytogenes or Plasmodium yoelli [4–

9]. Recent studies in mice infected with Toxoplasma gondii,

Mycobacterium bovis bacille Calmette-Guerin (BCG), Trypanosoma

cruzi and Salmonella typhimurium described significantly different

kinetics of differentiation and proliferation of specific CD8+ T

cells. In the case of T. gondii, CD8+ T cells specific for a transgenic

epitope became detectable only 10 days after challenge, and the

maximum number of epitope-specific T cells peaked at day 23

[10]. Similarly, in mice injected with recombinant S. typhimurium or

BCG the peak response to the transgenic epitope was day 21st or

30th following challenge, respectively [11,12].

We recently described the kinetics of parasite-specific cytotoxic

CD8+ T cell responses following mouse infection with the human

protozoan parasite Trypanosoma cruzi [13]. An interesting finding

was that the initial inoculum of T. cruzi did not drive the

differentiation and proliferation of effector CD8+ T cells. The

expansion phase of specific splenic CD8+ T cells occurred after in

vivo multiplication of parasites, between days 9 and 15 after i.p.

challenge of C57BL/6 mice with 104 parasites of the Y strain.

More recently, Martin et al., (2006) confirmed and extended our

results in studies using different T. cruzi strains, which revealed that

the peak of parasite epitope-specific CD8+ T cells could vary from

14 to 24 days post-infection [14].
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The results obtained during T. gondii, BCG, S. typhimurium or T.

cruzi infections sharply differed from the observations made in

mice infected with LCMV, vaccinia, influenza, L. monocytogenes or P.

yoelli and raised questions on the possible mechanisms controlling

the kinetics of differentiation and proliferation following infection

with different pathogens.

One mechanism that could influence the kinetics of specific

CD8+ T cells differentiation and proliferation is the amount of

antigen and parasite-derived adjuvant both of which accumulate

during the infection. Immediately after the initial infectious

inoculum, the amount of antigen and parasite adjuvant available

for CD8+ T-cell priming may be limited, however both will

increase after pathogen multiplication, and then may reach

a certain threshold necessary to promote the maturation of antigen

presenting cells (APC) - in the case of the adjuvant molecule - and

trigger the activation of naı̈ve CD8+ T cells, in the case of the

antigen. If this hypothesis is correct, the timing of increase of

pathogen adjuvant/antigen would be a key parameter governing the

process of CD8+ T cell differentiation and expansion.

The aim of the present study was to determine whether

modulation of the parasite load within a certain period of time can

in fact alter the activation of effector/protective CD8+ T cells. For

this purpose, we used an experimental model where C57BL/6 mice

were challenged with different doses of parasite of the Y strain of

Trypanosoma cruzi. This strategy allowed us to modulate the timing of

increase in the parasite load and determine the effect it may have on

the in vivo differentiation and proliferation of effector/protective

CD8+ T cells. Using this experimental model, we were able to lend

support to the hypothesis that the timing of accumulation of the

parasite load can be a key factor influencing the differentiation and

proliferation of CD4+ T cell-dependent specific CD8+ cytotoxic T

cells following infection with a human pathogen.

METHODS

Mice and parasites
Female 8 to 10-week-old wild type (WT) C57BL/6, CD8a
deficient C57BL/6 (CD8 KO), MHC-II deficient C57BL/6

(MHC-II KO), CD4 deficient C57BL/6 (CD4 KO), p40 deficient

C57BL/6 (IL-12 KO), wild type 129 and 129 deficient for the

IFN-I receptor (IFN-I receptor KO) were obtained from

University of São Paulo. Perforin deficient C57BL/6 (Perforin

KO) mice were bred on our own facility.

Parasites of the Y strain of T. cruzi were used in this study [13].

Bloodstream trypomastigotes were obtained from the plasma of

A/Sn mice infected 7 days earlier. The concentration of parasites

was adjusted and each mouse was inoculated intraperitoneally

(i.p.) with 0.2 mL containing the indicated amount of trypomas-

tigotes. Parasite development was monitored by counting the

number of bloodstream trypomastigotes in 5 ml of fresh blood

collected from the tail vein [13]. When the parasitemia was above

105 trypomastigotes per mL, blood samples were diluted and the

number of parasites estimated with the aid of a hemacytometer.

Radiation-attenuated parasites were obtained by exposing them to

gamma-irradiation (100 krads).

Immunological assays
For the in vivo cytotoxicity assays, C57BL/6 splenocytes were

divided into two populations and labeled with the fluorogenic dye

carboxyfluorescein diacetate succinimidyl diester (CFSE Molecu-

lar Probes, Eugene, Oregon, USA) at a final concentration of

5 mM (CFSEhigh) or 0.5 mM (CFSElow). CFSEhigh cells were pulsed

for 40 min at 37uC with 1 mM of the H-2Kb ASP-2 peptide

(VNHRFTLV), or TsKb-18 (ANYKFTLV) or TsKb-20

(ANYDFTLV). CFSElow cells remained unpulsed. Subsequently,

CFSEhigh cells were washed and mixed with equal numbers of

CFSElow cells before injecting intravenously (i.v.) 15 to 206106

total cells per mouse. Recipient animals were mice that had been

infected or not with T. cruzi. Spleen cells of recipient mice were

collected 20 h after transfer, fixed with 3.7% paraformaldehyde

and analyzed by fluorescence-activated cell sorting (FACS), using

a Facscalibur Cytometer (BD, Mountain View, CA). The

percentage of specific lysis was determined using the formula:

1{
% CFSEhigh infected

�
% CFSElow infected

%CFSEhigh naive
�

%CFSElow naive
|100%: ð1Þ

The ELISPOT assay for enumeration of Interferon-gamma

(IFN-c) producing cells was performed essentially as described

earlier [15].

Statistical analysis
The values of were compared by One-Way Anova followed by

Tukey HSD tests available at the site http://faculty.vassar.edu/

lowry/VassarStats.html. The LogRank test was used to compare the

mouse survival rate after challenge with T. cruzi. The differences

were considered significant when the P value was ,0.05.

RESULTS
In initial studies we investigated the development of T. cruzi

parasitemia in wild type C57BL/6 mice challenged i.p. with

different doses of trypomastigotes (102, 103, 104 or 105 parasites

per mouse). As shown in figure 1, infection with 102 parasites

generated a parasitemia that could be first detected at day 8 and

peaked at day 11 post challenge. Doses of 103, 104 or 105 parasites

hastened the initial detection of parasitemia to days 5, 4 and 3,

respectively. The peak parasitemia in mice receiving the highest

parasite doses was also earlier, at days 9, 8 or 5 respectively. The

magnitude of the peak parasitemias between the different mice

groups was not significantly different when comparing groups of

mice infected with 105 or 104. Similarly, no difference was found

when comparing groups of mice infected with 103 or 102. Mice

infected with 103 parasites presented a peak parasitemia lower

(P,0.05) than the mouse group infected with 104 but not with 105

parasites. In repeated experiments, mice infected with 102

parasites presented a peak parasitemia lower than mouse groups

infected with 104 or 105 (P,0.01 in both cases).

In view of these results, we concluded that there is an inverse

relationship between parasite inoculum and the timing of the

development of T. cruzi parasitemia, a feature that had not been

described. In addition, we observed that the peak parasitemia did

not differ significantly among groups of mice injected with 103,

104, or 105 parasites. Mice infected with 102 parasites consistently

presented lower peak parasitemia than animals challenged with

much higher parasite doses (104 or 105 parasites per mouse). In

spite of the fact that the parasitemia reached the peak earlier when

the parasite inoculum was increased, these mice were capable of

controlling the infection and survived the challenge. Because in

this mouse model of infection CD8+ T cells are critical for survival

[13], the fact that animals injected with increasing parasite

inoculum survived infection suggested that they were able to

develop protective immunity in spite of increasing the infective

dose. To determine whether protective immunity dependent on

CD8+ T cells could indeed be developed in these animals, we

compared the parasitemia and mortality of wild type and CD8

KO mice following infection with different doses of parasites. As

shown in figure 2A, when comparing infected wild type and CD8

CD8+ T Cell Expansion
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KO mice, the ascendant part of the curve of parasitemia was not

significantly different. These results indicated that CD8+ T cells were

not important for parasite control during that period regardless of

the parasite dose used for challenge. After the day of the peak

parasitemia, wild type mice rapidly controlled the number of

parasites in the blood. In sharp contrast, CD8 KO mice were unable

to control the parasitemia, became ill and eventually died.

When we compared the timing of death of each group of CD8

KO mice, we observed an inverse relationship between the size of

parasite inoculum and the timing of death. Statistical analysis

revealed a significant difference among the groups of infected CD8

KO mice (P#0.01 in all cases, Fig. 2B). As wild type mice

survived, these results clearly confirmed the importance of CD8+

T cells as a protective mechanism in mice infected with different

doses of parasite. These results also suggest that the activation of

protective CD8+ T cells in wild type C57BL/6 mice takes place

earlier as the parasite inoculum is increased.

To determine whether there was an inverse relationship

between the parasite inoculum used for infection and the timing

of expansion of specific CD8+ cytotoxic T cells, we characterized

the kinetics of effector CD8+ T cell development. For this purpose

we used a functional cytotoxic assay which measures the in vivo

elimination of target cells coated with peptide VNHRFTLV [13].

The phenotype of effector cells mediating peptide-specific in vivo

cytotoxicity was established earlier as being CD8+ T cells [13]. As

shown in Fig. 3A, at day 5 post-infection, none of the mouse

groups presented peptide-specific cytotoxicity. At day 10 day post-

infection, we observed a direct correlation between the size of

parasite inoculum and intensity of the in vivo cytotoxicity (Fig. 3B).

By day 15th, groups of mice infected with 103, 104 or 105 parasites

had reached their maximum cytotoxicity (close to 100% specific

lysis). In contrast animals infected with 102 parasites still displayed

only ,50% cytotoxic activity (Fig. 3C). By day 30th post-infection,

the in vivo cytotoxicity reached frequencies close to 100% in all mouse

groups (Fig. 3D). The in vivo cytotoxicity continued at a high level in

all infected groups until tested 100 days after challenge (Fig. 3E).

IFN-c ELISPOT assays confirmed that at day 5 post-infection

few peptide-specific T cells were detected in mice infected with

increasing doses of T. cruzi. A direct correlation between the size of

parasite inoculum and the number of peptide-specific cells was

clearly evident by day 10 post-infection. By day 15th or 30th, in all

mice groups we detected a high frequency of IFN-c producing

specific T cells (Fig. 3F).

To evaluate whether the results described above could also be

extended to other parasite epitopes, we evaluated the kinetics of

the in vivo cytotoxicity specific for two other sub-dominant epitopes

(TsKb-18 and TsKb-20, ref. 14). We found that the kinetics of

cytotoxicity for both sub-dominant epitopes was also dependent on

the dose of parasites used for the challenge (Fig. 4).

The results presented above established an inverse relationship

between the parasite inoculum and the timing of cytotoxic CD8+

T cells differentiation and proliferation. However, it was not clear

whether this event was in fact dependent on parasite multiplication

or depended solely on dose of parasite used for challenge. To

address this question, we challenged mice with irradiated or non-

irradiated parasites. Irradiated parasites maintain their viability as

assessed by their motility and capacity to infect host cells in vitro.

However, they are unable to multiply (in vitro or in vivo) and

establish an infection as determined by absence of parasitemia.

Mice challenged with 103 or 104 irradiated parasites did not

develop detectable in vivo cytotoxic activity or IFN-c producing

cells (Fig. 5A and 5B, respectively). In contrast, animals challenged

with 103 or 104 non-irradiated parasites developed strong cyto-

toxic responses and peptide-specific IFN-c producing cells (Fig. 5A

and 5B, respectively). This result suggested that parasite replica-

tion was indeed an important factor to promote differentiation and

proliferation of cytotoxic T cells.

Because certain genetically deficient mice are highly susceptible

to T. cruzi infection, and die before specific CD8+ T cells could be

detected, it is difficult to study the importance that certain cells/

molecules may have on proliferation and development of effector

functions of CD8+ cytotoxic T cells following T. cruzi infection.

However, the fast development of cytotoxic T cells observed in

mice infected with large doses of T. cruzi (105 parasites per mouse),

allowed us to study some of the molecules of the immune system

that could play an important role in the development of protective

CD8+ cytotoxic T cells. Using this strategy, we were able to study

whether genetically deficient mice lacking MHC-II, CD4, IL-12,

perforin or IFN-I receptor were capable of developing specific

CD8+ cytotoxic T cell responses. We found that MHC-II or CD4

KO mice developed negligible levels of specific cytotoxicity in vivo

(Fig. 6A and B, respectively). In contrast, IL-12 KO or IFN-I

receptor KO mice developed normal levels of specific cytotoxicity

in vivo (Fig. 6A and 6C, respectively). Cytotoxicity mediated by

CD8+ T cell responses in Perforin KO mice were significantly

reduced (,75%) compared to control wild type animals. The

results of these studies clearly indicate that MHC-II and CD4 are

key molecules for the induction of an effective cytotoxic CD8+ T

cell response following T. cruzi infection.

DISCUSSION
Sufficient amounts of pathogen-derived adjuvant to mature APC

and antigen to trigger T cells are possibly among the critical steps

Figure 1. Trypomastigote-induced parasitemia in C57BL/6 mice
challenged with different doses of trypomastigotes of T. cruzi.
C57BL/6 mice were infected i.p. with 102,103, 104 or 105 bloodstream
trypomastigotes of the Y strain of T. cruzi. Parasitemia was followed
daily from days 0 to 14 after challenge. The results represent the mean
of 5–6 mice6SD. At the peak of infection, the parasitemia of mice
infected with each different dose was compared by One-way Anova
and Tukey HSD tests. The results of the comparisons were as follows: i)
1026103, Non-Significant (NS); ii) 1026104, P,0.01; iii) 1026105, P,0.01;
iv) 1036104, P,0.05; v) 1036105, NS; vi) 1046105, NS. Results are
representative of two independent experiments.
doi:10.1371/journal.pone.0000393.g001

CD8+ T Cell Expansion
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Figure 2. Infection in WT C57BL/6 or CD8 KO mice challenged with different doses of T. cruzi. Groups of WT C57BL/6 or CD8 KO were infected i.p.
with 102,103, 104 or 105 bloodstream trypomastigotes of the Y strain of T. cruzi. (A) Course of infection, estimated by the number of trypomastigotes
per mL of blood. Results represent the mean values of 4–5 mice6SD. The parasitemias of WT C57BL/6 or CD8 KO mice were compared by One-way
Anova. Asterisks denote statistically significant differences (P,0.05). (B) Kaplan-Meier curves for survival of WT C57BL/6 or CD8 KO infected mice with
different doses of parasites. Statistical analyses were performed using LogRank test comparing the different mouse groups. Initially, we compared
groups of WT C57BL/6 infected with different doses. The results of the comparison showed no statistically significant differences among them.
Subsequently, we compared WT C57BL/6 or CD8 KO infected with each different dose of parasites. The results of the comparison showed statistically
significant differences in between C56BL/6 or CD8 KO challenged with each parasite dose (P,0.0001, in all cases). Finally, statistical analyses were
performed comparing the groups of CD8 KO infected with different doses. The results of the comparison were as follows: i) CD8 KO 1026CD8 KO 103

(P = 0.0025); ii) CD8 KO 1026CD8 KO 104 (P = 0.0046); iii) CD8 KO 1026CD8 KO 105 (P = 0.0016); iv) CD8 KO 1036CD8 KO 104 (P = 0.01); v) CD8 KO
1036CD8 KO 105 (P = 0.0035); vi) CD8 KO 1046CD8 KO 105 (P = 0.0082).
doi:10.1371/journal.pone.0000393.g002
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required for the differentiation and proliferation of CD8+ cytotoxic

T cells. However, during infection with different pathogens, it is

not clear the point at which the amount of adjuvant and antigen

reach the necessary threshold to induce APC maturation and T

cell activation. Considering that in most cases the initial pathogen

inoculum is limited, pathogen multiplication may be a critical step

in this process. In our experimental model, after infection with

viable irradiated parasites of T. cruzi, we were unable to detect

differentiation and proliferation of cytotoxic CD8+ T cells (Fig. 5).

This result suggests that T. cruzi multiplication is critical to

generate sufficient amounts of parasite adjuvant for the maturation

of APC, and antigens for T cell activation. Our result contrasts

with the data published using sporozoites of P. yoelii. In this case,

relatively small doses (104–105 parasites per mouse) of non-

replicating radiation-attenuated parasites efficiently prime effec-

tor/protective CD8+ T cells [16]. As for Listeria, non-replicating

Figure 3. Kinetics of specific CD8+ T-cell mediated immune responses following challenge with T. cruzi. Groups of C57BL/6 mice were challenged
or not i.p. with 102,103, 104 or 105 bloodstream trypomastigotes of the Y strain of T. cruzi. Panels A to E - At the indicated days, the in vivo cytotoxic
activity against target cells coated with peptide VNHRFTLV was determined as described in the Methods Section. The results represent the mean of 4
mice6SD per group. Asterisks denote statistically significant differences when we compared T. cruzi challenged with control mice (P,0.05). Panel F-
At the indicated days, IFN-c producing spleen cells specific to the peptide VNHRFTLV were estimated by the ELISPOT assay. The results represent the
mean number of peptide-specific spot forming cells (SFC) per 106 splenocytes6SD (n = 4). Results are representative of two or more independent
experiments.
doi:10.1371/journal.pone.0000393.g003

CD8+ T Cell Expansion
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Figure 4. Kinetics of CD8+ T-cell mediated immune responses specific for sub-dominant epitopes in C57BL/6 mice. Groups of C57BL/6 mice were
challenged or not i.p. with 102,103, 104 or 105 bloodstream trypomastigotes of the Y strain of T. cruzi. At the indicated days, the in vivo cytotoxic
activity against target cells coated with peptide TsKb-18 or TsKb-20 was determined as described in the Methods Section. The results represent the
mean of 4 mice6SD per group. Asterisks denote statistically significant differences when we compared T. cruzi challenged with control mice
(P,0.05). ND = Not done. Results are representative of two or more independent experiments.
doi:10.1371/journal.pone.0000393.g004
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irradiated bacterias were also used during priming of effector/

protective CD8+ T cells. However, large doses of bacteria (109 per

mouse) were employed. This inoculum size of radiation-attenuated

bacterias was considerably higher than the inoculum of 104 non-

irradiated bacterias per mouse used to prime protective CD8+ T

cells [17].

While the notion that the timing of accumulation of pathogen-

derived antigen/adjuvant may influence the kinetics of expansion

of effector CD8+ T cells appears to be reasonable, few experi-

mental models provide an opportunity to evaluate this important

aspect of the CD8+ T cell response. Our initial observation that

increasing doses of T. cruzi caused an acceleration of T. cruzi

parasitemia without increasing mouse susceptibility provided

a suitable experimental model to study this issue. As observed

with T. cruzi infection, an inverse relationship was described

Figure 5. Specific cytotoxicity in C57BL/6 mice challenged with
irradiated or non-irradiated trypomastigotes of T. cruzi. Groups of
C57BL/6 mice were challenged or not i.p. with 103 or 104 irradiated or
non-irradiated bloodstream trypomastigotes of the Y strain of T. cruzi.
A) Fifteen days after challenge, the in vivo cytotoxic activity against
target cells coated with peptide VNHRFTLV was determined. The results
represent the mean of 4 mice6SD per group. B) Fifteen days after
challenge, IFN-c producing spleen cells specific to the peptide
VNHRFTLV were estimated by the ELISPOT assay. The results represent
the mean number of SFC per 106 splenocytes6SD (n = 4). Asterisks
denote statistically significant differences (P,0.05) when we compared
mice challenged with irradiated or non-irradiated trypomastigotes of T.
cruzi. Results are representative of two independent experiments.
doi:10.1371/journal.pone.0000393.g005

Figure 6. Specific cytotoxicity in WT or genetically deficient mice
challenged with T. cruzi. Groups of WT C57BL/6 (n = 4), WT 129 mice
(n = 4), MHC-II KO (n = 4), perforin KO (n = 8), CD4 KO (n = 4), IL-12 KO
(n = 4), and IFN-I receptor KO (n = 4) were challenged or not i.p. with 105

bloodstream trypomastigotes of the Y strain of T. cruzi. Ten days after
challenge, the in vivo cytotoxic activity against target cells coated with
peptide VNHRFTLV was determined. The results represent the mean of
the above indicated number of mice6SD per group. The in vivo
cytotoxicity was compared by One-way Anova and Tukey HSD tests.
The results of the comparisons were as follows: i) WT C57BL/66MHC-II
KO (P,0.01); ii) WT C57BL/66Perforin KO (P,0.01); iii) WT C57BL/
66CD4 KO (P,0.01); iv) WT C57BL/66IL-12 KO (NS); v) WT 1296IFN-I
receptor KO (NS). Results are representative of two or more in-
dependent experiments.
doi:10.1371/journal.pone.0000393.g006
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between the inoculum size of influenza virus and the timing of

accumulation of viral load in the lung. However, in this

experimental model, the rapid increase in the viral load augmented

the apoptosis of CD8+ T cells mediated by Fas/FasL interaction,

causing a reduction in the in vivo cytotoxicity mediated by CD8+ T

cells and and increased death rate in mice which received larger

viral doses [18]. Differently, in our T. cruzi model we observed that

increasing the size of parasite inoculum accelerated the parasitemia

and the timing of differentiation and expansion of cytotoxic CD8+

T cells (Fig. 3). However, the different doses of parasite did not

modified the final magnitude of the specific CD8+ T cell response

as measured by the in vivo cytotoxicity or the ELISPOT assay

(Fig. 3). Therefore, we concluded that differently to the influenza

virus system, no inhibitory activity was generated in T. cruzi

infection by the fast pace of parasite adjuvant/antigen accumu-

lation in C57BL/6 mice.

The curves of parasitemia observed in WT C57BL/6 or CD8

KO mice challenged with different parasite doses, strongly suggest

that protective CD8+ T cells are important for mouse survival only

after the parasitemia reached a peak (Fig. 1 and 2). Until that day,

the amounts of parasites in the blood of both, WT C57BL/6 and

CD8 KO mice, were similar (Fig. 2, ref. 13). After the peak

parasitemia, a rapid reduction in the number of blood parasites

was observed in WT mice while CD8 KO mice failed to control

parasite growth, became severely ill, and eventually died.

Confirmation of the importance of CD8+ T cells in the period

after the peak parasitemia was obtained in experiments in which

we estimated the presence of cytotoxic T cells in vivo. For example,

while the peak parasitemia of mice challenged with 105 parasites

was reached 5 days post-infection, no peptide-specific cytotoxicity

was detected at that day (Fig. 3A). However, 5 days later, the in

vivo cytotoxicity was already 100% indicating that specific CD8+ T

cells expanded vigorously during that period. Essentially the same

sequence of events is observed in mice challenged with different

doses of parasites. Based on these observations, we concluded that

following challenge of naı̈ve hosts with parasites of the Y strain of

T. cruzi, the differentiation and expansion of splenic antigen-

specific effector CD8+ T cells occurs after the peak parasitemia.

These results are in close agreement with the data published by us

and others using 4 different T. cruzi epitopes in two different mouse

strains [13,14]. We consider that our observations are consistent

with the interpretation that the amount of T. cruzi antigen

available before the peak of parasitemia is limited. When the

parasitemia reaches its peak, the threshold for the level of

adjuvant/antigen requirement may be achieved and only then,

the triggering and fast activation of naı̈ve CD8+ T cells may occur.

Studies performed in mice infected with LCMV or L. monocytogenes

described comparable timing for expansion of specific CD8+ T

cells i.e., the peak of viral or bacterial numbers occurs approximately

2–3 days after infection. The peak of CD8+ T cell response was

approximately 5 days later at day 7–8th post-infection [1,2].

In the last part of our study, considering that a rapid induction

of T. cruzi-specific CD8+ T cells occurred after administration of

a large inoculum of parasites, we evaluated the importance that

certain molecules/cells may have on differentiation/proliferation

and effector function of specific CD8+ T cells following T. cruzi

infection. For this purpose, we used genetically deficient mouse

strains that are described as highly susceptible to infection with T.

cruzi such as MHC-II KO, CD4 KO, IL-12 KO and perforin KO

[13,19–22]. MHC II KO or CD4 KO mice failed to develop

peptide-specific cytotoxicity. We therefore concluded that MHC

II-restricted CD4+ T cells are important for the maturation and/

or expansion of T. cruzi specific cytotoxic CD8+ T cells.

Our results indicating that CD8+ T cells responses against

T.cruzi are critically dependent on CD4+ T cells differ from most

pathogens. Following viral or bacterial infections, the maturation

and expansion of specific CD8+ T cells are not critically dependent

on CD4+ T cells [23–29]. Similarly, CD4+ T cells are not required

for the initial expansion of CD8+ T cells specific for epitopes

expressed by the protozoan parasites P. yoelii or T. gondii

[11,30,31]. The precise role for MHC II-restricted CD4+ T cells

during the process of CD8+ T cell activation in our model has yet

to be investigated. An intriguing possibility is that CD4+ T cells

can license dendritic cells for the activation of highly cytotoxic

CD8+ T cells detected by an in vivo assay [32].

Using IL-12 or IFN-I receptor KO mice, we observed that

neither IL-12 nor IFN type I are critically important for the

efficient maturation and expansion of T. cruzi-specific cytotoxic

CD8+ T cells. Our results contrasts with previous observation that

IL-12 can provide an important third signal that, in addition to the

engagements of TCR-MHC and CD28-B7, it could provide an

optimal environment for the efficient cytotoxic CD8+ T cells

differentiation and expansion [33–35].

Perforin KO mice were also severely impaired in their ability to

eliminate peptide-coated targets in vivo. The low level killing

detected in the absence of perforin may represent the contribution

of perforin-independent killing mechanisms. Considering our

previous results indicating that perforin KO mice are highly

susceptible to infection with parasites of the Y strain of T. cruzi, we

propose that the perforin-dependent granule exocytosis pathway

represent an important mechanism of protection against T. cruzi

infection. These results are in agreement with some viral models

describing perforin as a key molecule for resistance against viral

infection and mediating in vivo lysis of peptide-coated target cells

[36,37]. However, they differ with the observations made for other

protozoan parasites in which perforin KO mice have been shown

to develop protective CD8+ T cell mediated immunity [38–40].

In summary, our study provides new insights regarding the

requirements for the differentiation and expansion of cytotoxic

CD8+ T cells during experimental infection with a human

protozoan parasite. Using this experimental model, we determined

the importance of parasite load and MHC-II restricted CD4+ T

cells for the maturation and expansion of highly cytotoxic CD8+ T

cells. Also, it established an important role for perforin as

a mediator of the in vivo cytotoxicity against parasite-infected cells.
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