
Atypical EPEC Strains • JID 2003:188 (1 December) • 1685

M A J O R A R T I C L E
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Phenotypic and Genetic Profiling Reveals a Strong
Association between Enteroaggregative E. coli Heat-
Stable Enterotoxin and Diarrhea
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The virulence profiles of most atypical enteropathogenic Escherichia coli (EPEC) strains are unknown. A total
of 118 typical and atypical strains of EPEC serotypes and non-EPEC serogroups isolated from children with
or without acute diarrhea who were from different cities in Brazil were examined for virulence-associated
markers and adherence to HEp-2 cells, and also had random amplified polymorphic DNA (RAPD) analysis
performed. Atypical strains were identical to typical strains with regard to the virulence factors encoded on
the locus of enterocyte effacement (LEE). In contrast with typical EPEC strains, none of the atypical strains
reacted with the bfpA probe, and half of the strains hybridized with the perA probe. Most atypical strains
presented Tir sequences that correlated with enteropathogenic or enterohemorrhagic E. coli (98%), had LEE
inserted in either selC or pheU (88%), and presented a typeable intimin (52%). Eighteen new serotypes were
found in the EPEC strains. Atypical and typical EPEC strains belonged to different RAPD clusters. Most
atypical strains showed a localized-like adherence pattern (61.5%). Of the non–LEE-encoded virulence factors,
enteroaggregative E. coli heat-stable enterotoxin was noted most frequently (45%) and was significantly as-
sociated with diarrhea ( ). Thus, this virulence marker may be used as an additional tool for theP p .01
diagnosis of truly atypical pathogenic strains.

There currently are 6 groups of Escherichia coli that

have been found, by case-control epidemiological stud-

ies, to be associated with gastrointestinal disease [1].

Enteropathogenic E. coli (EPEC) produces a character-

istic histopathological lesion on the intestinal epithe-

lium that is known as the “attaching and effacing le-

sion” (A/E lesion). Enterotoxigenic E. coli produces

heat-labile enterotoxin (LT) and/or heat-stable entero-

toxin (ST) and �1 intestinal colonization factors. En-
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Nacional de Desenvolvimento Cientı́fico e Tecnológico.

Reprints or correspondence: Dr. Isabel C. A. Scaletsky, Departamento de
Microbiologia, Imunologia, e Parasitologia, Universidade Federal de São Paulo,
Escola Paulista de Medicina, Rua Botucatu 862, 30 andar, São Paulo, SP, Brazil,
CEP 04023-062 (scaletsky@ecb.epm.br).

The Journal of Infectious Diseases 2003; 188:1685–94
� 2003 by the Infectious Diseases Society of America. All rights reserved.
0022-1899/2003/18811-0011$15.00

teroinvasive E. coli invades the colonic epithelium. En-

terohemorrhagic E. coli (EHEC) produces Shiga toxins,

an a-hemolysin (E-hly), and, like EPEC, A/E lesions.

Enteroaggregative E. coli (EAEC) adheres to HEp-2 cells

in an aggregative adherence pattern and produces an

ST-like toxin (EAST1), an LT toxin, and fimbrial col-

onization factors called “AAFs” (aggregative adherence

fimbria). Diffusely adherent E. coli adheres to HEp-2

cells in a diffuse pattern and may carry the F1845 ad-

hesin, which is related to the afimbrial adhesin AFA-I

of uropathogenic E. coli. In addition to the aforemen-

tioned 6 classes of diarrheogenic E. coli, there are other

potential classes that produce cytolethal distending

toxin or cytotoxic necrotizing factor toxin, or that have

the capacity to detach tissue culture cells.

EPEC strains that cause infantile diarrhea among in-

dividuals in developing countries [2, 3] adhere to ep-

ithelial cells in a characteristic pattern called “localized

adherence” (LA) [4]. A similar adherence pattern,
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which is known as “localized-like adherence” (LAL), has been

seen in HEp-2 cells infected with EPEC for 6 h [5].

The LA phenotype is dependent on the presence of the EPEC

adherence factor (EAF) plasmid [6]. This plasmid harbors a

14-gene operon, which encodes a type IV pilus known as the

“bundle-forming pilus” (BFP) [7, 8]. A subset of 3 genes also

encoded on the EAF plasmid, known as the “plasmid-encoded

regulator” (perABC), is involved in the transcriptional regu-

lation of virulence genes, including bfp [9, 10].

The A/E lesion formation requires the products of several

chromosomal genes encoded on a 35-kb pathogenicity island

called the “locus of enterocyte effacement” (LEE) [11, 12]. The

LEE encodes a type III secretion system [13], multiple secreted

proteins, and a bacterial adhesin called “intimin” [14]. Two

LEE insertion sites (selC and pheU) on the E. coli chromosome

have been described, and a third unidentified insertion site has

been reported [12, 15].

Intimin, a 94-kD outer membrane protein that is encoded

by the gene eae, is responsible for the intimate adherence be-

tween bacteria and enterocyte plasmatic membranes. Studies

of antigenic variations in the 280-aa residues of the C-terminal

portion of intimin (the receptor-binding domain of the pro-

tein) and the use of polymerase chain reaction (PCR) analysis

allow the classification of distinct intimin types (designated

“intimin a,” “intimin b,” “intimin d,” and “intimin g”) and a

nontypeable group [16]. Tir is one of the EPEC translocated

proteins that is inserted into the host cell membrane, where it

acts as a receptor to intimin [17].

Recently, EPEC was classified into 2 subcategories on the

basis of hybridization results with the EAF probe: EPEC strains

that hybridize with the EAF probe have been designated “typical

EPEC,” whereas EPEC strains that do not hybridize with the

EAF probe have been designated “atypical EPEC” [1]. The

most-studied EPEC strains belong to a series of O antigenic

groups known as “EPEC O serogroups.” Twelve EPEC sero-

groups (O26, O55, O86, O111, O114, O119, O125–O128,

O142, and O158) were recognized by the World Health Or-

ganization in 1987. These serogroups include both typical and

atypical EPEC strains.

Typical EPEC serogroups are the most frequently isolated

bacterial diarrheal pathogens in developing countries, but di-

arrhea caused by atypical EPEC serogroups is now increasingly

recognized in many countries [5, 18]. Several atypical strains

of non-EPEC serogroups have also been identified in different

epidemiological studies [19, 20]. However, these pathogens

have not been thoroughly or well characterized for virulence

genes and properties, as have typical EPEC strains.

Serotyping of atypical strains is insufficient to assess the path-

ogenic properties of such strains, because such organisms are

quite variable in their repertoire of virulence determinants. We

have applied genetic and phenotypic analysis to a collection of

118 typical and atypical strains of EPEC and non-EPEC sero-

groups, to identify common and unique virulence loci and traits

in these organisms. We determined the presence of and some

characteristics of the LEE region, and we searched for the oc-

currence of virulence-associated markers within the E. coli spe-

cies. Furthermore, we also determined their adherence patterns

and serotypes. These data can be used to detect atypical EPEC

in clinical specimens and to elucidate the role of specific vir-

ulence factors.

MATERIALS AND METHODS

Bacterial strains. The strains examined in this report were

isolated during an epidemiological study of acute diarrhea in

children !2 years of age; the study was conducted in different

regions of Brazil in 1997–1999 [3, 21]. The children were ad-

mitted to public hospitals for treatment in the following cities:

São Paulo, Santa Catarina, Rio Grande do Norte, Goiania, and

Maranhão. In the study, rectal swab specimens were obtained

from 438 children with acute diarrhea (case patients) and from

422 children without any gastrointestinal symptoms (controls)

for �30 days before inclusion in the study.

In the aforementioned epidemiological study, each fecal spec-

imen was examined, by use of standard methods, for the pres-

ence of Shigella species, Salmonella species, Giardia lamblia,

Yersinia enterocolitica, Campylobacter species, Cryptosporidium

species, and rotavirus. Four separate lactose-fermenting colo-

nies and 2 non–lactose-fermenting colonies of each distinct

morphological type were cultivated in commercial test systems

(PROBAC do Brasil) for biochemical confirmation of species

or genus. All E. coli isolates were tested with specific DNA

probes designated to detect enterotoxigenic E. coli (LT and ST

probes), enteroinvasive E. coli (Inv probe), Shiga toxin–pro-

ducing E. coli (Stx1 and Stx2 probes), enteroaggregative E. coli

(EAEC probe), diffusely adhering E. coli (daaC and AIDA-I

probes), and EPEC (eae and EAF probes).

Serotyping. Identification of somatic (O) and flagella (H)

antigens of typical and atypical strains of non-EPEC serogroups

was done using standard agglutination methods [22], with spe-

cific antisera O1–O175 and H1–H56 acquired commercially

(from the Universidad de Santiago de Compostela; Lugo,

Spain). Ten strains also were tested in the Enteric Section of

Instituto Adolfo Lutz (São Paulo, Brazil), with the use of H

antisera prepared with type strains.

DNA hybridization. All strains were tested by colony blot

hybridization with the probe fragments shown in table 1. Col-

ony blots were prepared with Whatman 541 filter papers. The

DNA probes were prepared by extracting plasmids by use of

the method of Birnboim and Doly [34], digesting them with

appropriate restriction endonucleases or amplifying them from

prototype strains by use of PCR, and purifying fragments by
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Table 1. Description of genetic probes for virulence markers used in colony
blot hybridization of enteropathogenic Escherichia coli isolates.

Probe Associated property Description of probe Reference

perA Plasmid-encoded regulator 3500-bp fragment of pCVD450 [9]

LEE probe

A Right extremity of LEE 2870-bp fragment of pCVD453 [12]

B Part of escV and escN 2940-bp fragment of pCVD461 [12]

C Part of eae 1050-bp fragment of pCVD443 [12]

D Part of espA and espB 2300-bp fragment of pCVD460 [12]

bfpA Bundle-forming pilus 852-bp fragment of pMSD207 [23]

E-hly EHEC hemolysin 3400-bp fragment of pCVD419 [24]

hly a-Hemolysin 6400-bp fragment of pSF400 [25]

afa Afimbrial adhesin of Dr family 750-bp amplified fragment [26]

pap P fimbriae 328-bp amplified fragment [26]

sfa S fimbriae 410-bp amplified fragment [26]

aggA AAF/I fimbrial subunit 450-bp amplified fragment [27]

aafA AAF/II fimbrial subunit 550-bp amplified fragment [28]

aag3A AAF/III fimbrial subunit 462-bp amplified fragment [29]

astA Heat-stable toxin (EAST1) 111-bp amplified fragment [30]

cdt Cytolethal distending toxin 1357-bp fragment from pCVD448 [31]

cnf Cytotoxic necrotizing factor 335-bp fragment of pEOSW1 [32]

aer Aerobactin 602-bp amplified fragment [33]

NOTE. AAF, aggregative adhesion fimbria; E-hly, enterohemorrhagic E. coli hemolysin; EHEC,
enterohemmorhagic E. coli; LEE, locus of enterocyte effacement.

gel extraction. The probes were labeled with [a-32P]dCTP, and

colony hybridization assays were performed as described else-

where [35].

Insertion sites of the LEE region. To verify whether LEE

was inserted downstream of the selC locus, PCRs that amplify

the junctions of this locus with the E. coli chromosome were

performed [12, 15]. For the reactions, 10 mL of template DNA

(from a boiled suspension [in distilled water] of bacteria grown

in MacConkey agar), 50 mmol/L each dNTP, 1 U of Taq DNA

polymerase, 1.5 mmol/L MgCl2, and 0.5 mmol/L each primer

were mixed. PCRs also were performed to check whether pheU

was intact [15]. The amplification conditions and primer se-

quences that were used are presented in table 2.

Intimin typing. To identify the intimin type of the strains,

PCRs were performed with forward primers designed on the

basis of the eae sequence of EPEC strains of serotypes O127:

H6 (Int-a), O111:H� (Int-b), and O86:H34 (Int-d), and an

O157:H7 strain (Int-g). A conserved primer (Int-Ru) was used

in all reactions [16]. The amplification conditions and primer

sequences that were used are presented in table 2.

Tir typing. To detect the 2 forms of the Tir protein, EPEC

Tir and EHEC Tir, PCRs that amplified both coding regions

of the EPEC and EHEC tir genes were performed using Tir004

and Tir005 primers (table 2). Tir004 hybridized to the ri-

bosome binding site and to the 5′ end of both tir genes,

whereas Tir005 hybridized to the 3′ end sequences that span

the stop codons [36].

HEp-2 adherence assay. All E. coli isolates were charac-

terized by the pattern of adherence to HEp-2 cells in the pres-

ence of D-mannose, according to the method described by

Scaletsky et al. [4]. Monolayers were examined after incubation

for 3 h. In brief, monolayers of 105 HEp-2 cells were grown in

Dulbecco modified Eagle medium (DMEM; Gibco-BRL) con-

taining 10% fetal bovine serum, by use of 24-welled plates

(Falcon Becton Dickinson). Bacterial strains were grown stat-

ically in 3 mL of tryptic soy broth (Difco) for 16–18 h at 37�C.

Cell monolayers were infected with bacteria (40 mL7∼ 3 � 10

of bacterial cultures added to 1 mL of DMEM) and were in-

cubated at 37�C for 3 h. The infected monolayers were washed

with sterile PBS, fixed with methanol, stained with May-Grün-

wald and Giemsa stain, and examined under a light microscope.

When the adherence pattern was weak or negative, a new prep-

aration was made and examined after a 6-h incubation period.

Random amplified polymorphic DNA (RAPD) reaction.

To investigate the genetic relationship between typical and atyp-

ical EPEC strains, we used RAPD analysis to study our collec-

tion of strains. Seventy-eight strains of EPEC serotypes and

non-EPEC serogroups were typed by RAPD analysis. RAPD

profiles were generated using 3 different primers with distinct

G+C contents. These primers generated 105 polymorphisms
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Table 2. Primer sequences and amplification cycles used to verify some locus of enterocyte effacement
characteristics in enteropathogenic Escherichia coli strains.

Characteristic Primer Amplification cycle Reference

selC Intact K261 and K260 At 94�C for 1 min, 52�C for 1 min, and 72�C for 3 min [12]
Junction of LEE in selC

Right K255 and K260 At 94�C for 2 min, 50�C for 2 min, and 72�C for 3 min [15]
Left K296 and K295 At 94�C for 1 min, 52�C for 1 min, and 72�C for 3 min [15]

pheU intact K913 and K914 At 94�C for 1 min, 52�C for 1 min, and 72�C for 2 min [15]
Intimin

a Int-a and Int-R At 95�C for 20 s, 45�C for 1 min, and 74�C for 1 min [16]
b Int-b and Int-R At 95�C for 20 s, 45�C for 1 min, and 74�C for 1 min [16]
g Int-g and Int-Ru At 95�C for 20 s, 55�C for 1 min, and 74�C for 1 min [16]
d Int-d and Int-Ru At 95�C for 20 s, 45�C for 1 min, and 74�C for 1 min [16]

Tir Tir004 and Tir005 At 94�C for 1 min, 45�C for 1 min, and 72�C for 2 min [36]

Table 3. Organisms isolated from stool specimens.

Organism

No. (%) of isolates recovered

Pa

From patients
with diarrhea

(n p 438)

From
controls

(n p 422)
Total

(n p 860)

Typical EPEC

EPEC O serogroup 36 (8.2) 6 (1.4) 42 (4.9) .000

Non-EPEC O serogroup 9 (2.1) 2 (0.5) 11 (1.3) .036

Atypical EPEC

EPEC O serogroup 14 (3.2) 7 (1.7) 21 (2.4) .149

Non-EPEC O serogroup 24 (5.5) 20 (4.7) 44 (5.1) .647

EAEC 75 (17.1) 49 (11.6) 124 (14.4) .022

DAEC 81 (18.5) 65 (15.4) 146 (17) .242

Shigella species 38 (8.7) 5 (1.2) 43 (5) .000

Salmonella species 3 (0.7) 1 (0.2) 4 (0.5) .624

Rotavirus 51 (11.7) 13 (3.1) 64 (7.4) .000

NOTE. DAEC, diffusely adherent Escherichia coli; EAEC, enteroaggre-
gative E. coli; EPEC, enteropathogenic E. coli.

a Calculated using the test; was considered to be significant.2x P ! .05

that were used to construct a binary data matrix of the presence

and absence of shared bands. The data from these comparisons

were used to calculate the similarities between pairs of samples

by use of the Jaccard coefficient. Genomic DNA was extracted

and purified from bacterial cultures in Luria-Bertani broth by

use of a kit (Easy-DNA Kit; Invitrogen), according to the man-

ufacturer’s instructions. PCR for the RAPD reaction was per-

formed in 20-mL reaction volumes containing 10 ng of DNA,

20 mmol/L Tris-HCl (pH, 8.4), 50 mmol/L KCl, 2.5 mmol/L

MgCl2, 50 mmol/L each dNTP (Gibco BRL), 0.3 mL of random

primers (OPE 16 [5′-GGTGACTGTG-3′], OPP-03 [5′-CTGAT-

ACGCC-3′], and OPJ18 [5′-TGGTCGCAGA-3′]; Operon Tech-

nologies), 1.3 U of Taq DNA polymerase (Gibco BRL) and

overlaid with 30 mL mineral oil.

Amplification reactions were performed in a thermalcycler

(Eppendorf Mastercycler Gradient) and included one previous

step at 94�C for 4 min and 40 cycles, followed by denaturation

at 94�C for 45 s, annealing at 35�C for 45 s, and extension at

72�C for 2 min. An additional extension step at 72�C for 7

min was included at the end of the PCR cycles. Amplified

products were electrophoresed in 1.4% agarose gels, stained

with ethidium bromide, and visualized using UV light. The 1-

kb DNA ladder (Gibco BRL) was used as a molecular size

marker in all gels.

Statistical analysis. Statistical analysis of the data was per-

formed using the numerical taxonomy and multivariate analysis

system software program (NTSYS), version 1.7 (Exeter Soft-

ware). Data for children with diarrhea and data for controls

were compared using a 2-tailed test or Fisher’s exact test.2x

RESULTS

A total of 438 children with diarrhea and 422 matched control

children without diarrhea were studied. We identified potential

diarrheogenic E. coli by use of assays of adhesion to HEp-2

cells and by hybridization with specific DNA probes. The fre-

quency of isolation of pathogens from children with diarrhea

is shown in table 3.

Of the 860 fecal specimens analyzed, 42 (4.9%; 36 from case

patients and 6 from controls) were typical EPEC and 21 (2.4%;

14 from case patients and 7 from controls) were atypical EPEC;

they belonged to any of the established EPEC serogroups (O26,

O55, O111, O114, O119, O125–O128, O142, and O158). Eleven

fecal specimens (1.3%; 9 from case patients and 2 from con-

trols) contained typical non-EPEC serogroups and O nonty-

peable, and 44 (5.1%; 24 from case patients and 20 from con-

trols) contained atypical non-EPEC serogroups and O

nontypeable, as tested by slide agglutination with O-specific

antisera. The number of isolates with these characteristics in

each specimen varied from 1 to 3. For the present study, only

1 isolate from each of these 118 specimens was selected. Only

12 of the 118 strains (9 from case patients and 3 from controls)

were associated with enteroaggregative E. coli, diffusely adherent
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Table 4. Genotypic and phenotypic characterization of 53 typical enteropathogenic Escherichia coli (EPEC) and non-EPEC serogroups.

Serotype Strain Source(s)a Target genes
LEE

insertion
Intimin
type

Adhesion
(3 h)

EPEC O serogroup
O55:NM T3, T6, T16, T17, T22,

T25, T27, T31, T42,
T45, and T53

Patient bfpA, perA, LEEA–D, and Tir selC g LA

O86:NM T33 Patient bfpA, perA, LEEA–D, Tir, and cdt selC d LA
O86:H34 T1 Patient bfpA, perA, LEEA–D, Tir, and cdt selC d LA
O111:NM T7 and T20 Patient bfpA, perA, LEEA–D, and Tir ND b LA

T9 Patient bfpA, perA, LEEA–D, and Tir selC b LA
T24 and T28 Patient bfpA, perA, LEEA–D, and Tir selC a LA

O111:H2 T37 Patient bfpA, perA, LEEA–D, Tir, and cdt selC b LA
O119:NM T11 Patient bfpA, perA, LEEA–D, and Tir ND b LA

T13 and T30 Patient and
control

bfpA, perA, LEEA–D, and Tir selC b LA

O119:H6 T4, T5, T8, T10, T26,
T32, and T46

Patient bfpA, perA, LEEA–D, and Tir selC b LA

T35, T38, T40, T49,
T52, and T54

Patient bfpA, perA, LEEA–D, and Tir selC NT LA

T48 Patient bfpA, perA, LEEA–D, and Tir selC NT LA
T14 Patient bfpA, perA, LEEA–D, and Tir ND b LA
T29 Control bfpA, LEEA–D, and Tir selC b LA
T15 Patient LEEA–D and Tir selC b LA

O127:NM, H6 T41 and T43 Control bfpA, perA, LEEA–D, and Tir selC a LA
O127:H6 T44 Control bfpA, perA, LEEA–D, and Tir ND g LA

Non-EPEC O serogroup
O2:H2 T18 Patient bfpA, perA, LEEA–D, and Tir selC NT LA
O2:H45 T19 Patient bfpA, perA, LEEA–D, and Tir selC d LA
O101:H33 T36 Control bfpA, perA, LEEA–D, and Tir selC NT LA
O145:HNT T23 Control bfpA, perA, LEEA–D, and Tir selC g LA
O157:HNT T47 and T34 Patient bfpA, perA, LEEA–D, and Tir selC a LA
O162:NM T12 Patient bfpA, perA, LEEA–D, and Tir pheU NT LA
O162:H33 T21 Patient bfpA, perA, LEEA–D, and Tir selC NT LA
ONT:H45, HND T2 and T51 Patient bfpA, perA, LEEA–D, and Tir selC NT LA
ONT:HND T50 Patient bfpA, perA, LEEA–D, and Tir selC a LA

NOTE. LA, localized adherence; LEEA–D, locus of enterocyte effacement probes A–D; ND, nondetermined; NM, nonmotile; NT, nontypeable.
a Patients were children with acute diarrhea, and controls were children without acute diarrhea.

E. coli, Shigella species, or rotavirus. Rotavirus was the most

frequently associated pathogen (found in 6 case patients), fol-

lowed by Shigella species (found in 3 case patients). In the

present study, typical EPEC and non-EPEC strains were sig-

nificantly associated with diarrhea, and, although not signifi-

cantly associated with diarrhea, atypical EPEC and non-EPEC

strains were recovered more frequently from children with di-

arrhea than from children without diarrhea (table 3).

In total, 53 typical EPEC ( ) and non-EPEC ( )n p 42 n p 11

strains and 65 atypical EPEC ( ) and non-EPEC (n p 21 n p

) strains were characterized by virulence-associated markers,44

adherence to HEp-2 cells, and RAPD analysis (tables 4 and 5).

The frequency of the atypical strains with distinct characteristics

with regard to their association with diarrhea was further

analyzed.

Characteristics of typical strains. Of the 53 typical strains,

42 (80%) belonged to 5 EPEC serogroups (37 strains were of

serogroups O55, O111, and O119), 8 were classified as non-

EPEC serotypes (O2:H2, O2:H45, O101:H33, O145:HNT,

O157:HNT, O162:NM, and O162:H33), and 3 were nontype-

able (table 4). All typical strains, but 2 EPEC strains (O119:

H6), reacted with the bfpA and perABC. All 53 strains that were

tested carried LEE-associated DNA sequences, as determined

by hybridization with specific LEE-derived gene probes (LEE

A, LEE B, LEE C, and LEE D [i.e., LEEA–D]). With regard to

the presence of DNA sequences related to virulence in other

pathogenic categories of E. coli, only 3 EPEC strains (O86:NM,

O86:H34, and O111:H2) hybridized with the cdt (for “cyto-

lethal distending toxin”) probe.

Concerning the insertion site of the LEE as determined by
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Table 5. Genotypic and phenotypic characterization of 65 atypical enteropathogenic Escherichia coli (EPEC) and non-EPEC serogroups.

Serotype Strain(s) Source(s)a Target genes
LEE

insertion
Intimin
type

Adhesion
(6 h)

EPEC O serogroup

O26:NM A1 and A14b Patient perA, LEEA–D, Tir, and astA pheU NT, b LAL

A24 Patient perA, LEEA–D, Tir, and astA, afa selC NT LAL

A27 Control perA, LEEA–D, and Tir pheU b LAL

O55:NM A46 Control perA, LEEA–D, Tir, and astA selC g LAL

O111:NM A3 Patient perA, LEEA–D, Tir, and astA ND a LAL

A4 Control perA, LEEA–D, and Tir ND a LAL

A12 Control LEEA–D and Tir ND NT LAL

O114:NM A45 Control LEEA–D and Tir selC NT LAL

O119:H2 A60, A62, A66,c and A67 Patient and
control

perA, LEEA–D, Tir, and astA pheU b LAL, DE

O126:NM A13 Patient perA, LEEA–D, and Tir pheU NT LAL

O127:NM A34 Control LEEA–D and Tir pheU d LAL

O127:H40 A5d and A7 Patient LEEA–D and Tir ND g LAL

O128:NM A2 Patient LEEA–D and Tir ND b LAL

O142:NM A11 Patient perA, LEEA–D, Tir, and astA selC a LAL

O142:H2 A44 and A55 Patient LEEA–D and Tir selC a LAL, DE

Non-EPEC serogroup

O33:H6 A43 Control perA, LEEA–D, and Tir pheU g LAL

O35:H19 A42 Control LEEA–D and Tir selC NT LAL

O85:H40 A15 Patient perA, LEEA–D, and Tir ND NT LAL

O101:NM A21 Patient perA, LEEA–D, and Tir pheU NT LAL

O103:NM A25 and A28 Control perA, LEEA–D, Tir, and astA selC, pheU b, a LAL

O105:H7 A17 Control LEEA–D and Tir selC g LAL

O108:H31 A58 Control LEEA–D and Tir ND g DE

O109:H54 A40 Control LEEA–D and Tir ND b LAL

O141:HNT A47 Control LEEA–D, Tir, and astA selC NT LAL

O156:H16 A19 Patient perA, LEEA–D, Tir, and astA ND a LAL

O157:NM A29 and A36 Control LEEA–D and Tir selC d NA, NA

ONT:H18 A18 Patient LEEA–D and astA pheU b AA

ONT:NM A23 Patient perA, LEEA–D, Tir, astA, and afa selC NT DE

A26 and A32 Control LEEA–D, Tir, and astA selC g DE, DA

ONT:NM, HND A30, A38, A51–A53, A57, A59,
A63, A64, and A68

Patient perA, LEEA–D, Tir, and astA v v v

A16, A33, and A65 Control perA, LEEA–D, and Tir v v v

A10, A20, A22, A31, A35, A37,
A39, A41,c A48,c A49, A50,
A54,c A56,c and A61c,e

Patient and
control

LEEA–D and Tir v v v

NOTE. AA, aggregative adherence; DA, diffuse adherence; DE, cell detaching; LAL, localized-like adherence; LEEA–D, locus of enterocyte effacement probes
A–D; ND, not determined; NM, nonmotile; NT, nontypeable; v, variable.

a Patients were children with acute diarrhea, and controls were children without acute diarrhea.
b Positive for E-hly.
c Strains isolated from control.
d Positive for astA and afa.
e Negative for Tir.

PCR analysis, within a specific serotype, all typical strains gave

the same result. Forty-seven (89%) of the strains had LEE in-

serted downstream in selC, 1 non-EPEC strain had LEE inserted

in pheU, and 5 EPEC strains had an unidentified insertion site;

those strains had both the selC and pheU loci intact, but no

amplification with the primers for the left and right junction

of LEE in selC was detected.

On the basis of PCRs, strains of serotypes O111:NM, O127:

NM, O127:H6, and O157:HNT produced intimin a, most of

the strains of serotypes O111:NM, O111:H2, O119:NM, and

O119:H6 contained intimin b, and strains belonging to sero-

types O55:NM, O127:H6, and O145:HNT contained intimin

g, whereas strains of serotypes O86:NM, O86:H34, and O2:
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Table 6. Distribution of virulence markers among typical and
atypical enteropathogenic Escherichia coli strains in patients
with acute diarrhea and controls.

Virulence
marker

No. (%) of typical strains No. (%) of atypical strains

From patients
(n p 45)

From controls
(n p 8)

From patients
(n p 38)

From controls
(n p 27)

A–D 45 (100) 8 (100)a 38 (100) 27 (100)

Tir 45 (100) 8 (100)a 38 (100) 26 (96)

Bfp 44 (98) 8 (100)a 0 0

Per 44 (98) 7 (88)a 23 (61) 10 (37)

EAST1 0 0 22 (58) 7 (26)a

CDT 3 (67) 0 0 0

Afa 0 0 3 (8) 0

E-hly 0 0 1 (3) 0

NOTE. Afa, afimbrial adhesin of the Dr family; Bfp, bundle-forming pilus;
CDT, cytolethal distending toxin; EAST1, enteroaggregative Escherichia coli
heat-stable enterotoxin; E-hly; enterohemorrhagic E. coli hemolysin; LEE, locus
of enterocyte effacement; Per, plasmid-encoded regulator; Tir, translocated
intimin receptor.

a Significant at P.

H45 were specifically amplified with the intimin d primer. Seven

EPEC and 6 non-EPEC strains produced a nontypeable intimin.

Sequences similar to that amplified with the primers designed

on the basis of the Tir sequences of EPEC strain 2348/69 and

EHEC strain 86/24 were found in all EPEC and non-EPEC

strains. All typical strains showed only the LA pattern.

Characteristics of atypical strains. Twenty-one atypical

strains belonged to EPEC serogroups (18 belonged to sero-

groups O26, O111, O119, O127, and O142), 13 represented

non-EPEC serogroups (O33, O35, O85, O101, O103, O105,

O108, O109, O141, O156, and O157), and 31 were nontypeable

(table 5). According to the hybridization studies, none of the

atypical strains hybridized with the bfpA probe, and 33 strains

(51%; 13 belonging to EPEC serogroups and 20 belonging to

non-EPEC serogroups) reacted with the perABC probe. All 65

strains hybridized with the LEEA–D probes. Twenty-nine atyp-

ical strains (45%) reacted with astA (for EAST1 toxin), 3 strains

had the afa sequence (for afimbrial adhesin), and 1 carried E-

hly (for EHEC hemolysin).

With regard to the LEE insertion sites, LEE was inserted

downstream in selC in EPEC strains from serotypes O55:NM,

O114:NM, O142:NM, and O142:H2, and it was inserted in

pheU in strains from serotypes O26:NM, O119:H2, O126:NM,

and O127:NM. In non-EPEC serogroups, LEE was inserted

downstream in selC in 6 strains from serogroups O35, O103,

O105, O141, and O157, and it was inserted in pheU in 3 strains

from serogroups O33, O101, and O103. Of the remaining 35

non-EPEC strains, 17 had LEE inserted downstream in selC,

10 had LEE inserted in pheU, and 8 had an unidentified in-

sertion site.

Regarding intimin types, most of the strains of serotypes

O111:NM, O142:NM, O142:H2, O103:NM, and O156:H16

produced intimin a, strains of serotypes O26:NM, O119:H2,

O128:NM, O103:NM, and O109:H54 contained intimin b, and

strains belonging to serotypes O55:NM, O127:H40, O105:H7,

and O108:H31 contained intimin g, whereas strains from se-

rotypes O33:H6, O127:NM, and O157:NM were specifically

amplified with the intimin d primer. Of the remaining 31

strains, 12 produced a nontypeable intimin, 8 produced intimin

g, and 6 produced intimin b, whereas strains that produced

intimins a and d (3 and 2 strains, respectively) occurred in-

frequently. Tir sequences correlated with EPEC strain 2348/69

and EHEC strain 86/24 were found in all atypical strains, with

the exception of one atypical nontypeable strain. Forty atypical

strains (61.5%) showed the LAL pattern in the 6-h assay, 3

strains showed the aggregative adherence pattern, 1 strain

showed the diffuse adherence pattern, and 11 strains promoted

cell detaching.

Distribution of virulence markers in children with or with-

out diarrhea. The distribution of typical and atypical strains,

showing the different virulence markers in case patients and

controls, is presented in table 6. With rare exceptions, typical

strains produced only the virulence factors encoded by the LEE

region and the EAF plasmid. In contrast, atypical strains ex-

pressed EAST1 and other potential virulence factors not en-

coded in the LEE region. Only the atypical strains that carried

the astA sequence were associated with diarrhea (22 [58%] of

38 strains vs. 7 [26%] of 27 strains; ). Strains showingP p .01

the LAL pattern were found both in children with diarrhea

(61%) and in controls (62%).

RAPD analysis. The dendrogram presented in figure 1

shows 2 main groups. Group A includes typical and atypical

strains (most of them had LEE inserted in selC), and group B

encompasses 6 clusters. Clusters B1–B3 and B6 include, with

the exception of one typical strain (O2:H2), most of the atypical

strains with different virulence profiles. Clusters B4 and B5

contain both typical and atypical strains that are genetically

distinct. The main clusters encompassed many small clusters

corresponding to different serotypes. Different RAPD types

were also found among strains from different Brazilian regions.

DISCUSSION

The 118 EPEC strains (typical and atypical) that we analyzed

during an epidemiological study conducted in different regions

of Brazil were isolated from children with or without diarrhea

[3, 21]. Although typical EPEC and non-EPEC O serogroups

were significantly associated with diarrhea (45 [10.3%] of 438

specimens from children with diarrhea; ), atypical strainsP ! .01

were found in 8.7% of children with diarrhea. Many of these

strains belong to the EPEC serogroups, but, without compar-

ison with a truly pathogenic and typical EPEC, we cannot assign
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Figure 1. Dendrogram based on UPGMA (unweighted pair group method with averaging) cluster analysis of Jaccard coefficients. Shown are the
no. of the strains (column 1), their serotypes (column 2), their locus of enterocyte effacement (LEE) insertion site (column 3), their non–LEE-encoded
virulence factors (column 4), and the location of isolation in Brazil (column 5). GO, Goiania; MA, Maranhão; RN, Rio Grande do Norte; SC, Santa
Catarina; SP, São Paulo.
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a definite pathogenic role to the atypical EPEC strains identified

by probing in our previous study.

The division of EPEC strains into typical and atypical groups

is based on the presence of the EAF plasmid, as demonstrated

by hybridization with a DNA probe, which is a region of 1-kb

fragment, derived from the EAF plasmid. This plasmid encodes

a BFP and a transcriptional activator (perABC), which is a

regulatory sequence involved in the expression of BFP and the

A/E lesion [8, 9]. Complete agreement between results obtained

with bfpA or perABC probes and those obtained with the EAF

probe has been observed in previous studies [19, 21]. In the

present study, with the exception of 2 strains, all typical EPEC

and non-EPEC strains reacted with the bfpA and perABC

probes. In contrast, none of the atypical strains hybridized with

the bfpA probe, and most atypical strains lacked per.

To fully characterize the strains, we examined the presence

of the genes’ LEE region by probe hybridization. All typical

and atypical strains hybridized with LEEA–D. This result was

expected, because all the strains were positive for the fluores-

cein-actin staining test (data not shown). The majority of the

typical and atypical strains of EPEC and non-EPEC serogroups

(74%) expressed intimins a, b, g, or d. All strains, with the

exception of one atypical non-EPEC strain, presented Tir se-

quences correlated with enteropathogenic or enterohemor-

rhagic E. coli.

Our results, when combined with those of previous studies

[37], indicate that typical and atypical EPEC represent collec-

tions of distinct serotypes and virulence properties. Typical and

atypical EPEC strains belong to 2 different sets of serotypes.

Most of the serotypes found may easily be classified as typical

or atypical. However, some serotypes were not so readily clas-

sified; the most frequently noted of these serotypes were O111:

NM, O55:NM, and O127:NM. In fact, these serotypes are de-

rived from motile strains, and their O:H types could also be

classified. We found new serogroups in the typical strains (O2,

O145, O157, and O162); most of them had not yet been iden-

tified, and they may represent unrecognized EPEC serogroups

[38–41].

Typical and atypical strains also differ in adherence patterns.

All typical strains showed only the LA pattern mediated by the

BFP fimbriae, whereas atypical strains showed the LAL pattern,

the diffuse adherence pattern, the aggregative adherence pat-

tern, or cell detaching.

Regarding virulence characteristics, typical strains are more

homogeneous in their virulence characteristics than are atypical

ones. All typical strains, with the exception of 3 EPEC strains

that produced the cytolethal distending toxin, expressed only

the virulence factors encoded by the LEE region and the EAF

plasmid. In contrast, almost one-half of the atypical EPEC

strains expressed EAST1 or other potential virulence factors

not encoded in the LEE region. Accordingly, there were 2 kinds

of atypical strains: those that express only the LEE-encoded

virulence factors and those that express both LEE and the non–

LEE-encoded virulence factors. The occurrence of atypical

strains that express both LEE and the non–LEE-encoded vir-

ulence factors was significantly associated with diarrhea (P p

)..01

It has been reported that the EAF plasmid may be lost during

storage or even during infection [42]. There is also evidence

suggesting that atypical EPEC strains may be ancestors to typical

EPEC and EHEC bacteria [43]. The analysis of RAPD poly-

morphisms revealed that typical and atypical strains are ge-

netically different, and that they also have more than a single

clonal origin. These results confirm previous findings obtained

by multilocus enzyme electrophoresis typing, and they are con-

sistent with the concept that typical EPEC and atypical EPEC

are distinct bacterial lineages.

In a previous study [19], atypical strains were considered to

be a miscellaneous group composed of atypical EPEC, entero-

aggregative E. coli, diffusely adherent E. coli, or uropathogenic

E. coli strains that had acquired a LEE region by horizontal

transfer. In the present study, with few exceptions, the atypical

strains could represent 2 groups of strains: those that express

only the LEE-encoded virulence factors and those that express

both LEE and EAST1 toxin.

Although most of the genotypes and phenotypes examined

were common in both atypical EPEC strains isolated from pa-

tients and controls, we found that the EAST1 toxin was detected

much more frequently in atypical strains isolated from case

patients than in those isolated from controls ( ). ThisP p .01

virulence marker may be a useful tool for the diagnosis of truly

atypical EPEC pathogenic strains.
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